
Lecture 11: More About Rings

11 More About Rings

11.1 Review: Hilbert’s Nullstelensatz
Last time, we proved Hilbert’s Nullstelensatz:

Theorem 11.1 (Hilbert’s Nullstelensatz)
The maximal ideals in C[x1, · · · , xn] are exactly the kernels of evaluation homomorphisms, and thus they
are in bijection with Cn.

Corollary 11.2
The maximal ideals in C[x1, · · · , xn]/(P1, · · · , Pm) are in bijection with the common zeroes of P1, . . . , Pm.

It’s clear that this corollary follows from the theorem, since maximal ideals in C[x1, . . . , xn]/(P1, . . . , Pm)
correspond to maximal ideals of C[x1, . . . , xn] containing (P1, . . . , Pm), and a maximal ideal mα contains all the
Pi if and only if they all evaluate to 0 when plugging in α.

As a brief recap of the ideas seen in the proof of Theorem 11.1:

Proof Sketch. The proof reduces to showing that if F is a field containing C, such that there exists a surjective
map C[x1, . . . , xn]↠ F , then F = C. (In this case, F = C[x1, . . . , xn]/m, and the surjective map comes from
taking the quotient.)

We first saw that F is a union of countably many finite-dimensional C-vector spaces — it’s clear that C[x1, . . . , xn]
is a union of countably many finite-dimensional C-vector spaces U1 ⊂ U2 ⊂ · · · (we can take the vector space
consisting of polynomials of degree at most d), and then to exhaust F by finite-dimensional C-vector spaces,
we can simply take the images Vi of the vector spaces Ui which exhaust C[x1, . . . , xn]. So we can write

F =
∞⋃
i=1

Vi,

where dimC Vi is finite for all i.

Now if F ̸= C, we can pick z ∈ F with z ̸∈ C, and consider 1/(z − λ) for all λ ∈ C. There are uncountably
many such elements (by set theory, C is not countable), and since there’s countably many Vi, infinitely many
of these elements must lie in the same space Vi.

But then by linear algebra, there must be a finite sum
n∑
i=1

ai
z − λi

= 0

with ai ∈ C (since if n is greater than the dimension of the vector space, these elements must be linearly
dependent). But clearing denominators, we get

n∑
i=1

ai
∏
i̸=j

(z − λj) = 0.

But the left-hand side is a nonzero polynomial P in z — to see it’s nonzero, we can plug in λ1 and see that
P (λ1) = a1

∏
j>1(λ1−λj) ̸= 0. Since P ∈ C[x], it must factor completely over C. But z is not in C, so it cannot

equal any of the roots of P ; this is a contradiction.

Note 11.3
In fact, the theorem holds for all fields which are algebraically closed (meaning that every polynomial has
a root — here we used the fact that C was algebraically closed in order to factor P in the final step). For
example, it holds for the field of algebraic numbers as well. The specific argument we used here doesn’t
work in that case, since the algebraic numbers are countable; but there are other proofs as well.

Student Question. What does it mean to take the union of vector spaces?
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Answer. In general, this doesn’t really make sense (the union of vector spaces may not itself be a vector space).
But in this case, we can get vector spaces V1 ⊂ V2 ⊂ · · · , by taking Vi = im (C[x1, . . . , xn]≤i) (the notation
C[x1, . . . , xn]≤i denotes polynomials of degree at most i), and when we have an increasing chain of vector spaces,
taking their union does make sense.

This is important because algebraic geometry studies the sets of zeros of a polynomial, and this gives us an
algebraic way to think about them.

Definition 11.4
For a ring R, the maximal spectrum of R, denoted MSpec(R), is the set of maximal ideals in R.

The maximal spectrum plays an important role in algebraic geometry and commutative algebra.

For instance, each element r ∈ R defines a “function” fr on MSpec(R), where fr sends each maximal ideal m to
the element r in R/m (which is a field). If R = C[x1, . . . , xn]/I is a quotient of a polynomial ring over C, then
R/m = C by Hilbert’s Nullstelensatz, so fr is actually a function Mspec(R) → C. In fact, this function is given
by evaluating the polynomial r at the point corresponding to m — so we’ve recovered the original polynomial
function. But in general, there isn’t even a guarantee that the fields R/m are all isomorphic — they may be
different for different m. This is why “function” is in quotation marks — where the map takes values depends
on its input.

11.2 Inverting Elements
Last time, we discussed adjoining a root of a polynomial to a ring — in particular, we discussed the structure
of R[x]/(P ) for a monic polynomial P .

Instead of setting P to be monic, we can set it to be linear, and consider R[x]/(ax − 1), which is denoted by
R(a). We’ve essentially added a variable x and declared it to be the inverse of a; so R(a) is the result of formally
inverting a. This construction is known as localization.

Example 11.5
We have Z(2) = {a/2n | a, n ∈ Z} and Z(6) = {a/2n3m | a, n,m ∈ Z}.

