18.701: Algebra 1

Jakin Ng, Sanjana Das, and Ethan Yang

Fall 2021

Contents

1	Groups ————————————————————————————————————	5						
	.1 Introduction							
	.2 Laws of Composition	Ę						
	.3 Permutation and Symmetric Groups	7						
	.4 Examples of Symmetric Groups	8						
2	Subgroups and Cyclic Groups 1							
	2.1 Review	1(
	2.2 Subgroups	10						
	2.3 Subgroups of the Integers	11						
	2.4 Cyclic Groups	12						
3	Homomorphisms and Isomorphisms	14						
Ü	3.1 Review	14						
	3.2 Homomorphisms	14						
	3.3 Examples	14						
	.5 Examples	14						
4	somorphisms and Cosets	18						
	.1 Review	18						
	.2 Isomorphisms	18						
	Automorphisms	18						
	4.4 Cosets	19						
	Lagrange's Theorem	21						
5	The Correspondence Theorem 2							
	6.1 Review	22						
	Lagrange's Theorem	22						
	Results of the Counting Formula	22						
	Normal Subgroups	23						
	5.5 The Correspondence Theorem	25						
6	Normal Subgroups and Quotient Groups 27							
	6.1 Review	27						
	5.2 Normal Subgroups	27						
	3.3 Quotient Groups	28						
	3.4 First Isomorphism Theorem	30						
7	Fields and Vector Spaces 31							
•	7.1 Review	31						
	7.2 Fields	31						
	7.3 Vector Spaces	31						
	7.4 Bases and Dimension	$\frac{31}{32}$						
8	Dimension Formula	35						
o	21 Poviow	20						

CONTENTS

	8.2 8.3	Matrix of Linear Transformations 35 Dimension Formula 36						
9	Dimension Formula 38							
	9.1	Review						
	9.2	Linear Operators						
	9.3	Change of Basis						
	9.4	Eigenvectors, Eigenvalues, and Diagonalizable Matrices						
	9.5	Finding Eigenvalues and Eigenvectors						
10	Eige	nbases and the Jordan Form 45						
		Review						
		The Characteristic Polynomial						
	10.3	Jordan Form						
11	The	Jordan Decomposition 49						
		Review						
		The Jordan Decomposition, Continued						
	11.3	Proof of Jordan Decomposition Theorem						
12		ogonal Matrices 54						
		Dot Products and Orthogonal Matrices						
		The Special Orthogonal Group						
		Orthogonal Matrices in Two Dimensions						
	12.4	Orthogonal Matrices in Three Dimensions						
13		netries 60						
		Review						
		Isometries						
	13.3	Isometries in 2-space						
14		metry Groups 65						
		Review						
		Examples of Symmetry Groups						
		Discrete Subgroups of \mathbb{R}						
		More Discrete Subgroups						
15		te and Discrete Subgroups, Continued Review						
		Finite Subgroups of M_2						
		Discrete Subgroups of M_2						
		15.3.1 Discrete Subgroups of \mathbb{R}^2						
		15.3.2 Back to Discrete Subgroups of $M_2!$						
16								
10	Disc	rete Groups 73						
10		rete Groups 73 Review						
	16.1	· ·						
10	16.1 16.2	Review						
	16.1 16.2 16.3	Review 75 Examples for L and \overline{G} 75 Crystallographic Restriction 75						
	16.1 16.2 16.3 Gro	Review						
	16.1 16.2 16.3 Gro 17.1	Review						
	16.1 16.2 16.3 Gro 17.1 17.2	Review						
	16.1 16.2 16.3 Gro 17.1 17.2 17.3	Review 75 Examples for L and \overline{G} 75 Crystallographic Restriction 75 up Actions 80 Review 80 Motivating Examples 80						
17	16.1 16.2 16.3 Gro 17.1 17.2 17.3 17.4	Review75Examples for L and \overline{G} 75Crystallographic Restriction75up Actions80Review80Motivating Examples80What is a group action?81						
17	16.1 16.2 16.3 Gro 17.1 17.2 17.3 17.4 Stal 18.1	Review75Examples for L and \overline{G} 75Crystallographic Restriction75 up Actions 80Review80Motivating Examples80What is a group action?81The Counting Formula82 ilizer 86Review86						
17	16.1 16.2 16.3 Gro 17.1 17.2 17.3 17.4 Stak 18.1 18.2	Review75Examples for L and \overline{G} 75Crystallographic Restriction75 up Actions 80Review80Motivating Examples80What is a group action?81The Counting Formula82 ilizer 86						

