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Lecture 1: Groups

1  Groups

1.1 Introduction

The lecturer is Davesh Maulik. These notes are taken by Jakin Ng, Sanjana Das, and Ethan Yang.
Here is some basic information about the class:

e The text used in this class will be the 3rd edition of Algebra, by Artin.
e The course website is found on Canvas, and the problem sets will be submitted on Gradescope.
e The problem sets will be due every Tuesday at midnight.

Throughout this semester, we will discuss the fundamentals of linear algebra and group theory, which is the
study of symmetries. In this class, we will mostly study groups derived from geometric objects or vector spaces,
but in the next course, 18.702!, more exotic groups will be studied.

As a review of basic linear algebra, let’s review invertible matrices.

Definition 1.1
An nxn matrix® A is invertible if there exists some other matrix A~! such that AA=' = A=1A = I, the
nxn identity matrix. Equivalently, A is invertible if and only if the determinant det(A) # 0.

%An array of numbers (or some other type of object) with n rows and n columns

Example 1.2 (n =2)

Let A = (a b) be a 2x2 matrix. Then its inverse A~ is —- < d _b>.
c d ad=bc \ —¢ ¢

Example 1.3 (GL,(R))
A main example that will guide our discussion of groups® is the general linear group, GL,(R), which is
the group of nxn invertible real matrices.

“The concept of a group will be fleshed out later in this lecture

Throughout the course, we will be returning to this example to illustrate various concepts that we learn about.

1.2 Laws of Composition

With our example in mind, let’s start.

Guiding Question
How can we generalize the nice properties of matrices and matrix multiplication in a useful way?

Given two matrices A, B € GL,(R), there is an operation combining them, in particular matriz multiplication,
which returns a matrix AB € GL,(R).? The matrices under matrix multiplication satisfy several properties:

e Noncommutativity. Matrix multiplication is noncommutative, which means that AB is not necessarily
the same matrix as BA. So the order that they are listed in does matter.

e Associativity. This means that (AB)C = A(BC'), which means that the matrices to be multiplied can
be grouped together in different configurations. As a result, we can omit parentheses when writing the
product of more than two matrices.

e Inverse. The product of two invertible matrices is also invertible. In particular,

(AB)™'=B7'A™%

1 Algebra 2
2Since the determinant is multiplicative, det(AB) = det(A) det(B), which is nonzero.
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Another way to think of matrices is as an operation on a different space. Given a matrix A € GL,,(R), a function
or transformation on R™? can be associated to it, namely

Ty :R" — R"
U= (21, ,2n) — AT
Since A7 is the matrix product, we notice that Ty (¥) = Ta(Tg(7)), and so matrix multiplication is the same

as function composition.

With this motivation, we can define the notion of a group.

Definition 1.4 (Group)
A group is a set G with a composition (or product) law

GxG — G
(a,b) — a - b°
fulfilling the following conditions:
e Identity. There exists some element e € G such that a-e=¢-a=a
e Inverse. For all a € G, there exists b € G, denoted a™!, such that a-b=0-a =e.

e Associative. For a,b,c € G,
(ab)e = a(be).

Also denoted ab

In the definition, both the first and second conditions automatically give us a unique inverse and identity. For
example, if e and e’ both satisfy property 1, then e - ¢’ = e = €/, so they must be the same element. A similar
argument holds for inverses.

Why does associativity matter? It allows us to define the product ¢y - g2 - -+ - g, without the parentheses
indicating which groupings they’re multiplied in.

Definition 1.5

Let g taken to the power n be the element g" = g-----gforn >0,g" =g '--.-. g7 forn <0, and e for
—— —_—

n times n times

n=0.

Example 1.6
Some common groups include:

Group Composition Law Identity  Inverse
GL,(R)® matrix multiplication I, Ars AL
VA + 0 n— —n

C* =C\{0}° X 1 Z %

“The general linear group
bThe integers under addition
°The complex numbers (except 0) under multiplication

For the last two groups, there is additional structure: the composition law is commutative. This motivates the
following definition.

Definition 1.7
A group G is abelian if a-b=b-a for all a,b € G. Otherwise, G is called nonabelian.

3Vectors with n entries which are real numbers.
4The notation A7 refers to the matrix product of A and ¥, considered as nxn and nx 1 matrices.
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Often, the composition law in an abelian group is denoted + instead of -.

1.3 Permutation and Symmetric Groups

Now, we will look at an extended example of another family of nonabelian groups.

