Linear Algebra Online

Gilbert Strang

Professor of Mathematics

Massachusetts Institute of Technology (MIT) Cambridge MA 02139 USA

Textbooks by Gilbert Strang math.mit.edu/~gs

(5th edition: 2016)

(1st edition : 2019)
$1=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \quad P=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
LINEAR ALGEBRA

Everyone

GILBERT STRANG
(1st edition : 2020)

Please see their 3 websites on math.mit.edu math.mit.edu/linearalgebra math.mit.edu/learningfromdata math.mit.edu/everyone Video lectures Math 18.06, 18.065, ocw.mit.edu/courses For book orders : math.mit.edu/weborder.php

Solving $A x=0$ by Elimination : $\boldsymbol{A}=\boldsymbol{C R}$

Key ideas of this lecture

1 The nullspace $\mathbf{N}(A)$ in \mathbf{R}^{n} contains all solutions \boldsymbol{x} to $A \boldsymbol{x}=\mathbf{0}$.

2 Elimination from A to R_{0} to R does not change the nullspace.
$\mathbf{3} \boldsymbol{R}_{\mathbf{0}}=\boldsymbol{\operatorname { r r e f }}(\boldsymbol{A})$ has \boldsymbol{I} in r columns and \boldsymbol{F} in $n-r$ columns.

4 Every column of F leads to a "special solution" to $A \boldsymbol{x}=\mathbf{0}$.

5 Every matrix factors into $\boldsymbol{A}=\boldsymbol{C} \boldsymbol{R}$.

6 Every short wide matrix with $m<n$ has nonzero solutions to $A \boldsymbol{x}=\mathbf{0}$.

Example 1

$R=\left[\begin{array}{llll}1 & 0 & 3 & 5 \\ 0 & 1 & 4 & 6\end{array}\right] \quad R \boldsymbol{x}=\mathbf{0}$ is $\begin{aligned} x_{1}+\quad 3 x_{3}+5 x_{4} & =0 \\ x_{2}+4 x_{3}+6 x_{4} & =0\end{aligned}$
Two "special solutions" are easy to find.
Set $x_{3}=\mathbf{1} \& x_{4}=\mathbf{0}$. Eqn 1 gives $x_{1}=\mathbf{- 3}$. Eqn 2 gives $x_{2}=\mathbf{- 4}$.
Set $x_{3}=\mathbf{0} \& x_{4}=\mathbf{1}$. Eqn 1 gives $x_{1}=\mathbf{5}$. Eqn 2 gives $x_{2}=\mathbf{- 6}$.
These two special solutions $\boldsymbol{s}_{1}=(-\mathbf{3},-\mathbf{4}, \mathbf{1}, \mathbf{0})$ and $\boldsymbol{s}_{2}=(-\mathbf{5},-\mathbf{6}, \mathbf{0}, \mathbf{1})$ are in the nullspace of R. They give $R s_{1}=\mathbf{0}$ and $R s_{2}=\mathbf{0}$.

Example 2

$R_{0}=\left[\begin{array}{rrrr}1 & 7 & 0 & 8 \\ 0 & 0 & 1 & 9 \\ 0 & 0 & 0 & 0\end{array}\right] \quad R_{0} \boldsymbol{x}=\mathbf{0}$ is $\quad \begin{aligned} x_{1}+7 x_{2}+0 x_{3}+8 x_{4} & =0 \\ x_{3}+9 x_{4} & =0 \\ 0 & =0\end{aligned}$
I is in columns 1 and 3. And row 3 is all zero.

The 1's in the identity matrix are still the first nonzeros in their rows.
Set $\boldsymbol{x}_{\mathbf{2}}=\mathbf{1} \& \boldsymbol{x}_{\boldsymbol{4}}=\mathbf{0}$. Eqn 1 gives $\boldsymbol{x}_{\boldsymbol{1}}=\mathbf{- 7}$. Eqn 2 gives $\boldsymbol{x}_{\boldsymbol{3}}=\mathbf{0}$.
Set $\boldsymbol{x}_{\boldsymbol{2}}=\mathbf{0} \& \boldsymbol{x}_{\boldsymbol{4}}=\mathbf{1}$. Eqn 1 gives $\boldsymbol{x}_{\boldsymbol{1}}=\mathbf{- 8}$. Eqn 2 gives $\boldsymbol{x}_{\boldsymbol{3}}=\mathbf{- 9}$.