CONTENTS

	8.4 Statement	. 87
	8.5 Finding the subgroups	. 88
	8.6 The Octahedral Group	. 89
10	Group Actions on G	91
10	9.1 Conjugation	
	9.2 p -groups	
•		0.0
20	The Icosahedral Group 0.1 Review: The Class Equation	96 . 96
	0.1 Review. The Class Equation	
	0.3 Conjugacy Classes	
	0.4 Simple Groups	
	0.5 Conjugacy Classes for Symmetric Groups	
01		101
21	Conjugacy Classes for Symmetric and Alternating Groups 1.1 Review	101 . 101
	1.2 Cycle Type	
	1.3 Conjugacy Classes in S_n	
	1.4 Class Equation for S4	
	1.5 Student Question	. 105
00		105
22	Sylow Theorems 2.1 Review	107 . 107
	2.2 Motivation	
	2.3 The First Sylow Theorem	
	2.4 The Second Sylow Theorem	
	2.5 The Third Sylow Theorem	
	2.6 Applications of the Sylow Theorems	. 109
23	Proofs and Applications of the Sylow Theorems	114
	3.1 Review	
	3.2 Application: Decomposition of Finite Abelian Groups	
	3.3 Proof of Sylow Theorems	. 115
24	Bilinear Forms	119
	4.1 Review	
	4.2 Bilinear Forms	
	4.3 Change of Basis	
	4.4 Bilinear Forms over CC	. 123
25	Orthogonality	125
20	5.1 Review: Bilinear Forms	
	5.2 Hermitian Forms	
	5.3 Orthogonality	. 127
00		100
4 0	Che Projection Formula 6.1 Review: Symmetric and Hermitian Forms	130 . 130
	6.2 Orthogonality	
	6.3 Orthogonal Bases	
	6.4 Projection Formula	
-		101
27	Cuclidean and Hermitian Spaces	134
	7.1 Review: Orthogonal Projection	
	7.2 Euclidean and Hermitian Spaces	
	7.4 Complex Linear Operators	
28	The Spectral Theorem 8.1. Review: Hermitian Spaces	138 138
	A L Deview: Hermitian Spaces	LBX

CONTENTS

	28.2 The Spectral Theorem	138
2 9	Linear Groups	141
	29.1 Geometry of groups	141
	29.2 Geometry of SU_2	142
	29.2.1 Quaternions	143
	29.2.2 Geometry of the Sphere	143
	29.2.3 Latitudes	144
30	The Special Unitary Group SU_2	147
	30.1 Review	147
	30.2 Longitudes	
	30.3 More Group Theoretic Properties	
	30.4 Conjugation and the Orthogonal Group	
	30.5 One-Parameter Groups	
	one randiced Groups	
31	One-Parameter Subgroups	152
	31.1 Review	
	31.2 Properties of the Matrix Exponential	
	31.3 One-Parameter Subgroups	153
32	One-Parameter Groups, Continued	156
	32.1 Review	156
	32.2 Examples!	156
	32.3 The Special Linear Group $SL_n(\mathbb{C})$	157
	32.4 Tangent Vectors	
22	Lie Groups	160
-	33.1 Review	160
	33.2 Lie Groups	
	33.3 Manifolds	
	33.4 Lie Bracket	
	99.4 Lie Diacket	100
34	Simple Linear Groups	165
	34.1 Review	
	34.2 Simple Linear Groups	165
	34.3 The Special Unitary Group	165
	34.4 The Special Linear Group	168
	34.5 Generalizations	170
35	Hilbert's Third Problem	171
	35.1 Polygons in the Plane	171
	35.2 The Question	171
	35.3 Some Algebra	172
	35.4 Back to Polytopes	173
	20.4 Dack to Folytopes	119

1 Groups

1.1 Introduction

The lecturer is **Davesh Maulik**. These notes are taken by **Jakin Ng**, **Sanjana Das**, and **Ethan Yang**. Here is some basic information about the class:

- The text used in this class will be the 3rd edition of **Algebra**, by Artin.
- The course website is found on Canvas, and the problem sets will be submitted on Gradescope.
- The problem sets will be due every Tuesday at midnight.

