
Lecture 2: Subgroups and Cyclic Groups 

2 Subgroups and Cyclic Groups 

2.1 Review 

Last time, we discussed the concept of a group, as well as examples of groups. In particular, a group is a set 
G with an associative composition law G×G −→ G that has an identity as well inverses for each element with 
respect to the composition law ×. 

Our guiding example was that of the group of invertible n×n matrices, known as the general linear group 
(GLn(R) or GLn(C), for matrices over R and C, respectively.) 

Example 2.1 
Let GLn(R) be the group of n×n invertible real matrices. 

• Associativity. Matrix multiplication is associative; that is, (AB)C = A(BC), and so when writing 

  

a product consisting of more than two matrices, it is not necessary to put in parentheses. 

1 · · · 0 
. ..• Identity. The n×n identity matrix is In = . . . , which is the matrix with 1s along the.. . 

  

0 1· · · 
diagonal and 0s everywhere else. It satisfes the property that AI = IA = A for all n×n matrices A. 

• Inverse. By the invertibility condition of GLn, every matrix A ∈ GLn(R) has an inverse matrix A−1 

such that AA−1 = A−1A = In. 

Furthermore, each of these matrices can be seen as a transformation from Rn −→ Rn, taking each vector ⃗v to Av⃗. 
That is, there is a bijective correspondence between matrices A and invertible transformations TA : Rn −→ Rn 

taking TA(v⃗) = Av⃗. 

Another example that showed up was the integers under addition. 

Example 2.2 
The integers Z with the composition law + form a group. Addition is associative. Also, 0 ∈ Z is the additive 
identity, and −a ∈ Z is the inverse of any integer a. 

On the other hand, the natural numbers N under addition would not form a group, because the invertibility 
condition would be violated. 

Lastly, we looked at the symmetric group Sn. 

Example 2.3 
The symmetric group Sn is the permutation group of {1, · · · , n}. 

2.2 Subgroups 

In fact, understanding Sn is important for group theory as a whole because any fnite group "sits inside" Sn in 
a certain way9 , which we will begin to discuss today. 

Guiding Question 
What does it mean for a group to "sit inside" another group? 

If a subset of a group satisfes certain properties, it is known as a subgroup. 
9This is known as Cayley’s Theorem and is discussed further in section 7.1 of Artin. 
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Defnition 2.4 
Given a group (G, ·), a subset H ⊂ G is called a subgroup if it satisfes: 

• Closure. If h1, h2 ∈ H, then h1 · h2 ∈ H. 

• Identity. The identity element e in G is contained in H. 

• Inverse. If h ∈ H, its inverse h−1 is also an element of H. 

As notation, we write H ≤ G to denote that H is a subgroup of G. 

Essentially, these properties consists solely of the necessary properties for H to also be a group under the same 
operation ·, so that it can be considered a subgroup and not just some arbitrary subset. In particular, any 
subgroup H will also be a group with the same operation, independent of the larger group G. 

Example 2.5 
The integers form a subgroup of the rationals under addition: (Z, +) ⊂ (Q, +). 

The rationals are more complicated than the integers, and studying simpler subgroups of a certain group can 
help with understanding the group structure as a whole. 

Example 2.6 
The symmetric group S3 has a three-element subgroup {e, (123), (132)} = {e, x, x2}. 

However, the natural numbers N = {0, 1, 2, · · · } ⊂ (Z, +) are not a subgroup of the integers, since not every 
element has an inverse. 

Example 2.7 
The matrices with determinant 1, called the special linear group, form a subgroup of invertible matrices: 
SLn(R) ⊂ GLn(R). 

The special linear group is closed under matrix multiplication because det(AB) = det(A) det(B). 

2.3 Subgroups of the Integers 

The integers (Z, +) have particularly nice subgroups. 

Theorem 2.8 
aThe subgroups of (Z, +) are {0}, Z, 2Z, · · · . 

aWhere n ∈ Z, nZ consists of the multiples of n, {nx : x ∈ Z}. 

This theorem demonstrates that the condition that a subset H of a group be a subgroup is quite strong, and 
requires quite a bit of structure from H. 

Proof. First, nZ is in fact a subgroup. 

• Closure. For na, nb ∈ nZ, na + nb = n(a + b). 

• Identity. The additive identity is in nZ because 0 = n · 0. 

• Inverse. For na ∈ nZ, its inverse −na = n(−a) is also in nZ. 

Now, suppose S ⊂ Z is a subgroup. Then clearly the identity 0 is an element of S. If there are no more elements 
in S, then S = {0} and the proof is complete. Otherwise, pick some nonzero h ∈ S. Without loss of generality, 
we assume that h > 0 (otherwise, since −h ∈ S as well by the invertibility condition, take −h instead of h.) 
Thus, S contains at least one positive integer; let a be the smallest positive integer in S. 

