
Lecture 21: Modules

21 Smith Normal Form

21.1 Review
Last time, we looked at presentation matrices for a module. We saw that if we perform elementary row and
column operations on the presentation matrix, then this leads to an isomorphic module. We then stated the
theorem that we can use such operations to reduce any matrix to Smith normal form. We will prove this today;
but first, let’s look at a few examples.

21.2 Some Examples in Z
We’ll consider the case of 2× 2 matrices over Z — consider the presentation matrix

B =

[
a c
b d

]
,

whose corresponding module is
MB = Z2/Span((a, b)t, (c, d)t).

The simplest case is when B is diagonal:

Example 21.1
Consider the presentation matrix

B =

[
2 0
0 3

]
.

In this case, we have
MB

∼= Z/2Z⊕ Z/3Z,

since given any vector (m,n), its coset mod Span((2, 0)t, (0, 3)t) is just given by taking the first component mod
2 and the second mod 3. (To be pedantic, the isomorphism is given by (m,n) 7→ (m mod 2, n mod 3) — given
any vector, we can subtract multiples of our two vectors to bring it into the rectangle.)

Example 21.2
Consider the presentation matrix

B =

[
5 0
0 1

]
.

Now the corresponding module is MB = Z/5Z — the second coordinate is “useless” since we’re allowed to
subtract multiples of (0, 1)t, so we can always eliminate it. So to keep track of the coset of a vector, we only
need to keep track of the first component mod 5.

Now we’ll look at a more complicated example, where the original matrix is not diagonal.

Example 21.3
Consider the presentation matrix

B =

[
2 1
1 3

]
.

95

Lecture 21: Modules

v

w

We can see det(B) = 5, so we can use elementary column operations to make one column a multiple of 5 — if
we add twice the first column to the second, then we get

B′ = B

[
1 2
0 1

]
=

[
2 5
1 5

]
.

So we’ve replaced w with w′ = 5(1, 1)t, without changing the lattice spanned by our vectors:

v

w′

But (2, 1)t and (1, 1)t form a basis for Z2! So this means to get our lattice, we started with a basis for Z2, then
fixed one of the basis vectors and scaled the other by 5. So this is isomorphic to the previous example — by
changing the basis we use for Z2, we can rewrite v and w′ as (1, 0)t and (0, 5)t. So we have MB

∼= Z/5Z.

21.3 Smith Normal Form
Now we’ll return to the general case, and prove the theorem.

Theorem 21.4
For a Euclidean domain R, any n×m matrix B can be reduced using elementary row and column operations
to a matrix D, where dij = 0 for all i ̸= j, and d11 | d22 | · · · .

One example of a matrix written in this form (which is called Smith normal form) is

D =

2 0 0 0
0 6 0 0
0 0 12 0

 .
Note that if D can be obtained from B by elementary row and column operations, then we can write D = ABC,
where A is an invertible n × n matrix and C is an invertible m ×m matrix. For any such D, we then have
MD

∼=MB .

Note 21.5
In a PID, it’s still possible to obtain D in Smith normal form with D = ABC (for A and C invertible).
However, it may not be possible to obtain D by using the elementary operations.

96

Lecture 21: Modules

To motivate the proof, notice that the greatest common divisor of all the matrix entries does not change under
elementary operations — it’s clear that scaling by a unit doesn’t change the gcd; meanwhile if we perform the
operation aij 7−→ aij + cakj , we have

gcd(aij , akj) = gcd(aij + cakj , akj).

(This is the same idea as in the Euclidean algorithm.) So if we are able to obtain a matrix D in Smith normal
form, then we must have

d11 = gcd(bij)

(since d11 divides all other entries of D). So this suggests the main idea of the proof — we want to run some
sort of Euclidean algorithm in order to isolate the gcd of all matrix entries in the top-left corner.

Proof of Theorem 21.4. Recall that in a Euclidean domain, we have a size function σ : R \ {0} → Z≥0 such
that we can divide with remainder — given any a and b, with b ̸= 0, we can write a = bq + r where r = 0 or
σ(r) < σ(b). For convenience, we write |a| instead of σ(a).

If B = 0, we are done, so assume B ̸= 0. Then we’ll use induction on the size of the matrix; the key step is the
following.

Lemma 21.6
By row and column operations, we can arrive at a matrix B′ such that b′11 = gcd(bij) = gcd(b′ij).

Proof. By permuting the rows and columns, we can ensure that b11 ≠ 0, and b11 is the nonzero element of
minimal size. Now if b11 | bij for all i and j, then we’re done, so assume not.