Throughout this semester, we will discuss the fundamentals of *linear algebra* and *group theory*, which is the study of symmetries. In this class, we will mostly study groups derived from geometric objects or vector spaces, but in the next course, 18.702¹, more exotic groups will be studied.

As a review of basic linear algebra, let's review invertible matrices.

Definition 1.1

An $n \times n$ matrix A^{-1} is invertible if there exists some other matrix A^{-1} such that $AA^{-1} = A^{-1}A = I$, the $n \times n$ identity matrix. Equivalently, A is invertible if and only if the determinant $\det(A) \neq 0$.

Example 1.2 (n = 2)

Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ be a 2×2 matrix. Then its inverse A^{-1} is $\frac{1}{ad-bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$.

Example 1.3 $(GL_n(\mathbb{R}))$

A main example that will guide our discussion of groups^a is the **general linear group**, $GL_n(\mathbb{R})$, which is the group of $n \times n$ invertible real matrices.

 a The concept of a group will be fleshed out later in this lecture

Throughout the course, we will be returning to this example to illustrate various concepts that we learn about.

1.2 Laws of Composition

With our example in mind, let's start.

Guiding Question

How can we generalize the nice properties of matrices and matrix multiplication in a useful way?

Given two matrices $A, B \in GL_n(\mathbb{R})$, there is an operation combining them, in particular matrix multiplication, which returns a matrix $AB \in GL_n(\mathbb{R})$. The matrices under matrix multiplication satisfy several properties:

- Noncommutativity. Matrix multiplication is noncommutative, which means that AB is not necessarily the same matrix as BA. So the order that they are listed in *does* matter.
- Associativity. This means that (AB)C = A(BC), which means that the matrices to be multiplied can be grouped together in different configurations. As a result, we can omit parentheses when writing the product of more than two matrices.
- Inverse. The product of two invertible matrices is also invertible. In particular,

$$(AB)^{-1} = B^{-1}A^{-1}$$
.

 $^{^{}a}$ An array of numbers (or some other type of object) with n rows and n columns

¹Algebra 2

²Since the determinant is multiplicative, det(AB) = det(A) det(B), which is nonzero.

Another way to think of matrices is as an *operation* on a different space. Given a matrix $A \in GL_n(\mathbb{R})$, a function or transformation on \mathbb{R}^{n3} can be associated to it, namely

$$T_A: \mathbb{R}^n \longrightarrow \mathbb{R}^n$$
 $\overrightarrow{v} = (x_1, \cdots, x_n) \longmapsto A \overrightarrow{v}^4$

Since $A\vec{v}$ is the matrix product, we notice that $T_{AB}(\vec{v}) = T_A(T_B(\vec{v}))$, and so matrix multiplication is the same as function composition.

With this motivation, we can define the notion of a group.

Definition 1.4 (Group)

A group is a set G with a composition (or product) law

$$G \times G \longrightarrow G$$
$$(a,b) \longmapsto a \cdot b^5$$

fulfilling the following conditions:

- **Identity.** There exists some element $e \in G$ such that $a \cdot e = e \cdot a = a$
- Inverse. For all $a \in G$, there exists $b \in G$, denoted a^{-1} , such that $a \cdot b = b \cdot a = e$.
- Associative. For $a, b, c \in G$,

$$(ab)c = a(bc).$$

Also denoted ab

In the definition, both the first and second conditions automatically give us a unique inverse and identity. For example, if e and e' both satisfy property 1, then $e \cdot e' = e = e'$, so they must be the same element. A similar argument holds for inverses.

Why does associativity matter? It allows us to define the product $g_1 \cdot g_2 \cdot \cdots \cdot g_n$ without the parentheses indicating which groupings they're multiplied in.

Definition 1.5

Let g taken to the power n be the element $g^n = \underbrace{g \cdot \dots \cdot g}_{n \text{ times}}$ for n > 0, $g^n = \underbrace{g^{-1} \cdot \dots \cdot g^{-1}}_{n \text{ times}}$ for n < 0, and e for n = 0.

Example 1.6

Some common groups include:

Group Composition Law Identity Inverse
$$GL_n(\mathbb{R})^a$$
 matrix multiplication I_n $A \mapsto A^ \mathbb{Z}^b$ + 0 $n \mapsto -n$ $\mathbb{C}^\times = \mathbb{C} \setminus \{0\}^c$ \times 1 $z \mapsto \frac{1}{z}$

For the last two groups, there is additional structure: the composition law is *commutative*. This motivates the following definition.

