Lecture 2: Subgroups and Cyclic Groups

2 Subgroups and Cyclic Groups

2.1 Review

Last time, we discussed the concept of a group, as well as examples of groups. In particular, a group is a set
G with an associative composition law G xG — G that has an identity as well inverses for each element with
respect to the composition law x.

Our guiding example was that of the group of invertible nxn matrices, known as the general linear group
(GL,(R) or GL,(C), for matrices over R and C, respectively.)

Example 2.1
Let GL,(R) be the group of nxn invertible real matrices.

e Associativity. Matrix multiplication is associative; that is, (AB)C' = A(BC), and so when writing
a product consisting of more than two matrices, it is not necessary to put in parentheses.

1 -~ 0

e Identity. The nxn identity matrix is [,, = [ : . .|, which is the matrix with 1s along the
0 --- 1

diagonal and 0s everywhere else. It satisfies the property that Al = IA = A for all nxn matrices A.

e Inverse. By the invertibility condition of GL,,, every matrix A € GL,(R) has an inverse matrix A~}
such that AA=! = A=1A=1,.

Furthermore, each of these matrices can be seen as a transformation from R™ — R"™, taking each vector ¥ to Av.
That is, there is a bijective correspondence between matrices A and invertible transformations T4 : R® — R”
taking Ty (0) = A7.

Another example that showed up was the integers under addition.

Example 2.2
The integers Z with the composition law + form a group. Addition is associative. Also, 0 € Z is the additive
identity, and —a € Z is the inverse of any integer a.

On the other hand, the natural numbers N under addition would not form a group, because the invertibility
condition would be violated.

Lastly, we looked at the symmetric group S,,.

Example 2.3
The symmetric group S, is the permutation group of {1,--- ,n}.

2.2 Subgroups

In fact, understanding S,, is important for group theory as a whole because any finite group "sits inside" S, in
a certain way”, which we will begin to discuss today.

What does it mean for a group to "sit inside" another group?

If a subset of a group satisfies certain properties, it is known as a subgroup.

9This is known as Cayley’s Theorem and is discussed further in section 7.1 of Artin.
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Definition 2.4
Given a group (G, -), a subset H C G is called a subgroup if it satisfies:

e Closure. If hy,hy € H, then hy - hy € H.
e Identity. The identity element e in G is contained in H.
o Inverse. If h € H, its inverse h~! is also an element of H.

As notation, we write H < G to denote that H is a subgroup of G.

Essentially, these properties consists solely of the necessary properties for H to also be a group under the same
operation -, so that it can be considered a subgroup and not just some arbitrary subset. In particular, any
subgroup H will also be a group with the same operation, independent of the larger group G.

Example 2.5
The integers form a subgroup of the rationals under addition: (Z,+) C (Q,+).

The rationals are more complicated than the integers, and studying simpler subgroups of a certain group can
help with understanding the group structure as a whole.

Example 2.6
The symmetric group Ss has a three-element subgroup {e, (123), (132)} = {e, z, 2%}.

However, the natural numbers N = {0,1,2,---} C (Z,+) are not a subgroup of the integers, since not every
element has an inverse.

Example 2.7
The matrices with determinant 1, called the special linear group, form a subgroup of invertible matrices:
SL,(R) C GL,(R).

The special linear group is closed under matrix multiplication because det(AB) = det(A) det(B).

2.3 Subgroups of the Integers
The integers (Z, +) have particularly nice subgroups.

Theorem 2.8
The subgroups of (Z,+) are {0},Z,2Z,--- .°

“Where n € Z, nZ consists of the multiples of n, {nz : x € Z}.

This theorem demonstrates that the condition that a subset H of a group be a subgroup is quite strong, and
requires quite a bit of structure from H.
Proof. First, nZ is in fact a subgroup.

o Closure. For na,nb € nZ, na + nb = n(a +b).

e Identity. The additive identity is in nZ because 0 = n - 0.

e Inverse. For na € nZ, its inverse —na = n(—a) is also in nZ.

Now, suppose S C Z is a subgroup. Then clearly the identity 0 is an element of S. If there are no more elements
in S, then S = {0} and the proof is complete. Otherwise, pick some nonzero h € S. Without loss of generality,
we assume that h > 0 (otherwise, since —h € S as well by the invertibility condition, take —h instead of h.)
Thus, S contains at least one positive integer; let a be the smallest positive integer in S.

Then we claim that S = aZ. If a € S, then a + a = 2a € S by closure, which implies that 2a + a = 3a € S, and
so on. Similarly, —a € S by inverses, and —a + (—a) = —2a € S, and so on, which implies that aZ C S.
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Now, take any n € S. By the Euclidean algorithm, n = aq+r for some 0 < r < a. From the subgroup properties,
n—aq=r €5 as well. Since a is the smallest positive integer in S, if » > 0, there would be a contradiction, so
r = 0. Thus, n = aq, which is an element of aZ. Therefore, S C aZ.

