2 Subgroups and Cyclic Groups

2.1 Review

Last time, we discussed the concept of a group, as well as examples of groups. In particular, a group is a set G with an associative composition law $G \times G \longrightarrow G$ that has an identity as well inverses for each element with respect to the composition law \times.

Our guiding example was that of the group of invertible $n \times n$ matrices, known as the general linear group $\left(G L_{n}(\mathbb{R})\right.$ or $G L_{n}(\mathbb{C})$, for matrices over \mathbb{R} and \mathbb{C}, respectively.)

Example 2.1
Let $G L_{n}(\mathbb{R})$ be the group of $n \times n$ invertible real matrices.

- Associativity. Matrix multiplication is associative; that is, $(A B) C=A(B C)$, and so when writing a product consisting of more than two matrices, it is not necessary to put in parentheses.
- Identity. The $n \times n$ identity matrix is $I_{n}=\left(\begin{array}{ccc}1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1\end{array}\right)$, which is the matrix with 1 s along the diagonal and 0 s everywhere else. It satisfies the property that $A I=I A=A$ for all $n \times n$ matrices A.
- Inverse. By the invertibility condition of $G L_{n}$, every matrix $A \in G L_{n}(\mathbb{R})$ has an inverse matrix A^{-1} such that $A A^{-1}=A^{-1} A=I_{n}$.

Furthermore, each of these matrices can be seen as a transformation from $\mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$, taking each vector \vec{v} to $A \vec{v}$. That is, there is a bijective correspondence between matrices A and invertible transformations $T_{A}: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ taking $T_{A}(\vec{v})=A \vec{v}$.

Another example that showed up was the integers under addition.

Example 2.2

The integers \mathbb{Z} with the composition law + form a group. Addition is associative. Also, $0 \in \mathbb{Z}$ is the additive identity, and $-a \in \mathbb{Z}$ is the inverse of any integer a.

On the other hand, the natural numbers \mathbb{N} under addition would not form a group, because the invertibility condition would be violated.

Lastly, we looked at the symmetric group S_{n}.
Example 2.3
The symmetric group S_{n} is the permutation group of $\{1, \cdots, n\}$.

2.2 Subgroups

In fact, understanding S_{n} is important for group theory as a whole because any finite group "sits inside" S_{n} in a certain way ${ }^{9}$, which we will begin to discuss today.

Guiding Question

What does it mean for a group to "sit inside" another group?

If a subset of a group satisfies certain properties, it is known as a subgroup.

[^0]
Definition 2.4

Given a group (G, \cdot), a subset $H \subset G$ is called a subgroup if it satisfies:

- Closure. If $h_{1}, h_{2} \in H$, then $h_{1} \cdot h_{2} \in H$.
- Identity. The identity element e in G is contained in H.
- Inverse. If $h \in H$, its inverse h^{-1} is also an element of H.

As notation, we write $H \leq G$ to denote that H is a subgroup of G.

Essentially, these properties consists solely of the necessary properties for H to also be a group under the same operation •, so that it can be considered a subgroup and not just some arbitrary subset. In particular, any subgroup H will also be a group with the same operation, independent of the larger group G.

Example 2.5

The integers form a subgroup of the rationals under addition: $(\mathbb{Z},+) \subset(\mathbb{Q},+)$.

The rationals are more complicated than the integers, and studying simpler subgroups of a certain group can help with understanding the group structure as a whole.

Example 2.6

The symmetric group S_{3} has a three-element subgroup $\{e,(123),(132)\}=\left\{e, x, x^{2}\right\}$.

However, the natural numbers $\mathbb{N}=\{0,1,2, \cdots\} \subset(\mathbb{Z},+)$ are not a subgroup of the integers, since not every element has an inverse.

Example 2.7

The matrices with determinant 1, called the special linear group, form a subgroup of invertible matrices: $S L_{n}(\mathbb{R}) \subset G L_{n}(\mathbb{R})$.

The special linear group is closed under matrix multiplication because $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$.

