A Dimensions of Irreducible Characters

In this section, we provide a proof of the final part of the main theorem of representation theory:

Theorem A. 1

If $\rho: G \rightarrow \operatorname{GL}(V)$ is an irreducible representation of dimension d, then d divides $|G|$.

These notes are based on a writeup by Professor Bezrukavnikov posted to Canvas.
Recall that we extended the definition of ρ to all linear combinations of elements in G, or equivalently functions $f: G \rightarrow \mathbb{C}$, using the natural formula

$$
\rho(f)=\sum_{g \in G} f(g) \rho(g) .
$$

Then $\rho(f)$ is in $\operatorname{End}(V)$ for any function f.
To start with, we find a natural construction in which $|G| / d$ arises.
Proposition A. 2
For any irreducible representation $\rho: G \rightarrow \mathrm{GL}(V)$ of dimension d, we have

$$
\rho\left(\overline{\chi_{\rho}}\right)=\frac{|G|}{d} \cdot \operatorname{Id}
$$

Proof. Since $\overline{\chi_{\rho}}$ is a class function, then $\rho\left(\overline{\chi_{\rho}}\right)$ is G-equivariant. But by Schur's Lemma, since ρ is scalar, the only G-equivariant endomorphisms are scalar maps; so $\rho\left(\overline{\chi_{\rho}}\right)$ must be of the form $\lambda \cdot \operatorname{Id}$ for some $\lambda \in \mathbb{C}$. Now we can compute λ by taking the trace: we saw earlier that $\operatorname{Tr} \rho(f)=|G|\left\langle\chi_{\rho}, \bar{f}\right\rangle$, so

$$
\operatorname{Tr} \rho\left(\overline{\chi_{\rho}}\right)=|G|\left\langle\chi_{\rho}, \chi_{\rho}\right\rangle=|G|
$$

using the fact that the irreducible characters are orthonormal and therefore $\left\langle\chi_{\rho}, \chi_{\rho}\right\rangle=1$. But this trace must also be $d \lambda$, so $\lambda=|G| / d$. (The properties used in this proof are discussed in more detail in Lecture 7.)

Now in order to prove that $|G| / d$ is an integer from here, we use a bit of theory about algebraic integers.
Definition A. 3
A complex number is a algebraic integer if it is the root of a monic polynomial with integer coefficients.

Lemma A. 4

Algebraic integers have the following standard properties:
(a) If α and β are algebraic integers, so are $\alpha+\beta$ and $\alpha \beta$.
(b) If $\alpha \in \mathbb{Q}$ is an algebraic integer, then $\alpha \in \mathbb{Z}$.

The course discusses algebraic integers in more detail in future lectures; the two properties listed here are proved in Lectures 14 and 25, respectively.
It is now enough to prove the following proposition:

Proposition A. 5

Let $\rho: G \rightarrow \mathrm{GL}(V)$ be any representation of G. Then if $f: G \rightarrow \mathbb{C}$ is a function such that $f(g)$ is an algebraic integer for every g, and $\rho(f)=r \cdot$ Id for a rational number r, then r must be an integer.

It's clear that the two propositions together imply our theorem - by the first proposition, we have that $\rho\left(\overline{\chi_{\rho}}\right)=|G| / d \cdot \mathrm{Id}$, and we know that $\overline{\chi_{\rho}}(g)$ is an algebraic integer for all g, since $\chi_{\rho}(g)$ is a sum of roots of unity (and roots of unity are all algebraic integers). So by the second proposition, $|G| / d$ must be an integer.

In fact, a stronger statement is true - if f is any function on G such that $f(g)$ is an algebraic integer for all $g \in G$, then every eigenvalue of $\rho(f)$ is an algebraic integer. But this is much harder to prove, so we will only prove the special case necessary for our theorem.

Proof. We will show that $\operatorname{Tr} \rho(f)^{n}$ is an integer for all n, which suffices - this is because $\rho(f)^{n}=r^{n} \cdot \mathrm{Id}$, so $d r^{n}$ is an integer for all n, and therefore r must be an integer (if a prime p divided its denominator, then for sufficiently large n the power of p in the denominator of r^{n} would be greater than the power of p dividing d).

When $n=1$, we have

$$
\operatorname{Tr} \rho(f)=\sum_{g \in G} f(g) \chi_{\rho}(g)
$$

and $f(g)$ and $\chi_{\rho}(g)$ are both algebraic integers. So $\operatorname{Tr} \rho(f)$ is an algebraic integer. But this trace is also rational, as it is equal to $d r$; therefore $\operatorname{Tr} \rho(f)$ is an integer.

Now for the case of general n, it is enough to find a function f_{n} such that $\rho(f)^{n}=\rho\left(f_{n}\right)$ and $f_{n}(g)$ is again an algebraic integer for all $g \in G$ - then we can apply the above reasoning to f_{n} instead. To find such a function, we use the following construction:

Definition A. 6

Given two functions $\phi: G \rightarrow \mathbb{C}$ and $\psi: G \rightarrow \mathbb{C}$, their convolution is the function $\phi * \psi$ defined as

$$
(\phi * \psi)(g)=\sum_{h \in G} \phi(h) \psi\left(h^{-1} g\right) .
$$

Lemma A. 7

For any two functions ϕ and ψ, we have

$$
\rho(\phi * \psi)=\rho(\phi) \rho(\psi)
$$

Proof. The space of functions on G has a basis consisting of the functions δ_{g} which map g to 1 and all other elements to 0 , where $\rho\left(\delta_{g}\right)=\rho(g)$ for each $g \in G$. Then convolution is defined by setting $\delta_{g} * \delta_{h}=\delta_{g} \delta_{h}$ for all $g, h \in G$ and extending to all functions using linearity. So we have

$$
\rho\left(\delta_{g} * \delta_{h}\right)=\rho_{g h}=\rho_{g} \rho_{h}=\rho\left(\delta_{g}\right) \rho\left(\delta_{h}\right)
$$

and the statement for general functions ϕ and ψ then follows from linearity.

Then we can take

$$
f_{n}=\underbrace{f * f * \cdots * f}_{n \text { times }} .
$$

This satisfies $\rho\left(f_{n}\right)=\rho(f)^{n}$, and since f_{n} is constructed by repeatedly taking sums and products of algebraic integers, $f_{n}(g)$ must be an algebraic integer for all g as well.

So then $\operatorname{Tr} \rho(f)^{n}=\operatorname{Tr} \rho\left(f_{n}\right)$ is an integer for all n, as desired.
This concludes the proof of the theorem.

MIT OpenCourseWare
https://ocw.mit.edu

Resource: Algebra II Student Notes

Spring 2022
Instructor: Roman Bezrukavnikov
Notes taken by Sanjana Das and Jakin Ng

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