From these two inclusions, S = aZ and the proof is complete. O

Corollary 2.9
Given a,b € Z, consider S = {ai + bj : i,j € Z}. The subset S satisfies all the subgroup conditions, so by
Theorem 2.8, there is some d such that S = dZ. In fact, d = ged(a, b).

Proof. Let e = ged(a,b). Since a € S, a = dk and b = d¢ for some k, £. Since the d from before divides a and b,
it must also divide e, by definition of the greatest common divisor. Also, since d € S, by the definition of S,
d = ar + bs for some r and b. Since e divides a and b, e divides both ar and bs and therefore d.

Thus, d divides e, and e divides d, implying that e = d. So S = gcd(a, b)Z. O

In particular, we have showed that ged(a,bd) can always be written in the form ar + bs for some r, s.

2.4 Cyclic Groups
Now, let’s discuss a very important type of subgroup that connects back to the work we did with (Z, +).

Definition 2.10
Let G be a group, and take g € G. Let the cyclic subgroup generated by g be
(@) ="{-9%9 " =¢g¢% -} <G

®The := symbol is usually used by mathematicians to mean "is defined to be." Other people may use = for the same
purpose.

Since g% - g® = ¢®*?, the exponents of the elements of a cyclic subgroup will have a related group structure to
(Z,+).

Example 2.11
The identity element generates the trivial subgroup {e} = (e) of any group G.

There are also nontrivial cyclic subgroups.

Example 2.12
In Sy, ((123)) = {e, (123), (132)}.

Evidently, a cyclic subgroup of any finite group must also be finite.

Example 2.13
Let C* be the group of nonzero complex numbers under multiplication. Then 2 € C will generate

<2>:{ 71/471/27172747"' }

On the other hand, ¢ € C will generate

<Z> = {Lia 71, *i}'

This example shows that a cyclic subgroup of an infinite group can be either infinite or finite.'®

10Can you work out the cases for which g € C the cyclic subgroup of C* is finite or infinite?
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Guiding Question
What does a cyclic subgroup look like? Can they be classified?

Theorem 2.14
Let S={n€Z:g"=e}. Then S is a subgroup of Z, so S = dZ or S = {0}, leading to two cases:

e If S = {0}, then (g) is infinite and all the g* are distinct.
e If S = dZ, then (g) = {e,g,9°,--- ,9% '} C G, which is finite.

Proof. First, S must be shown to actually be a subgroup of Z.

e Identity. The identity 0 € S because ¢° = e.

e Closure. If a,b € S, then ¢* = g® =e,50 g*t? = g% =e-e=e,s0oa+beS.

e Inverse. If a € S, then g7 = (¢g%) ! =et =¢,50a € S.
Now, consider the first case. If g% = ¢° for any a, b, then multiplying on right by ¢~? gives g% - ¢~ = g** =e.
Thus, a — b € S, and if S = {0}, then a = b. So any two powers of g can only be equal if they have the same
exponent, and thus all the g* are distinct and the cyclic group is infinite.

Consider the second case where S = dZ. Given any n € Z, n = dq +r for 0 < r < d by the Euclidean algorithm.
Then ¢g" = g% . g" = ¢", which is in {e,g,¢%, -, g% '}. O

Definition 2.15
So if d = 0, then (g) is infinite; we say that g has infinite order. Otherwise, if d # 0, then |(g)| = d and ¢
has order d.

It is also possible to consider more than one element g.

Definition 2.16
Given a subset T' C G, the subgroup generated by T is

(T) = {t& -t | t; € T, e; € L}.

Essentially, (T') consists of all the possible products of elements in T. For example, if T' = {¢,n}, then

(T ={-- ,2n 3t 0Pt ...},

Definition 2.17
If (T) = G, then T generates G.*

?Given a group GG, what is the smallest set that generates it? Try thinking about this with some of the examples we’ve
seen in class!

Example 2.18
The set {(123), (12)} generates Ss.

Example 2.19
The invertible matrices GL,,(R) are generated by elementary matrices®.

“The matrices giving row-reduction operations.

13



MIT OpenCourseWare
https://ocw.mit.edu

Resource: Algebra | Student Notes

Fall 2021
Instructor: Davesh Maulik
Notes taken by Jakin Ng, Sanjana Das, and Ethan Yang

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.



https://ocw.mit.edu/pages/privacy-and-terms-of-use/
https://ocw.mit.edu

	Subgroups and Cyclic Groups
	Review
	Subgroups
	Subgroups of the Integers
	Cyclic Groups