Definition 1.7

A group G is abelian if $a \cdot b = b \cdot a$ for all $a, b \in G$. Otherwise, G is called **nonabelian**.

 $[^]a$ The general linear group

^bThe integers under addition

 $^{{}^}c\mathrm{The}$ complex numbers (except 0) under multiplication

 $^{^3}$ Vectors with n entries which are real numbers.

⁴The notation $A\vec{v}$ refers to the matrix product of A and \vec{v} , considered as $n \times n$ and $n \times 1$ matrices.

Often, the composition law in an abelian group is denoted + instead of \cdot .

1.3 Permutation and Symmetric Groups

Now, we will look at an extended example of another family of nonabelian groups.

Definition 1.8

Given a set S, a **permutation** of S is a bijection $p: S \longrightarrow S$.

^aA function $f:A\longrightarrow B$ is a bijection if for all $y\in B$, there exists a unique $x\in A$ such that f(x)=y. Equivalently, it must be one-to-one and onto.

Definition 1.9

Let Perm(S) be the set of permutations of S.

In fact, Perm(S) is a group, where the product rule is function composition.⁶

- **Identity.** The identity function $e: x \longmapsto x$ is is the identity element of the group.
- Inverse. Because p is a bijection, it is invertible. Let $p^{-1}(x)$ be the unique $y \in S$ such that p(y) = x.
- Associativity. Function composition is always associative.

Like groups of matrices, Perm(S) is a group coming from a set of *transformations* acting on some object; in this case, S.

Definition 1.10

When $S = \{1, 2, \dots, n\}$, the permutation group Perm(S) is called the **symmetric group**, denoted S_n .

Definition 1.11

For a group G, the number of elements in the set G, |G|, is called the **order** of the group G, denoted |G| or ord(G).

The order of the symmetric group is $|S_n| = n!^7$ so the symmetric group S_n is a finite group.

For n = 6, consider the two permutations p and q

where the upper number is mapped to the lower number.

We can also write these in **cycle notation**, which is a shorthand way of describing a permutation that does not affect what the permutation actually is. In cycle notation, each group of parentheses describes a cycle, where the number is mapped to the following number, and it wraps around.

Example 1.12 (Cycle notation)

In cycle notation, p is written as (124)(35), where the 6 is omitted. In the first cycle, 1 maps to 2, 2 maps to 4, and 4 maps to 1, and in the second cycle, 3 maps to 5 and 5 maps back to 3.a

aIn fact, we say that p has cycle type (3,2), which is the lengths of each cycle.

⁶We can check that the composition of two bijections $p \circ q$ is also a bijection.

⁷The number of permutations of the numbers 1 through n is n! — there are n possibilities for where 1 maps to, and then n-1 for where 2 maps to, and so on to get $n(n-1)\cdots(2)(1)=n!$

Similarly, q is written as (135)(246).⁸ In cycle notation, it is clear that there are multiple ways to write or represent the same permutation. For example, p could have been written as (241)(53) instead, but it represents the *same* element $p \in S_6$.

Cycle notation allows us to more easily invert or compose two permutations; we simply have to follow where each number maps to.

Example 1.13 (Inversion)

The inverse p^{-1} flips the rows of the table:

In cycle notation, it reverses the cycles, since each number should be mapped under p^{-1} to the number that maps to it under p:

$$p^{-1} = (421)(53) = (142)(35).$$

Example 1.14 (Composition)

The composition is

$$q \circ p = (143)(26).$$

Under p, 1 maps to 2, which maps to 4 under q, and so 1 maps to 4 under $q \circ p$.^a Similarly, 4 maps to 3 and 3 maps back to 1, which gives us the first cycle. The second cycle is similar.

 a Remember that the rightmost permutation is applied first, and then the leftmost, and not the other way around, due to the notation used for function composition.

Example 1.15 (Conjugation)

Another example of composition is

$$p^{-1} \circ q \circ p = (126)(345).$$

This is also known as *conjugation* of q by $p.^a$

^aNotice that under conjugation, q retains its cycle type (3,3). In fact, this is true for conjugation of any element by any other element!

1.4 Examples of Symmetric Groups

For $n \geq 3$, S_n is always non-abelian. Let's consider S_n for small $n \leq 3$.

Example 1.16 (S_1)

In this case, S_1 only has one element, the identity element, and so it is $\{e\}$, the trivial group.