Definition 1.8
Given a set S, a permutation of S is a bijection® p: S — S.

%A function f : A — B is a bijection if for all y € B, there exists a unique z € A such that f(z) = y. Equivalently, it
must be one-to-one and onto.

Definition 1.9
Let Perm(S) be the set of permutations of S.

In fact, Perm(S) is a group, where the product rule is function composition.

e Identity. The identity function e : x — x is is the identity element of the group.
e Inverse. Because p is a bijection, it is invertible. Let p~!(z) be the unique y € S such that p(y) = .
e Associativity. Function composition is always associative.

Like groups of matrices, Perm(S) is a group coming from a set of transformations acting on some object; in
this case, S.

Definition 1.10
When S = {1,2,--- ,n}, the permutation group Perm(S) is called the symmetric group, denoted S,,.

Definition 1.11
For a group G, the number of elements in the set G, |G|, is called the order of the group G, denoted |G|

or ord(G).

The order of the symmetric group is |S,| = n!” so the symmetric group S,, is a finite group.

For n = 6, consider the two permutations p and ¢

i |1 2 3 4 5 6
pi) 2 4 5 1 3 6

i |1 2 3 4 5 6
@[3 4 5 6 1 2°

where the upper number is mapped to the lower number.

We can also write these in cycle notation, which is a shorthand way of describing a permutation that does not
affect what the permutation actually is. In cycle notation, each group of parentheses describes a cycle, where
the number is mapped to the following number, and it wraps around.

Example 1.12 (Cycle notation)
In cycle notation, p is written as (124)(35), where the 6 is omitted. In the first cycle, 1 maps to 2, 2 maps

to 4, and 4 maps to 1, and in the second cycle, 3 maps to 5 and 5 maps back to 3.¢

%In fact, we say that p has cycle type (3,2), which is the lengths of each cycle.

6We can check that the composition of two bijections p o g is also a bijection.
7"The number of permutations of the numbers 1 through n is n! — there are n possibilities for where 1 maps to, and then n — 1

for where 2 maps to, and so on to get n(n —1)---(2)(1) =n!
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Similarly, ¢ is written as (135)(246).% In cycle notation, it is clear that there are multiple ways to write or
represent the same permutation. For example, p could have been written as (241)(53) instead, but it represents
the same element p € Sg.

Cycle notation allows us to more easily invert or compose two permutations; we simply have to follow where
each number maps to.

Example 1.13 (Inversion)
The inverse p~! flips the rows of the table:

In cycle notation, it reverses the cycles, since each number should be mapped under p~! to the number
that maps to it under p:
p~ ! = (421)(53) = (142)(35).

Example 1.14 (Composition)
The composition is
qop=(143)(26).

Under p, 1 maps to 2, which maps to 4 under ¢, and so 1 maps to 4 under ¢ o p.* Similarly, 4 maps to 3
and 3 maps back to 1, which gives us the first cycle. The second cycle is similar.

“Remember that the rightmost permutation is applied first, and then the leftmost, and not the other way around, due to
the notation used for function composition.

Example 1.15 (Conjugation)
Another example of composition is
p_1 ogop=(126)(345).

This is also known as conjugation of g by p.*

%Notice that under conjugation, ¢ retains its cycle type (3, 3). In fact, this is true for conjugation of any element by any
other element!

1.4 Examples of Symmetric Groups

For n > 3, S, is always non-abelian. Let’s consider S, for small n < 3.

Example 1.16 (5;)
In this case, S; only has one element, the identity element, and so it is {e}, the trivial group.

Example 1.17 (S3)
For n = 2, the only possibilities are the identity permutation e and the transposition (12). Then Sy =
{e, (12)}; it has order 2.

Once n gets larger, the symmetric group becomes more interesting.

81t has cycle type (3, 3).
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Example 1.18 (S53)
The symmetric group on three elements is of order 3! = 6. It must contain the identity e. It can also contain
x = (123). Then we also get the element 22 = (132), but

r = €.

5 = 22, and so on. Now, we can introduce y = (12), which is its own

v =]

Taking products gives xy = (13) and 2%y = (23). So we have all six elements of S3:

Higher powers are just z* = z,x
inverse, and so

S3 = {e, (123), (132), (12), (13),(23)}.

In fact, yz = (23) = 22y, so taking products in the other order does not provide any new elements. The

relation

holds. In particular, using the boxed relations, we can compute any crazy combination of x and y and

reduce it to one of the elements we listed. For example, zyz 'y = zyz?y = zyyz = zy’c = 2.
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2 Subgroups and Cyclic Groups

2.1 Review

Last time, we discussed the concept of a group, as well as examples of groups. In particular, a group is a set
G with an associative composition law G xG — G that has an identity as well inverses for each element with
respect to the composition law x.