Special solutions $\boldsymbol{s}_{1}=(-\mathbf{7}, \mathbf{1}, \mathbf{0}, \mathbf{0})$ and $\boldsymbol{s}_{2}=(-\mathbf{8}, \mathbf{0},-\mathbf{9}, \mathbf{1})$

$r, m, n=2,2,4$	Simplest case $\boldsymbol{R}=\left[\begin{array}{ll}\boldsymbol{I} & \boldsymbol{F}\end{array}\right]$	as in $\left[\begin{array}{llll}\mathbf{1} & 0 & 3 & 5 \\ 0 & \mathbf{1} & 4 & 6\end{array}\right]$
$r, m, n=2,3,4$	General case $\boldsymbol{R}_{\mathbf{0}}=\left[\begin{array}{cc}\boldsymbol{I} & \boldsymbol{F} \\ \mathbf{0} & \mathbf{0}\end{array}\right] \boldsymbol{P}$	as in $\left[\begin{array}{llll}\mathbf{1} & 7 & 0 & 8 \\ 0 & 0 & \mathbf{1} & 9 \\ 0 & 0 & 0 & 0\end{array}\right]$

R_{0} has $m-r$ rows of zeros. I has r columns. F has $n-r$ columns.

$$
P=\left[\begin{array}{llll}
\mathbf{1} & 0 & 0 & 0 \\
0 & 0 & \mathbf{1} & 0 \\
0 & \mathbf{1} & 0 & 0 \\
0 & 0 & 0 & \mathbf{1}
\end{array}\right] \quad \begin{aligned}
& \text { exchanges columns } 2 \text { and } 3 \text {. Then } \\
& I \text { goes into columns } 1 \text { and } 3 \text { of } R_{0} \text { and } R . ~
\end{aligned}
$$

Column-row factorization $\boldsymbol{A}=\boldsymbol{C R}$

$A=C R=C\left[\begin{array}{ll}I & F\end{array}\right] P=\left[\begin{array}{ll}C & C F\end{array}\right] P$
$=[$ Independent cols Dependent cols $]$ Permute cols

Dependent cols of A are combinations $C F$ of independent cols in C.

Basis for the column space of A : Columns of C

Basis for the row space of A : Rows of R

Steps of Elimination

1. Subtract a multiple of one row from another row (above or below !)
2. Multiply a row by any nonzero number
3. Exchange any rows.

$$
\begin{aligned}
A=\left[\begin{array}{llll}
1 & 2 & 11 & 17 \\
3 & 7 & 37 & 57
\end{array}\right] \rightarrow\left[\begin{array}{rrrr}
1 & 2 & 11 & 17 \\
0 & 1 & 4 & 6
\end{array}\right] \rightarrow & {\left[\begin{array}{llll}
1 & 0 & 3 & 5 \\
0 & 1 & 4 & 6
\end{array}\right]=R } \\
{\left[\begin{array}{ll}
W & H
\end{array}\right] } &
\end{aligned}
$$

What did elimination do? Inverted leading $\mathbf{2} \times \mathbf{2}$ matrix $\boldsymbol{W}=\left[\begin{array}{ll}1 & 2 \\ \mathbf{3} & 7\end{array}\right]$. First r rows W at the start of A became I at the start of R.