Then we claim that S = aZ. If a ∈ S, then a + a = 2a ∈ S by closure, which implies that 2a + a = 3a ∈ S, and 
so on. Similarly, −a ∈ S by inverses, and −a + (−a) = −2a ∈ S, and so on, which implies that aZ ⊂ S. 
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Now, take any n ∈ S. By the Euclidean algorithm, n = aq + r for some 0 ≤ r < a. From the subgroup properties, 
n − aq = r ∈ S as well. Since a is the smallest positive integer in S, if r > 0, there would be a contradiction, so 
r = 0. Thus, n = aq, which is an element of aZ. Therefore, S ⊂ aZ. 

From these two inclusions, S = aZ and the proof is complete. 

Corollary 2.9 
Given a, b ∈ Z, consider S = {ai + bj : i, j ∈ Z}. The subset S satisfes all the subgroup conditions, so by 
Theorem 2.8, there is some d such that S = dZ. In fact, d = gcd(a, b). 

Proof. Let e = gcd(a, b). Since a ∈ S, a = dk and b = dℓ for some k, ℓ. Since the d from before divides a and b, 
it must also divide e, by defnition of the greatest common divisor. Also, since d ∈ S, by the defnition of S, 
d = ar + bs for some r and b. Since e divides a and b, e divides both ar and bs and therefore d. 

Thus, d divides e, and e divides d, implying that e = d. So S = gcd(a, b)Z. 

In particular, we have showed that gcd(a, b) can always be written in the form ar + bs for some r, s. 

2.4 Cyclic Groups 

Now, let’s discuss a very important type of subgroup that connects back to the work we did with (Z, +). 

Defnition 2.10 
Let G be a group, and take g ∈ G. Let the cyclic subgroup generated by g be 

−2 −1 0 1 2⟨g⟩ := a{· · · g , g , g = e, g , g , · · · } ≤ G. 

aThe := symbol is usually used by mathematicians to mean "is defned to be." Other people may use ≡ for the same 
purpose. 

a b a+bSince g · g = g , the exponents of the elements of a cyclic subgroup will have a related group structure to 
(Z, +). 

Example 2.11 
The identity element generates the trivial subgroup {e} = ⟨e⟩ of any group G. 

There are also nontrivial cyclic subgroups. 

Example 2.12 
In S3, ⟨(123)⟩ = {e, (123), (132)}. 

Evidently, a cyclic subgroup of any fnite group must also be fnite. 

Example 2.13 
Let C× be the group of nonzero complex numbers under multiplication. Then 2 ∈ C will generate 

⟨2⟩ = {· · · , 1/4, 1/2, 1, 2, 4, · · · .} 

On the other hand, i ∈ C will generate 
⟨i⟩ = {1, i, −1, −i}. 

This example shows that a cyclic subgroup of an infnite group can be either infnite or fnite.10 

10Can you work out the cases for which g ∈ C the cyclic subgroup of C× is fnite or infnite? 
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Guiding Question 
What does a cyclic subgroup look like? Can they be classifed? 

Theorem 2.14 
nLet S = {n ∈ Z : g = e}. Then S is a subgroup of Z, so S = dZ or S = {0}, leading to two cases: 

k• If S = {0}, then ⟨g⟩ is infnite and all the g are distinct. 
2• If S = dZ, then ⟨g⟩ = {e, g, g , · · · , gd−1} ⊂ G, which is fnite. 

Proof. First, S must be shown to actually be a subgroup of Z. 

• Identity. The identity 0 ∈ S because g0 = e. 

a b a+b a b• Closure. If a, b ∈ S, then g = g = e, so g = g g = e · e = e, so a + b ∈ S. 

−a −1• Inverse. If a ∈ S, then g = (ga)−1 = e = e, so a ∈ S. 

a a −b a−bNow, consider the frst case. If g = gb for any a, b, then multiplying on right by g−b gives g · g = g = e. 
Thus, a − b ∈ S, and if S = {0}, then a = b. So any two powers of g can only be equal if they have the same 
exponent, and thus all the gi are distinct and the cyclic group is infnite. 

Consider the second case where S = dZ. Given any n ∈ Z, n = dq + r for 0 ≤ r < d by the Euclidean algorithm. 
Then gn = gdq · gr = gr , which is in {e, g, g2 , · · · , gd−1}. 

Defnition 2.15 
So if d = 0, then ⟨g⟩ is infnite; we say that g has infnite order. Otherwise, if d ̸= 0, then |⟨g⟩| = d and g 
has order d. 

It is also possible to consider more than one element g. 

Defnition 2.16 
Given a subset T ⊂ G, the subgroup generated by T is 

e1 en⟨T ⟩ := {t · · · t | ti ∈ T, ei ∈ Z}.1 n 

Essentially, ⟨T ⟩ consists of all the possible products of elements in T. For example, if T = {t, n}, then 

2 −3 4 5 −1⟨T ⟩ = {· · · , t n t , n t , · · · }. 

Defnition 2.17 
If ⟨T ⟩ = G, then T generates G.a 

aGiven a group G, what is the smallest set that generates it? Try thinking about this with some of the examples we’ve 
seen in class! 

Example 2.18 
The set {(123), (12)} generates S3. 

Example 2.19 
The invertible matrices GLn(R) are generated by elementary matricesa . 

aThe matrices giving row-reduction operations. 
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