Our guiding example was that of the group of invertible nxn matrices, known as the general linear group
(GL,(R) or GL,(C), for matrices over R and C, respectively.)

Example 2.1
Let GL,(R) be the group of nxn invertible real matrices.

e Associativity. Matrix multiplication is associative; that is, (AB)C' = A(BC), and so when writing
a product consisting of more than two matrices, it is not necessary to put in parentheses.

1 -~ 0

e Identity. The nxn identity matrix is [,, = [ : . .|, which is the matrix with 1s along the
0 --- 1

diagonal and 0s everywhere else. It satisfies the property that Al = IA = A for all nxn matrices A.

e Inverse. By the invertibility condition of GL,,, every matrix A € GL,(R) has an inverse matrix A~}
such that AA=! = A=1A=1,.

Furthermore, each of these matrices can be seen as a transformation from R™ — R"™, taking each vector ¥ to Av.
That is, there is a bijective correspondence between matrices A and invertible transformations T4 : R® — R”
taking Ty (0) = A7.

Another example that showed up was the integers under addition.

Example 2.2
The integers Z with the composition law + form a group. Addition is associative. Also, 0 € Z is the additive
identity, and —a € Z is the inverse of any integer a.

On the other hand, the natural numbers N under addition would not form a group, because the invertibility
condition would be violated.

Lastly, we looked at the symmetric group S,,.

Example 2.3
The symmetric group S, is the permutation group of {1,--- ,n}.

2.2 Subgroups

In fact, understanding S,, is important for group theory as a whole because any finite group "sits inside" S, in
a certain way”, which we will begin to discuss today.

What does it mean for a group to "sit inside" another group?

If a subset of a group satisfies certain properties, it is known as a subgroup.

9This is known as Cayley’s Theorem and is discussed further in section 7.1 of Artin.

10
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Definition 2.4
Given a group (G, -), a subset H C G is called a subgroup if it satisfies:

e Closure. If hy,hy € H, then hy - hy € H.
e Identity. The identity element e in G is contained in H.
o Inverse. If h € H, its inverse h~! is also an element of H.

As notation, we write H < G to denote that H is a subgroup of G.

Essentially, these properties consists solely of the necessary properties for H to also be a group under the same
operation -, so that it can be considered a subgroup and not just some arbitrary subset. In particular, any
subgroup H will also be a group with the same operation, independent of the larger group G.

Example 2.5
The integers form a subgroup of the rationals under addition: (Z,+) C (Q,+).

The rationals are more complicated than the integers, and studying simpler subgroups of a certain group can
help with understanding the group structure as a whole.

Example 2.6
The symmetric group Ss has a three-element subgroup {e, (123), (132)} = {e, z, 2%}.

However, the natural numbers N = {0,1,2,---} C (Z,+) are not a subgroup of the integers, since not every
element has an inverse.

Example 2.7
The matrices with determinant 1, called the special linear group, form a subgroup of invertible matrices:
SL,(R) C GL,(R).

The special linear group is closed under matrix multiplication because det(AB) = det(A) det(B).

2.3 Subgroups of the Integers
The integers (Z, +) have particularly nice subgroups.

Theorem 2.8
The subgroups of (Z,+) are {0},Z,2Z,--- .°

“Where n € Z, nZ consists of the multiples of n, {nz : x € Z}.

This theorem demonstrates that the condition that a subset H of a group be a subgroup is quite strong, and
requires quite a bit of structure from H.
Proof. First, nZ is in fact a subgroup.

o Closure. For na,nb € nZ, na + nb = n(a +b).

e Identity. The additive identity is in nZ because 0 = n - 0.

e Inverse. For na € nZ, its inverse —na = n(—a) is also in nZ.

Now, suppose S C Z is a subgroup. Then clearly the identity 0 is an element of S. If there are no more elements
in S, then S = {0} and the proof is complete. Otherwise, pick some nonzero h € S. Without loss of generality,
we assume that h > 0 (otherwise, since —h € S as well by the invertibility condition, take —h instead of h.)
Thus, S contains at least one positive integer; let a be the smallest positive integer in S.

Then we claim that S = aZ. If a € S, then a + a = 2a € S by closure, which implies that 2a + a = 3a € S, and
so on. Similarly, —a € S by inverses, and —a + (—a) = —2a € S, and so on, which implies that aZ C S.