Multiply $W^{-1} A=W^{-1}\left[\begin{array}{ll}W & H\end{array}\right]$ for $R=\left[\begin{array}{ll}I & W^{-1} H\end{array}\right]=\left[\begin{array}{ll}\boldsymbol{I} & F\end{array}\right]$,
$\begin{aligned} & \text { Dependent } \\ & \text { columns }\end{aligned} \boldsymbol{H}=\left[\begin{array}{ll}11 & 17 \\ 37 & 57\end{array}\right]=\begin{gathered}\text { Independent } \\ \text { columns }\end{gathered} \boldsymbol{W}=\left[\begin{array}{ll}1 & 2 \\ 3 & 7\end{array}\right]$ times $\boldsymbol{F}=\left[\begin{array}{ll}3 & 5 \\ 4 & 6\end{array}\right]$

However you compute R from A, you always reach the same R.

1 First r independent cols of A locate the cols of R containing I
2 Remaining columns F in R are determined by $H=W F$:
(Dependent columns of A) $=($ Independent columns of $A)$ times F
3 The last $m-r$ rows of R_{0} are rows of zeros. Delete in R.

Second example produces a zero row in \boldsymbol{R}_{0}

$\boldsymbol{A}=\left[\begin{array}{rrrr}1 & 7 & 3 & 35 \\ 2 & 14 & 6 & 70 \\ 2 & 14 & 9 & 97\end{array}\right] \rightarrow\left[\begin{array}{rrrr}1 & 7 & 3 & 35 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 3 & 27\end{array}\right] \rightarrow\left[\begin{array}{rrrr}1 & 7 & 0 & 8 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 3 & 27\end{array}\right] \rightarrow\left[\begin{array}{llll}\mathbf{1} & 7 & \mathbf{0} & 8 \\ \mathbf{0} & 0 & \mathbf{1} & 9 \\ 0 & 0 & 0 & 0\end{array}\right]=\boldsymbol{R}_{\mathbf{0}}$
\boldsymbol{C} times \(\boldsymbol{F}=\left[$$
\begin{array}{ll}1 & 3 \\
2 & 6 \\
2 & 9\end{array}
$$\right]\left[$$
\begin{array}{ll}7 & 8 \\
0 & 9\end{array}
$$\right]=\left[\begin{array}{rr}7 \& 35

14 \& 70

14 \& 97\end{array}\right]=\)| dependent |
| :--- |
| $\begin{array}{l}\text { columns } \\ \mathbf{2} \text { and } 4 \text { of } \boldsymbol{A}\end{array}$ |

The position of \boldsymbol{I} in $\boldsymbol{R}_{\mathbf{0}}$ locates the column matrix \boldsymbol{C} in \boldsymbol{A}.

$$
\begin{array}{rl}
\boldsymbol{A}=\boldsymbol{C} \boldsymbol{R} \text { is } \quad\left[\begin{array}{rrrr}
1 & 7 & 3 & 35 \\
2 & 14 & 6 & 70 \\
2 & 14 & 9 & 97
\end{array}\right]= & {\left[\begin{array}{ll}
1 & 3 \\
2 & 6 \\
2 & 9
\end{array}\right]\left[\begin{array}{llll}
1 & 7 & 0 & 8 \\
0 & 0 & 1 & 9
\end{array}\right]} \\
m \times n & m \times r \quad r \times n
\end{array}
$$

The two special solutions to $\boldsymbol{A x}=0$

$$
\begin{aligned}
& \boldsymbol{R s}_{\mathbf{1}}=\mathbf{0} \quad\left[\begin{array}{llll}
1 & 7 & 0 & 8 \\
0 & 0 & 1 & 9
\end{array}\right]\left[\begin{array}{r}
-\mathbf{7} \\
\mathbf{1} \\
0 \\
\mathbf{0}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \quad \begin{array}{c}
\text { Put } \mathbf{1} \text { and } \mathbf{0} \\
\text { in positions } 2 \text { and } 4
\end{array} \\
& \boldsymbol{R} \boldsymbol{s}_{\mathbf{2}}=\mathbf{0} \quad\left[\begin{array}{llll}
1 & 7 & 0 & 8 \\
0 & 0 & 1 & 9
\end{array}\right]\left[\begin{array}{r}
\mathbf{8} \\
\mathbf{0} \\
\mathbf{9} \\
\mathbf{1}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \quad \begin{array}{c}
\text { Put } \mathbf{0} \text { and } \mathbf{1} \\
\text { in positions } 2 \text { and } 4
\end{array}
\end{aligned}
$$