Now the main idea is to modify the matrix to make a smaller element appear (which we can again move to the
top-left corner by rearranging rows and columns). First, if there is an entry with b11 ∤ bij in the first row or
column, then we can perform a row or column operation to reduce it — if bij = qb11 + r, then we can subtract
q times the first row or column from the row or column of bij , which replaces bij with r.

If not, then we can use b11 to eliminate all other entries in the first row and column (by subtracting multiples
of the first column and row), to get a matrix of the form

b11 0 · · · 0
0 ∗ · · · ∗
...

...
. . .

...
0 ∗ · · · ∗

 .

Now there must be some bij with b11 ∤ bij . We can add its row to the first row; this adds 0 to b11, so we now
have a matrix

b11 ∗ bij · · · ∗
0 ∗ ∗ · · · ∗
0 ∗ ∗ · · · ∗
...

...
...

. . .
...

0 ∗ ∗ · · · ∗

 .
Then we can again add a multiple of the first column to the jth column in order to produce an entry with
smaller size.

So either way, we’ve now produced a matrix with an element smaller in size than b11. Now permute the rows
and columns to move this element to the position of b11. Then we repeat the process. At every step, we replace
b11 with a nonzero entry of smaller size. Since the size is always a nonnegative integer, at some point this
process must terminate; this means that b11 now divides all entries.

To complete the proof of Theorem 21.4, we induct on the size of B. By Lemma 21.6, we can replace B with a
matrix B′ where b′11 divides b′ij for all i and j.

97

Lecture 21: Modules

Now using row and column operations, we can eliminate the first row and column (meaning that we make b′i1
and b′1j all zero). So we get

b′11 ∗ · · · ∗
∗ ∗ · · · ∗
...

...
. . .

...
∗ ∗ · · · ∗

⇝

b′11 0 · · · 0
0 ∗ · · · ∗
...

...
. . .

...
0 ∗ · · · ∗

 .
Now we ignore the first row and column, and use elementary operations on rows and columns 2, . . . , n. (These
do not affect the first row or column.) By the induction assumption, we can reduce the submatrix of ∗s to
Smith normal form (since b′11 already divides all other entries, this will remain true when we perform the
operations).

The theorem has more theoretical value than computational value, but we will compute an example nonetheless.

Example 21.7
We have [

2 1
1 3

]
⇝

[
1 3
2 1

]
⇝

[
1 3
0 −5

]
⇝

[
1 0
0 −5

]
.

Example 21.8
We have [

4 2 6
1 2 3

]
⇝

[
1 2 3
4 2 6

]
⇝

[
1 0 0
4 −6 −6

]
⇝

[
1 0 0
0 −6 −6

]
⇝

[
1 0 0
0 −6 0

]
.

21.4 Applications
As a corollary, by taking R to be Z, we can classify all finitely presented abelian groups.

Corollary 21.9
Every finitely presented abelian group is isomorphic to

Z/d1Z× Z/d2Z× · · · × Z/dnZ× Za,

for some positive integers di with d1 | d2 | · · · | dn.

Sometimes, it’s more useful to write this classification in a different form. Recall that the Chinese Remainder
Theorem states that if n = ab with gcd(a, b) = 1, then

Z/nZ ∼= Z/aZ× Z/bZ.

So then if we factor di = pai11 · · · painn , we can decompose Z/diZ as a product of groups of the form Z/pmZ
(cyclic groups of prime power order).

Another application of Theorem 21.4 is in the case R = F [x], where F is a field. A finitely generated module
over R must then be of the form

Ra ⊕R/(P1)⊕ · · · ⊕R/(Pn),

where P1 | · · · | Pn. Alternatively, again using the Chinese Remainder Theorem, we can instead assume that
each Pi is a power of an irreducible polynomial.

In particular, consider F = C; then the only irreducible polynomials are linear, so we must have Pi = (x−λi)
ni .

If we only consider finite-dimensional modules, then as we said earlier, a module over F [x] is equivalent to a
(finite-dimensional) vector space along with one linear operator (corresponding to the action of x). So it turns
out that this classification of modules actually implies the Jordan decomposition theorem — we will discuss
this in more detail next lecture.

98

MIT OpenCourseWare
https://ocw.mit.edu

Resource: Algebra II Student Notes
Spring 2022
Instructor: Roman Bezrukavnikov
Notes taken by Sanjana Das and Jakin Ng

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/pages/privacy-and-terms-of-use/
https://ocw.mit.edu

