A Dimensions of Irreducible Characters

In this section, we provide a proof of the final part of the main theorem of representation theory:

Theorem A.1 If $\rho: G \to \operatorname{GL}(V)$ is an irreducible representation of dimension d, then d divides |G|.

These notes are based on a writeup by Professor Bezrukavnikov posted to Canvas.

Recall that we extended the definition of ρ to all *linear combinations* of elements in G, or equivalently functions $f: G \to \mathbb{C}$, using the natural formula

$$\rho(f) = \sum_{g \in G} f(g) \rho(g).$$

Then $\rho(f)$ is in $\operatorname{End}(V)$ for any function f.

To start with, we find a natural construction in which |G|/d arises.

Proposition A.2 For any irreducible representation $\rho: G \to GL(V)$ of dimension d, we have

$$\rho(\overline{\chi_{\rho}}) = \frac{|G|}{d} \cdot \operatorname{Id}.$$

Proof. Since $\overline{\chi_{\rho}}$ is a class function, then $\rho(\overline{\chi_{\rho}})$ is *G*-equivariant. But by Schur's Lemma, since ρ is scalar, the only *G*-equivariant endomorphisms are scalar maps; so $\rho(\overline{\chi_{\rho}})$ must be of the form $\lambda \cdot \text{Id}$ for some $\lambda \in \mathbb{C}$. Now we can compute λ by taking the trace: we saw earlier that $\text{Tr } \rho(f) = |G| \langle \chi_{\rho}, \overline{f} \rangle$, so

$$\operatorname{Tr} \rho(\overline{\chi_{\rho}}) = |G| \langle \chi_{\rho}, \chi_{\rho} \rangle = |G|,$$

using the fact that the irreducible characters are orthonormal and therefore $\langle \chi_{\rho}, \chi_{\rho} \rangle = 1$. But this trace must also be $d\lambda$, so $\lambda = |G|/d$. (The properties used in this proof are discussed in more detail in Lecture 7.)

Now in order to prove that |G|/d is an integer from here, we use a bit of theory about algebraic integers.

Definition A.3

A complex number is a **algebraic integer** if it is the root of a monic polynomial with integer coefficients.

Lemma A.4

Algebraic integers have the following standard properties:

- (a) If α and β are algebraic integers, so are $\alpha + \beta$ and $\alpha\beta$.
- (b) If $\alpha \in \mathbb{Q}$ is an algebraic integer, then $\alpha \in \mathbb{Z}$.

The course discusses algebraic integers in more detail in future lectures; the two properties listed here are proved in Lectures 14 and 25, respectively.

It is now enough to prove the following proposition:

Proposition A.5

Let $\rho : G \to \operatorname{GL}(V)$ be any representation of G. Then if $f : G \to \mathbb{C}$ is a function such that f(g) is an algebraic integer for every g, and $\rho(f) = r \cdot \operatorname{Id}$ for a rational number r, then r must be an integer.

It's clear that the two propositions together imply our theorem — by the first proposition, we have that $\rho(\overline{\chi_{\rho}}) = |G|/d \cdot \mathrm{Id}$, and we know that $\overline{\chi_{\rho}}(g)$ is an algebraic integer for all g, since $\chi_{\rho}(g)$ is a sum of roots of unity (and roots of unity are all algebraic integers). So by the second proposition, |G|/d must be an integer.

In fact, a stronger statement is true — if f is any function on G such that f(g) is an algebraic integer for all $g \in G$, then every eigenvalue of $\rho(f)$ is an algebraic integer. But this is much harder to prove, so we will only prove the special case necessary for our theorem.

Proof. We will show that $\operatorname{Tr} \rho(f)^n$ is an integer for all n, which suffices — this is because $\rho(f)^n = r^n \cdot \operatorname{Id}$, so dr^n is an integer for all n, and therefore r must be an integer (if a prime p divided its denominator, then for sufficiently large n the power of p in the denominator of r^n would be greater than the power of p dividing d).

When n = 1, we have

$$\operatorname{Tr} \rho(f) = \sum_{g \in G} f(g) \chi_{\rho}(g),$$

and f(g) and $\chi_{\rho}(g)$ are both algebraic integers. So $\operatorname{Tr} \rho(f)$ is an algebraic integer. But this trace is also rational, as it is equal to dr; therefore $\operatorname{Tr} \rho(f)$ is an integer.

Now for the case of general n, it is enough to find a function f_n such that $\rho(f)^n = \rho(f_n)$ and $f_n(g)$ is again an algebraic integer for all $g \in G$ — then we can apply the above reasoning to f_n instead. To find such a function, we use the following construction:

Definition A.6

Given two functions $\phi: G \to \mathbb{C}$ and $\psi: G \to \mathbb{C}$, their **convolution** is the function $\phi * \psi$ defined as

$$(\phi\ast\psi)(g)=\sum_{h\in G}\phi(h)\psi(h^{-1}g).$$

Lemma A.7

For any two functions ϕ and ψ , we have

 $\rho(\phi * \psi) = \rho(\phi)\rho(\psi).$

Proof. The space of functions on G has a basis consisting of the functions δ_g which map g to 1 and all other elements to 0, where $\rho(\delta_g) = \rho(g)$ for each $g \in G$. Then convolution is defined by setting $\delta_g * \delta_h = \delta_g \delta_h$ for all $g, h \in G$ and extending to all functions using linearity. So we have

$$\rho(\delta_g * \delta_h) = \rho_{gh} = \rho_g \rho_h = \rho(\delta_g) \rho(\delta_h),$$

and the statement for general functions ϕ and ψ then follows from linearity.

Then we can take

$$f_n = \underbrace{f * f * \cdots * f}_{n \text{ times}}.$$

This satisfies $\rho(f_n) = \rho(f)^n$, and since f_n is constructed by repeatedly taking sums and products of algebraic integers, $f_n(g)$ must be an algebraic integer for all g as well.

So then $\operatorname{Tr} \rho(f)^n = \operatorname{Tr} \rho(f_n)$ is an integer for all n, as desired.

This concludes the proof of the theorem.

MIT OpenCourseWare <u>https://ocw.mit.edu</u>

Resource: Algebra II Student Notes Spring 2022 Instructor: Roman Bezrukavnikov Notes taken by Sanjana Das and Jakin Ng

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.