11
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Now, take any n € S. By the Euclidean algorithm, n = aq+r for some 0 < r < a. From the subgroup properties,
n—aq=r €5 as well. Since a is the smallest positive integer in S, if » > 0, there would be a contradiction, so
r = 0. Thus, n = aq, which is an element of aZ. Therefore, S C aZ.

From these two inclusions, S = aZ and the proof is complete. O

Corollary 2.9
Given a,b € Z, consider S = {ai + bj : i,j € Z}. The subset S satisfies all the subgroup conditions, so by
Theorem 2.8, there is some d such that S = dZ. In fact, d = ged(a, b).

Proof. Let e = ged(a,b). Since a € S, a = dk and b = d¢ for some k, £. Since the d from before divides a and b,
it must also divide e, by definition of the greatest common divisor. Also, since d € S, by the definition of S,
d = ar + bs for some r and b. Since e divides a and b, e divides both ar and bs and therefore d.

Thus, d divides e, and e divides d, implying that e = d. So S = gcd(a, b)Z. O

In particular, we have showed that ged(a,bd) can always be written in the form ar + bs for some r, s.

2.4 Cyclic Groups
Now, let’s discuss a very important type of subgroup that connects back to the work we did with (Z, +).

Definition 2.10
Let G be a group, and take g € G. Let the cyclic subgroup generated by g be
(@) ="{-9%9 " =¢g¢% -} <G

®The := symbol is usually used by mathematicians to mean "is defined to be." Other people may use = for the same
purpose.

Since g% - g® = ¢®*?, the exponents of the elements of a cyclic subgroup will have a related group structure to
(Z,+).

Example 2.11
The identity element generates the trivial subgroup {e} = (e) of any group G.

There are also nontrivial cyclic subgroups.

Example 2.12
In Sy, ((123)) = {e, (123), (132)}.

Evidently, a cyclic subgroup of any finite group must also be finite.

Example 2.13
Let C* be the group of nonzero complex numbers under multiplication. Then 2 € C will generate

<2>:{ 71/471/27172747"' }

On the other hand, ¢ € C will generate

<Z> = {Lia 71, *i}'

This example shows that a cyclic subgroup of an infinite group can be either infinite or finite.'®

10Can you work out the cases for which g € C the cyclic subgroup of C* is finite or infinite?

12
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Guiding Question
What does a cyclic subgroup look like? Can they be classified?

Theorem 2.14
Let S={n€Z:g"=e}. Then S is a subgroup of Z, so S = dZ or S = {0}, leading to two cases:

e If S = {0}, then (g) is infinite and all the g* are distinct.
e If S = dZ, then (g) = {e,g,9°,--- ,9% '} C G, which is finite.

Proof. First, S must be shown to actually be a subgroup of Z.

e Identity. The identity 0 € S because ¢° = e.

e Closure. If a,b € S, then ¢* = g® =e,50 g*t? = g% =e-e=e,s0oa+beS.

e Inverse. If a € S, then g7 = (¢g%) ! =et =¢,50a € S.
Now, consider the first case. If g% = ¢° for any a, b, then multiplying on right by ¢~? gives g% - ¢~ = g** =e.
Thus, a — b € S, and if S = {0}, then a = b. So any two powers of g can only be equal if they have the same
exponent, and thus all the g* are distinct and the cyclic group is infinite.

Consider the second case where S = dZ. Given any n € Z, n = dq +r for 0 < r < d by the Euclidean algorithm.
Then ¢g" = g% . g" = ¢", which is in {e,g,¢%, -, g% '}. O

Definition 2.15
So if d = 0, then (g) is infinite; we say that g has infinite order. Otherwise, if d # 0, then |(g)| = d and ¢
has order d.

It is also possible to consider more than one element g.

Definition 2.16
Given a subset T' C G, the subgroup generated by T is

(T) = {t& -t | t; € T, e; € L}.

Essentially, (T') consists of all the possible products of elements in T. For example, if T' = {¢,n}, then

(T ={-- ,2n 3t 0Pt ...},

Definition 2.17
If (T) = G, then T generates G.*

?Given a group GG, what is the smallest set that generates it? Try thinking about this with some of the examples we’ve
seen in class!

Example 2.18
The set {(123), (12)} generates Ss.

Example 2.19
The invertible matrices GL,,(R) are generated by elementary matrices®.

“The matrices giving row-reduction operations.
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