Example 1.17 (S_2)

For n = 2, the only possibilities are the identity permutation e and the transposition (12). Then $S_2 = \{e, (12)\}$; it has order 2.

Once n gets larger, the symmetric group becomes more interesting.

 $^{^{8}}$ It has cycle type (3,3).

Example 1.18 (S_3)

The symmetric group on three elements is of order 3! = 6. It must contain the identity e. It can also contain x = (123). Then we also get the element $x^2 = (132)$, but

$$x^3 = e.$$

Higher powers are just $x^4 = x, x^5 = x^2$, and so on. Now, we can introduce y = (12), which is its own inverse, and so

$$y^2 = e$$
.

Taking products gives xy = (13) and $x^2y = (23)$. So we have all six elements of S_3 :

$$S_3 = \{e, (123), (132), (12), (13), (23)\}.$$

In fact, $yx = (23) = x^2y$, so taking products in the other order does not provide any new elements. The relation

$$yx = x^2y$$

holds. In particular, using the boxed relations, we can compute any crazy combination of x and y and reduce it to one of the elements we listed. For example, $xyx^{-1}y = xyx^2y = xyyx = xy^2x = x^2$.

2 Subgroups and Cyclic Groups

2.1 Review

Last time, we discussed the concept of a group, as well as examples of groups. In particular, a group is a set G with an associative composition law $G \times G \longrightarrow G$ that has an identity as well inverses for each element with respect to the composition law \times .

Our guiding example was that of the group of invertible $n \times n$ matrices, known as the **general linear group** $(GL_n(\mathbb{R}) \text{ or } GL_n(\mathbb{C}), \text{ for matrices over } \mathbb{R} \text{ and } \mathbb{C}, \text{ respectively.})$

Example 2.1

Let $GL_n(\mathbb{R})$ be the group of $n \times n$ invertible real matrices.

- Associativity. Matrix multiplication is associative; that is, (AB)C = A(BC), and so when writing a product consisting of more than two matrices, it is not necessary to put in parentheses.
- Identity. The $n \times n$ identity matrix is $I_n = \begin{pmatrix} 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \end{pmatrix}$, which is the matrix with 1s along the diagonal and 0s everywhere else. It satisfies the property that AI = IA = A for all $n \times n$ matrices A.
- Inverse. By the invertibility condition of GL_n , every matrix $A \in GL_n(\mathbb{R})$ has an inverse matrix A^{-1} such that $AA^{-1} = A^{-1}A = I_n$.

Furthermore, each of these matrices can be seen as a transformation from $\mathbb{R}^n \longrightarrow \mathbb{R}^n$, taking each vector \vec{v} to $A\vec{v}$. That is, there is a bijective correspondence between matrices A and invertible transformations $T_A: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ taking $T_A(\vec{v}) = A\vec{v}$.

Another example that showed up was the integers under addition.

Example 2.2

The integers \mathbb{Z} with the composition law + form a group. Addition is associative. Also, $0 \in \mathbb{Z}$ is the additive identity, and $-a \in \mathbb{Z}$ is the inverse of any integer a.

On the other hand, the natural numbers \mathbb{N} under addition would *not* form a group, because the invertibility condition would be violated.

Lastly, we looked at the symmetric group S_n .

Example 2.3

The **symmetric group** S_n is the permutation group of $\{1, \dots, n\}$.

2.2 Subgroups

In fact, understanding S_n is important for group theory as a whole because any finite group "sits inside" S_n in a certain way⁹, which we will begin to discuss today.

Guiding Question

What does it mean for a group to "sit inside" another group?

If a subset of a group satisfies certain properties, it is known as a subgroup.

 $^{^9{}m This}$ is known as Cayley's Theorem and is discussed further in section 7.1 of Artin.

Definition 2.4

Given a group (G, \cdot) , a subset $H \subset G$ is called a **subgroup** if it satisfies:

- Closure. If $h_1, h_2 \in H$, then $h_1 \cdot h_2 \in H$.
- **Identity.** The identity element e in G is contained in H.
- Inverse. If $h \in H$, its inverse h^{-1} is also an element of H.

As notation, we write $H \leq G$ to denote that H is a subgroup of G.

Essentially, these properties consists solely of the necessary properties for H to also be a group under the same operation \cdot , so that it can be considered a subgroup and not just some arbitrary subset. In particular, any subgroup H will also be a group with the same operation, independent of the larger group G.