2.3 Subgroups of the Integers

The integers $(\mathbb{Z},+)$ have particularly nice subgroups.
Theorem 2.8
The subgroups of $(\mathbb{Z},+)$ are $\{0\}, \mathbb{Z}, 2 \mathbb{Z}, \cdots .{ }^{a}$
${ }^{a}$ Where $n \in \mathbb{Z}, n \mathbb{Z}$ consists of the multiples of $n,\{n x: x \in \mathbb{Z}\}$.

This theorem demonstrates that the condition that a subset H of a group be a subgroup is quite strong, and requires quite a bit of structure from H.

Proof. First, $n \mathbb{Z}$ is in fact a subgroup.

- Closure. For $n a, n b \in n \mathbb{Z}, n a+n b=n(a+b)$.
- Identity. The additive identity is in $n \mathbb{Z}$ because $0=n \cdot 0$.
- Inverse. For $n a \in n \mathbb{Z}$, its inverse $-n a=n(-a)$ is also in $n \mathbb{Z}$.

Now, suppose $S \subset \mathbb{Z}$ is a subgroup. Then clearly the identity 0 is an element of S. If there are no more elements in S, then $S=\{0\}$ and the proof is complete. Otherwise, pick some nonzero $h \in S$. Without loss of generality, we assume that $h>0$ (otherwise, since $-h \in S$ as well by the invertibility condition, take $-h$ instead of h.) Thus, S contains at least one positive integer; let a be the smallest positive integer in S.
Then we claim that $S=a \mathbb{Z}$. If $a \in S$, then $a+a=2 a \in S$ by closure, which implies that $2 a+a=3 a \in S$, and so on. Similarly, $-a \in S$ by inverses, and $-a+(-a)=-2 a \in S$, and so on, which implies that $a \mathbb{Z} \subset S$.

Now, take any $n \in S$. By the Euclidean algorithm, $n=a q+r$ for some $0 \leq r<a$. From the subgroup properties, $n-a q=r \in S$ as well. Since a is the smallest positive integer in S, if $r>0$, there would be a contradiction, so $r=0$. Thus, $n=a q$, which is an element of $a \mathbb{Z}$. Therefore, $S \subset a \mathbb{Z}$.
From these two inclusions, $S=a \mathbb{Z}$ and the proof is complete.

Corollary 2.9

Given $a, b \in \mathbb{Z}$, consider $S=\{a i+b j: i, j \in \mathbb{Z}\}$. The subset S satisfies all the subgroup conditions, so by Theorem 2.8, there is some d such that $S=d \mathbb{Z}$. In fact, $d=\operatorname{gcd}(a, b)$.

Proof. Let $e=\operatorname{gcd}(a, b)$. Since $a \in S, a=d k$ and $b=d \ell$ for some k, ℓ. Since the d from before divides a and b, it must also divide e, by definition of the greatest common divisor. Also, since $d \in S$, by the definition of S, $d=a r+b s$ for some r and b. Since e divides a and b, e divides both $a r$ and $b s$ and therefore d.

Thus, d divides e, and e divides d, implying that $e=d$. So $S=\operatorname{gcd}(a, b) \mathbb{Z}$.
In particular, we have showed that $\operatorname{gcd}(a, b)$ can always be written in the form $a r+b s$ for some r, s.

2.4 Cyclic Groups

Now, let's discuss a very important type of subgroup that connects back to the work we did with $(\mathbb{Z},+)$.
Definition 2.10
Let G be a group, and take $g \in G$. Let the cyclic subgroup generated by g be

$$
\langle g\rangle:={ }^{a}\left\{\cdots g^{-2}, g^{-1}, g^{0}=e, g^{1}, g^{2}, \cdots\right\} \leq G
$$

${ }^{a}$ The $:=$ symbol is usually used by mathematicians to mean "is defined to be." Other people may use \equiv for the same purpose.

Since $g^{a} \cdot g^{b}=g^{a+b}$, the exponents of the elements of a cyclic subgroup will have a related group structure to $(\mathbb{Z},+)$.

Example 2.11

The identity element generates the trivial subgroup $\{e\}=\langle e\rangle$ of any group G.

There are also nontrivial cyclic subgroups.

Example 2.12

In $S_{3},\langle(123)\rangle=\{e,(123),(132)\}$.

