
Appendix: Dimensions of Irreducible Characters

A Dimensions of Irreducible Characters
In this section, we provide a proof of the final part of the main theorem of representation theory:

Theorem A.1
If ρ : G→ GL(V ) is an irreducible representation of dimension d, then d divides |G|.

These notes are based on a writeup by Professor Bezrukavnikov posted to Canvas.

Recall that we extended the definition of ρ to all linear combinations of elements in G, or equivalently functions
f : G→ C, using the natural formula

ρ(f) =
∑
g∈G

f(g)ρ(g).

Then ρ(f) is in End(V ) for any function f .

To start with, we find a natural construction in which |G|/d arises.

Proposition A.2
For any irreducible representation ρ : G→ GL(V ) of dimension d, we have

ρ(χρ) =
|G|
d

· Id .

Proof. Since χρ is a class function, then ρ(χρ) is G-equivariant. But by Schur’s Lemma, since ρ is scalar, the
only G-equivariant endomorphisms are scalar maps; so ρ(χρ) must be of the form λ · Id for some λ ∈ C. Now
we can compute λ by taking the trace: we saw earlier that Tr ρ(f) = |G|⟨χρ, f⟩, so

Tr ρ(χρ) = |G|⟨χρ, χρ⟩ = |G|,

using the fact that the irreducible characters are orthonormal and therefore ⟨χρ, χρ⟩ = 1. But this trace must
also be dλ, so λ = |G|/d. (The properties used in this proof are discussed in more detail in Lecture 7.)

Now in order to prove that |G|/d is an integer from here, we use a bit of theory about algebraic integers.

Definition A.3
A complex number is a algebraic integer if it is the root of a monic polynomial with integer coefficients.

Lemma A.4
Algebraic integers have the following standard properties:

(a) If α and β are algebraic integers, so are α+ β and αβ.

(b) If α ∈ Q is an algebraic integer, then α ∈ Z.

The course discusses algebraic integers in more detail in future lectures; the two properties listed here are proved
in Lectures 14 and 25, respectively.

It is now enough to prove the following proposition:

Proposition A.5
Let ρ : G → GL(V ) be any representation of G. Then if f : G → C is a function such that f(g) is an
algebraic integer for every g, and ρ(f) = r · Id for a rational number r, then r must be an integer.

It’s clear that the two propositions together imply our theorem — by the first proposition, we have that
ρ(χρ) = |G|/d · Id, and we know that χρ(g) is an algebraic integer for all g, since χρ(g) is a sum of roots of
unity (and roots of unity are all algebraic integers). So by the second proposition, |G|/d must be an integer.
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In fact, a stronger statement is true — if f is any function on G such that f(g) is an algebraic integer for all
g ∈ G, then every eigenvalue of ρ(f) is an algebraic integer. But this is much harder to prove, so we will only
prove the special case necessary for our theorem.

Proof. We will show that Tr ρ(f)n is an integer for all n, which suffices — this is because ρ(f)n = rn · Id, so
drn is an integer for all n, and therefore r must be an integer (if a prime p divided its denominator, then for
sufficiently large n the power of p in the denominator of rn would be greater than the power of p dividing d).

When n = 1, we have
Tr ρ(f) =

∑
g∈G

f(g)χρ(g),

and f(g) and χρ(g) are both algebraic integers. So Tr ρ(f) is an algebraic integer. But this trace is also rational,
as it is equal to dr; therefore Tr ρ(f) is an integer.

Now for the case of general n, it is enough to find a function fn such that ρ(f)n = ρ(fn) and fn(g) is again an
algebraic integer for all g ∈ G — then we can apply the above reasoning to fn instead. To find such a function,
we use the following construction:

Definition A.6
Given two functions ϕ : G→ C and ψ : G→ C, their convolution is the function ϕ ∗ ψ defined as

(ϕ ∗ ψ)(g) =
∑
h∈G

ϕ(h)ψ(h−1g).

Lemma A.7
For any two functions ϕ and ψ, we have

ρ(ϕ ∗ ψ) = ρ(ϕ)ρ(ψ).

Proof. The space of functions on G has a basis consisting of the functions δg which map g to 1 and all other
elements to 0, where ρ(δg) = ρ(g) for each g ∈ G. Then convolution is defined by setting δg ∗ δh = δgδh for all
g, h ∈ G and extending to all functions using linearity. So we have

ρ(δg ∗ δh) = ρgh = ρgρh = ρ(δg)ρ(δh),

and the statement for general functions ϕ and ψ then follows from linearity.

Then we can take
fn = f ∗ f ∗ · · · ∗ f︸ ︷︷ ︸

n times

.

This satisfies ρ(fn) = ρ(f)n, and since fn is constructed by repeatedly taking sums and products of algebraic
integers, fn(g) must be an algebraic integer for all g as well.

So then Tr ρ(f)n = Tr ρ(fn) is an integer for all n, as desired.

This concludes the proof of the theorem.
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