Special solutions to $\left[\begin{array}{ll}I & F\end{array}\right] \boldsymbol{x}=\mathbf{0}$ are columns of $\left[\begin{array}{r}-F \\ I\end{array}\right]$ in Example 1 Special solutions to $\left[\begin{array}{ll}I & F\end{array}\right] P \boldsymbol{x}=\mathbf{0}$ are cols of $P^{\mathrm{T}}\left[\begin{array}{r}-F \\ I\end{array}\right]$ in Example 2

$$
\left[\begin{array}{ll}
I & F
\end{array}\right] P \text { times } P^{\mathrm{T}}\left[\begin{array}{r}
-F \\
I
\end{array}\right] \text { reduces to }\left[\begin{array}{ll}
\boldsymbol{I} & \boldsymbol{F}
\end{array}\right]\left[\begin{array}{r}
-\boldsymbol{F} \\
\boldsymbol{I}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{0}]
\end{array}\right.
$$

Suppose $A \boldsymbol{x}=\mathbf{0}$ has more unknowns than equations $(\boldsymbol{n}>\boldsymbol{m})$. There must be at least $\boldsymbol{n}-\boldsymbol{m}$ free columns in \boldsymbol{F} $\boldsymbol{A} \boldsymbol{x}=\mathbf{0}$ has nonzero solutions in the nullspace of A

$$
\boldsymbol{A}=\left[\begin{array}{ll}
1 & 2 \\
3 & 8
\end{array}\right] \quad \boldsymbol{B}=\left[\begin{array}{r}
A \\
2 A
\end{array}\right]=\left[\begin{array}{rr}
1 & 2 \\
3 & 8 \\
2 & 4 \\
6 & 16
\end{array}\right] \quad \boldsymbol{M}=\left[\begin{array}{ll}
A & 2 A
\end{array}\right]=\left[\begin{array}{rrrr}
1 & 2 & 2 & 4 \\
3 & 8 & 6 & 16
\end{array}\right] .
$$

Row space dimension $=$ rank $\boldsymbol{r}=2$

Nullspace dimension $=$ rank $\boldsymbol{n}-\boldsymbol{r}$

Elimination by block multiplication

$P_{R} A P_{C}=\left[\begin{array}{cc}\boldsymbol{W} & \boldsymbol{H} \\ \boldsymbol{J} & \boldsymbol{K}\end{array}\right] \quad C=\left[\begin{array}{c}W \\ J\end{array}\right] \& B=\left[\begin{array}{ll}W & H\end{array}\right]$ have full rank r
Multiply r top rows by W^{-1} to get $W^{-1} B=\left[\begin{array}{ll}I & W^{-1} H\end{array}\right]=\left[\begin{array}{ll}\boldsymbol{I} & \boldsymbol{F}\end{array}\right]$
Subtract $J\left[\begin{array}{ll}I & W^{-1} H\end{array}\right]$ from $m-r$ lower rows $\left[\begin{array}{ll}J & K\end{array}\right]$ to get $\left[\begin{array}{ll}\mathbf{0} & \mathbf{0}\end{array}\right]$

$$
\boldsymbol{P}_{\boldsymbol{R}} \boldsymbol{A} \boldsymbol{P}_{\boldsymbol{C}}=\left[\begin{array}{cc}
W & H \\
J & K
\end{array}\right] \rightarrow\left[\begin{array}{cc}
I & W^{-1} H \\
J & K
\end{array}\right] \rightarrow\left[\begin{array}{cc}
\boldsymbol{I} & \boldsymbol{W}^{-1} \boldsymbol{H} \\
\mathbf{0} & \mathbf{0}
\end{array}\right]=\boldsymbol{R}_{\mathbf{0}}
$$

MIT OpenCourseWare https://ocw.mit.edu

Resource: A 2020 Vision of Linear Algebra Gilbert Strang

The following may not correspond to a particular course on MIT
OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