Evidently, a cyclic subgroup of any finite group must also be finite.
Example 2.13
Let \mathbb{C}^{\times}be the group of nonzero complex numbers under multiplication. Then $2 \in \mathbb{C}$ will generate

$$
\langle 2\rangle=\{\cdots, 1 / 4,1 / 2,1,2,4, \cdots .\}
$$

On the other hand, $i \in \mathbb{C}$ will generate

$$
\langle i\rangle=\{1, i,-1,-i\} .
$$

This example shows that a cyclic subgroup of an infinite group can be either infinite or finite. ${ }^{10}$

[^1]
Guiding Question

What does a cyclic subgroup look like? Can they be classified?

Theorem 2.14

Let $S=\left\{n \in \mathbb{Z}: g^{n}=e\right\}$. Then S is a subgroup of \mathbb{Z}, so $S=d \mathbb{Z}$ or $S=\{0\}$, leading to two cases:

- If $S=\{0\}$, then $\langle g\rangle$ is infinite and all the g^{k} are distinct.
- If $S=d \mathbb{Z}$, then $\langle g\rangle=\left\{e, g, g^{2}, \cdots, g^{d-1}\right\} \subset G$, which is finite.

Proof. First, S must be shown to actually be a subgroup of \mathbb{Z}.

- Identity. The identity $0 \in S$ because $g^{0}=e$.
- Closure. If $a, b \in S$, then $g^{a}=g^{b}=e$, so $g^{a+b}=g^{a} g^{b}=e \cdot e=e$, so $a+b \in S$.
- Inverse. If $a \in S$, then $g^{-a}=\left(g^{a}\right)^{-1}=e^{-1}=e$, so $a \in S$.

Now, consider the first case. If $g^{a}=g^{b}$ for any a, b, then multiplying on right by g^{-b} gives $g^{a} \cdot g^{-b}=g^{a-b}=e$. Thus, $a-b \in S$, and if $S=\{0\}$, then $a=b$. So any two powers of g can only be equal if they have the same exponent, and thus all the g^{i} are distinct and the cyclic group is infinite.
Consider the second case where $S=d \mathbb{Z}$. Given any $n \in \mathbb{Z}, n=d q+r$ for $0 \leq r<d$ by the Euclidean algorithm. Then $g^{n}=g^{d q} \cdot g^{r}=g^{r}$, which is in $\left\{e, g, g^{2}, \cdots, g^{d-1}\right\}$.

Definition 2.15

So if $d=0$, then $\langle g\rangle$ is infinite; we say that g has infinite order. Otherwise, if $d \neq 0$, then $|\langle g\rangle|=d$ and g has order d.

It is also possible to consider more than one element g.
Definition 2.16
Given a subset $T \subset G$, the subgroup generated by T is

$$
\langle T\rangle:=\left\{t_{1}^{e_{1}} \cdots t_{n}^{e_{n}} \mid t_{i} \in T, e_{i} \in \mathbb{Z}\right\}
$$

Essentially, $\langle T\rangle$ consists of all the possible products of elements in T. For example, if $T=\{t, n\}$, then

$$
\langle T\rangle=\left\{\cdots, t^{2} n^{-3} t^{4}, n^{5} t^{-1}, \cdots\right\}
$$

Definition 2.17
If $\langle T\rangle=G$, then T generates $G .{ }^{a}$
${ }^{a}$ Given a group G, what is the smallest set that generates it? Try thinking about this with some of the examples we've seen in class!

Example 2.18

The set $\{(123),(12)\}$ generates S_{3}.

Example 2.19

The invertible matrices $G L_{n}(\mathbb{R})$ are generated by elementary matrices ${ }^{a}$.
${ }^{a}$ The matrices giving row-reduction operations.

MIT OpenCourseWare
https://ocw.mit.edu

Resource: Algebra I Student Notes

Fall 2021
Instructor: Davesh Maulik
Notes taken by Jakin Ng, Sanjana Das, and Ethan Yang

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

[^0]: ${ }^{9}$ This is known as Cayley's Theorem and is discussed further in section 7.1 of Artin.

[^1]: ${ }^{10}$ Can you work out the cases for which $g \in \mathbb{C}$ the cyclic subgroup of \mathbb{C}^{\times}is finite or infinite?