Example 2.5

The integers form a subgroup of the rationals under addition: $(\mathbb{Z}, +) \subset (\mathbb{Q}, +)$.

The rationals are more complicated than the integers, and studying simpler subgroups of a certain group can help with understanding the group structure as a whole.

Example 2.6

The symmetric group S_3 has a three-element subgroup $\{e, (123), (132)\} = \{e, x, x^2\}$.

However, the natural numbers $\mathbb{N} = \{0, 1, 2, \dots\} \subset (\mathbb{Z}, +)$ are **not** a subgroup of the integers, since not every element has an inverse.

Example 2.7

The matrices with determinant 1, called the **special linear group**, form a subgroup of invertible matrices: $SL_n(\mathbb{R}) \subset GL_n(\mathbb{R})$.

The special linear group is closed under matrix multiplication because det(AB) = det(A) det(B).

2.3 Subgroups of the Integers

The integers $(\mathbb{Z}, +)$ have particularly nice subgroups.

```
Theorem 2.8
```

The subgroups of $(\mathbb{Z}, +)$ are $\{0\}, \mathbb{Z}, 2\mathbb{Z}, \cdots$.

^aWhere $n \in \mathbb{Z}$, $n\mathbb{Z}$ consists of the multiples of n, $\{nx : x \in \mathbb{Z}\}$.

This theorem demonstrates that the condition that a subset H of a group be a subgroup is quite strong, and requires quite a bit of structure from H.

Proof. First, $n\mathbb{Z}$ is in fact a subgroup.

- Closure. For $na, nb \in n\mathbb{Z}, na + nb = n(a + b)$.
- **Identity.** The additive identity is in $n\mathbb{Z}$ because $0 = n \cdot 0$.
- Inverse. For $na \in n\mathbb{Z}$, its inverse -na = n(-a) is also in $n\mathbb{Z}$.

Now, suppose $S \subset \mathbb{Z}$ is a subgroup. Then clearly the identity 0 is an element of S. If there are no more elements in S, then $S = \{0\}$ and the proof is complete. Otherwise, pick some nonzero $h \in S$. Without loss of generality, we assume that h > 0 (otherwise, since $-h \in S$ as well by the invertibility condition, take -h instead of h.) Thus, S contains at least one positive integer; let a be the smallest positive integer in S.

Then we claim that $S = a\mathbb{Z}$. If $a \in S$, then $a + a = 2a \in S$ by closure, which implies that $2a + a = 3a \in S$, and so on. Similarly, $-a \in S$ by inverses, and $-a + (-a) = -2a \in S$, and so on, which implies that $a\mathbb{Z} \subset S$.

Now, take any $n \in S$. By the Euclidean algorithm, n = aq + r for some $0 \le r < a$. From the subgroup properties, $n - aq = r \in S$ as well. Since a is the smallest positive integer in S, if r > 0, there would be a contradiction, so r = 0. Thus, n = aq, which is an element of $a\mathbb{Z}$. Therefore, $S \subset a\mathbb{Z}$.

From these two inclusions, $S = a\mathbb{Z}$ and the proof is complete.

Corollary 2.9

Given $a, b \in \mathbb{Z}$, consider $S = \{ai + bj : i, j \in \mathbb{Z}\}$. The subset S satisfies all the subgroup conditions, so by Theorem 2.8, there is some d such that $S = d\mathbb{Z}$. In fact, $d = \gcd(a, b)$.

Proof. Let $e = \gcd(a, b)$. Since $a \in S$, a = dk and $b = d\ell$ for some k, ℓ . Since the d from before divides a and b, it must also divide e, by definition of the greatest common divisor. Also, since $d \in S$, by the definition of S, d = ar + bs for some r and b. Since e divides a and b, e divides both ar and bs and therefore d.

Thus, d divides e, and e divides d, implying that e = d. So $S = \gcd(a, b)\mathbb{Z}$.

In particular, we have showed that gcd(a, b) can always be written in the form ar + bs for some r, s.

2.4 Cyclic Groups

Now, let's discuss a very important type of subgroup that connects back to the work we did with $(\mathbb{Z}, +)$.

Definition 2.10

Let G be a group, and take $g \in G$. Let the cyclic subgroup generated by g be

$$\langle g \rangle := {}^{a} \{ \cdots g^{-2}, g^{-1}, g^{0} = e, g^{1}, g^{2}, \cdots \} \leq G.$$

 a The := symbol is usually used by mathematicians to mean "is defined to be." Other people may use \equiv for the same purpose.