However, we must be careful. In these examples, we were able to simply add a formal inverse of a to R. But it’s
possible that this might collapse some of R — in particular, if ab = 0 for nonzero a and b (which is possible in a
general ring), then the image of b in R(a) will vanish. This is because if ab = 0 and the image of a is invertible,
then the image of b must be 0.

Example 11.6
In (Z/6Z)(2), the image of 3 vanishes — in particular, (Z/6Z)(2) ∼= Z/3Z. Meanwhile, (Z/4Z)(2) is the zero
ring — this is because 2 · 2 = 0, but the image of 2 · 2 in (Z/4Z)(2) is invertible.

So when inverting elements, we want to make sure this doesn’t happen.

Definition 11.7
An element a ∈ R is a zero divisor if a ̸= 0, and there exists b ̸= 0 for which ab = 0.

For example, 2 and 3 are zero divisors in Z/6Z.

Proposition 11.8
If a is not a zero divisor, then R ⊂ R(a).

So we can safely invert elements which are not zero divisors.

We’ve seen how to invert one element a, and this directly generalizes to let us invert finitely many elements;
but we can also try to invert all (nonzero) elements. For this to make sense, we’d need all elements to not be
zero divisors:
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Definition 11.9
A ring R is an integral domain if R has no zero divisors.

One useful property of integral domains is that we can perform cancellation — if we have ax = ay with a ̸= 0,
then we must have x = y.

Definition 11.10
Let R be an integral domain. Then the fraction field of R, denoted Frac(R), is the set {(a, b) | a, b ∈
R, b ̸= 0} modulo the equivalence relation that (a, b) ∼ (c, d) if ad = bc.

This is the formal definition, but when we work with a fraction field, it’s more intuitive to think of the elements
as fractions in the usual sense — we write a/b instead of (a, b). The operations do work in the same way we’re
used to — we have

a

b
· c
d
=
ac

bd
and

a

b
+
c

d
=
ad+ bc

bd
.

It’s clear that F = Frac(R) is a field containing R.

Example 11.11
A familiar example of a fraction field is Frac(Z) = Q.

Example 11.12
The fraction field Frac(C[x]) is called the field of rational functions in one variable, and is denoted C(x);
it consists of elements of the form p(x)/q(x), where p and q are polynomials. Each of its elements defines a
function on C (which is defined everywhere except for some number of poles).

This concept can be extended to multiple variables — we can also consider the fraction field of C[x1, . . . , xn].

Note that for a field F , we have Frac(F ) = F (since all nonzero elements are already invertible).

In general, giving a homomorphism from Frac(R) to S is the same as giving a homomorphism from R sending
nonzero elements of R to S where the image of each nonzero element of R is an invertible element in S. (Invertible
elements of a ring are also called units.)

11.3 Factorization
Now we will discuss factorization in certain rings. A simple case is polynomials over a field.

Proposition 11.13
For a field F , every polynomial P ∈ F [x] factors as a product of irreducible polynomials in an essentially
unique way (up to rearrangement of the factors or multiplying the factors by scalars).

In order to prove this, we’ll use the following lemma:

Lemma 11.14
If P is irreducible and P | QS, then P | Q or P | S.

Proof. Since P is irreducible and all ideals of F [x] are principal, (P ) is a maximal ideal, and therefore F [x]/(P )
is a field. So if P divides Q, then the image of Q in the quotient is zero — so the lemma is equivalent to stating
that there are no zero divisors in the field, which is true. More explicitly, if P | QS, then Q · S = 0 (where Q
denotes Q mod P ), which means either Q = 0 or S = 0.

The proposition then essentially follows formally:
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Proof of Proposition 11.13. Proving the existence of such a factorization is easy — starting with a polynomial,
if it isn’t irreducible, then we can factor it as a product of polynomials with strictly smaller degree. Since the
degree can’t keep on decreasing, this process must eventually stop, at which point all our factors are irreducible.
(This can be made more formal by using induction on the degree of the polynomial.)

To prove uniqueness, suppose that P factors as P1 · · ·Pn = Q1 · · ·Qm, where all of the Pi and Qi are irreducible.
By Lemma 11.14, since P1 divides Q1 · · ·Qm, we must have P1 | Qi for some i. Without loss of generality this
means P1 = Q1 — if P1 | Q1 then we must have Q1 = λP1 for some scalar λ (since Q1 is irreducible), and
we can rescale the factors to make λ = 1. Then we have P2 · · ·Pn = Q2 · · ·Qm, and we can perform the same
argument to keep cancelling out common factors (again this can be made more formal by using induction on
degree).

This argument can be used to prove unique factorization in other situations as well, motivating the following
definitions:

Definition 11.15
An integral domain is a principal ideal domain (PID) if every ideal is principal.

Definition 11.16
An integral domain is a unique factorization domain (UFD) if every element factors as a product of
irreducibles in an essentially unique way.

The argument we used to prove Proposition 11.13 more generally proves that every PID is a UFD. The converse
is not true — in future classes, we’ll see that Z[x] and C[x1, . . . , xn] are UFDs but not PIDs.
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