Since $g^a \cdot g^b = g^{a+b}$, the exponents of the elements of a cyclic subgroup will have a related group structure to $(\mathbb{Z}, +)$.

Example 2.11

The identity element generates the trivial subgroup $\{e\} = \langle e \rangle$ of any group G.

There are also nontrivial cyclic subgroups.

Example 2.12

In S_3 , $\langle (123) \rangle = \{e, (123), (132)\}.$

Evidently, a cyclic subgroup of any finite group must also be finite.

Example 2.13

Let \mathbb{C}^{\times} be the group of nonzero complex numbers under multiplication. Then $2 \in \mathbb{C}$ will generate

$$\langle 2 \rangle = \{ \cdots, 1/4, 1/2, 1, 2, 4, \cdots \}$$

On the other hand, $i \in \mathbb{C}$ will generate

$$\langle i \rangle = \{1, i, -1, -i\}.$$

This example shows that a cyclic subgroup of an infinite group can be either infinite or finite. 10

¹⁰Can you work out the cases for which $g \in \mathbb{C}$ the cyclic subgroup of \mathbb{C}^{\times} is finite or infinite?

Guiding Question

What does a cyclic subgroup look like? Can they be classified?

Theorem 2.14

Let $S = \{n \in \mathbb{Z} : g^n = e\}$. Then S is a subgroup of \mathbb{Z} , so $S = d\mathbb{Z}$ or $S = \{0\}$, leading to two cases:

- If $S = \{0\}$, then $\langle g \rangle$ is infinite and all the g^k are distinct.
- If $S = d\mathbb{Z}$, then $\langle g \rangle = \{e, g, g^2, \cdots, g^{d-1}\} \subset G$, which is finite.

Proof. First, S must be shown to actually be a subgroup of \mathbb{Z} .

- **Identity.** The identity $0 \in S$ because $g^0 = e$.
- Closure. If $a, b \in S$, then $g^a = g^b = e$, so $g^{a+b} = g^a g^b = e \cdot e = e$, so $a+b \in S$.
- Inverse. If $a \in S$, then $g^{-a} = (g^a)^{-1} = e^{-1} = e$, so $a \in S$.

Now, consider the first case. If $g^a = g^b$ for any a, b, then multiplying on right by g^{-b} gives $g^a \cdot g^{-b} = g^{a-b} = e$. Thus, $a - b \in S$, and if $S = \{0\}$, then a = b. So any two powers of g can only be equal if they have the same exponent, and thus all the g^i are distinct and the cyclic group is infinite.

Consider the second case where $S = d\mathbb{Z}$. Given any $n \in \mathbb{Z}$, n = dq + r for $0 \le r < d$ by the Euclidean algorithm. Then $g^n = g^{dq} \cdot g^r = g^r$, which is in $\{e, g, g^2, \cdots, g^{d-1}\}$.

Definition 2.15

So if d = 0, then $\langle g \rangle$ is infinite; we say that g has **infinite order**. Otherwise, if $d \neq 0$, then $|\langle g \rangle| = d$ and g has **order** d.

It is also possible to consider more than one element g.

Definition 2.16

Given a subset $T \subset G$, the subgroup generated by T is

$$\langle T \rangle := \{ t_1^{e_1} \cdots t_n^{e_n} \mid t_i \in T, e_i \in \mathbb{Z} \}.$$

Essentially, $\langle T \rangle$ consists of all the possible products of elements in T. For example, if $T = \{t, n\}$, then

$$\langle T \rangle = \{ \cdots, t^2 n^{-3} t^4, n^5 t^{-1}, \cdots \}.$$

Definition 2.17

If $\langle T \rangle = G$, then T generates G.

 a Given a group G, what is the smallest set that generates it? Try thinking about this with some of the examples we've seen in class!

Example 2.18

The set $\{(123), (12)\}$ generates S_3 .

Example 2.19

The invertible matrices $GL_n(\mathbb{R})$ are generated by elementary matrices^a.

^aThe matrices giving row-reduction operations.

MIT OpenCourseWare https://ocw.mit.edu

Resource: Algebra I Student Notes

Fall 2021

Instructor: Davesh Maulik

Notes taken by Jakin Ng, Sanjana Das, and Ethan Yang

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.