25 Field Extensions

25.1 Primary Fields

We have the following useful fact about fields:

```
Fact 25.1
Every field is a (possibly infinite) extension of either \mathbb{Q},\mathrm{ or }\mp@subsup{\mathbb{F}}{p}{}\mathrm{ for a prime p. These are called the primary}
fields.
```

Proof. In general, for any ring R, there is a unique ring homomorphism $\mathbb{Z} \rightarrow R$ - we must have $1 \mapsto 1_{R}$, so then $n \mapsto \underbrace{1_{R}+\cdots+1_{R}}_{n}=n_{R}$ for positive integers n, and $-n \mapsto-n_{R}$.
The image of the homomorphism is a quotient of \mathbb{Z} - it's either \mathbb{Z} or $\mathbb{Z} / n \mathbb{Z}$. Now consider the kernel of this homomorphism. If R is an integral domain (note that all fields are domains), then either the homomorphism is one-to-one, or its kernel is (p) for a prime p - otherwise, the image would be $\mathbb{Z} / n \mathbb{Z}$ for composite n, which is not a domain (as it has zero divisors).

Now taking $R=F$ to be a field, if the kernel is zero, then \mathbb{Z} is a subring of F. But then $\mathbb{Q}=\operatorname{Frac}(\mathbb{Z})$ must be inside F as well (since we can invert elements in a field) - in our original notation, the copy of \mathbb{Q} in F is the fractions of the form n_{R} / m_{R}.

On the other hand, if the kernel is (p), then we have a copy of $\mathbb{Z} / p \mathbb{Z}$ in F, and we're done.

Definition 25.2
The generator of the kernel (as in the above proof) is called the characteristic of the field.

So fields of characteristic 0 contain \mathbb{Q}, and fields of characteristic p contain $\mathbb{Z} / p \mathbb{Z}$ (and these are the only possible characteristics).

25.2 Algebraic Elements

Last time, we defined algebraic elements in a field extension L / K :
Definition 25.3
An element $\alpha \in L$ is algebraic over K if $P(\alpha)=0$ for some nonzero $P \in K[x]$.

As stated last class, α is algebraic if and only if $K(\alpha) / K$ is finite (since a polynomial in α is the same as a linear relation between powers of α).
We also looked at towers of extensions $E / F / K$ - here E / K is called the composite extension, while E / F and F / K are called intermediate extensions. In particular, we saw the following theorem:

Theorem 25.4

We have

$$
[E: K]=[E: F] \cdot[F: K] .
$$

In particular, E / K is finite if and only if both E / F and F / K are finite.

This has some useful corollaries regarding algebraic elements.
Corollary 25.5
If $\alpha, \beta \in L$ are algebraic over K, then $\alpha+\beta, \alpha \beta$, and $\frac{\alpha}{\beta}$ are also algebraic.

Proof. If α and β are algebraic, then $K(\alpha) / K$ and $K(\alpha, \beta) / K(\alpha)$ are both finite - since β satisfies a polynomial relation with coefficients in K, it satisfies the same polynomial relation with coefficients in $K(\alpha)$. So we can conclude that $K(\alpha, \beta) / K$ is finite, and therefore any element in it is algebraic.

Corollary 25.6
Given an arbitrary extension, the set of elements in L which are algebraic over K form a subfield of L, called the algebraic closure of K in L.

For example, the algebraic closure of \mathbb{Q} in \mathbb{C} is called the algebraic numbers.
This is an abstract argument that doesn't exactly tell us how to construct the polynomial; but it's possible to come up with a procedure to write down an equation as well.

Example 25.7

Let $\alpha=\sqrt{2}$ and $\beta=\sqrt{3}$, and $\gamma=\alpha+\beta$. How can we write down a polynomial equation for γ ?

One possible method is that by Corollary 25.5 , we know that $1, \gamma, \gamma^{2}, \ldots$ must be linearly dependent. In this case, they are all linear combinations of $1, \sqrt{2}, \sqrt{3}$, and $\sqrt{6}$ with coefficients in \mathbb{Q} - so they lie in a vector space of dimension at most 4 . Then $1, \gamma, \ldots, \gamma^{4}$ are five elements in a four-dimensional vector space, so they must be linearly dependent; and using linear algebra, it's possible to explicitly calculate this linear relation.
There is another way to find the polynomial equation - right now we'll present it as a guess, but later we'll see that it's part of a more general story.

We'd like to find a polynomial P with γ as a root, so we can try to think about what the other roots of P should be. Suppose P factors as $\left(x-\gamma_{1}\right)\left(x-\gamma_{2}\right) \cdots$, for $\gamma_{i} \in \mathbb{C}-$ it suffices to choose the γ_{i} such that P has rational coefficients, and $\gamma_{1}=\sqrt{2}+\sqrt{3}$.
We can guess that all of $\pm \sqrt{2} \pm \sqrt{3}$ should be roots - from an algebraic perspective, if $\sqrt{2}+\sqrt{3}$ shows up, we "should" be able to switch the sign of the square root (since there isn't a difference between the two signs). So then we can take

$$
\begin{aligned}
\gamma_{1} & =\sqrt{2}+\sqrt{3} \\
\gamma_{2} & =\sqrt{2}-\sqrt{3} \\
\gamma_{3} & =-\sqrt{2}+\sqrt{3} \\
\gamma_{4} & =-\sqrt{2}-\sqrt{3}
\end{aligned}
$$

We can expand out the polynomial to see that it does indeed have rational coefficients (essentially, this involves using the equation $a^{2}-b^{2}=(a-b)(a+b)$ twice $)$.

The main idea we used here is to exploit the symmetry between the roots (there is a group of symmetries acting on the roots, by replacing one of the square roots with its negative); we'll later discuss ways to find these symmetries, using Galois theory.

25.3 Compass and Straightedge Construction

Proposition 25.4 also relates to compass and straightedge constructions. It has the following corollary:

Corollary 25.8

If $E / F / K$ is a tower of finite extensions, then $[F: K] \mid[E: K]$.

The problem of which regular n-gons can be constructed using a compass and straightedge can be rephrased algebraically in the following way (we won't discuss the details here).

Fact 25.9
A regular n-gon is constructible with compass and straightedge if and only if $\zeta_{n}=e^{2 \pi i / n}$ lies in an extension $\mathbb{Q}\left(\alpha_{1}, \alpha_{n}\right)$ such that $\alpha_{i}^{2} \in \mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{n-1}\right)$ for all i.

This means we have a tower of quadratic extensions, where every step in this tower has degree 2 - more explicitly, we can define $F_{i}=\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{i}\right)$, with $F_{0}=\mathbb{Q}$. Without loss of generality we can assume $\alpha_{i} \notin F_{i-1}$ (or else adding it to the set of generators would be useless). Then we have the tower of extensions $F_{n} / F_{n-1} / \cdots / F_{1} / F_{0}$ where $\left[F_{i}: F_{i-1}\right]=2$ for all i.
For convenience, we'll assume n is prime. (The general case involves a few more details, but works very similarly.)

Theorem 25.10

Let $n=p$ be prime. Then a regular p-gon can be constructed if and only if $p=2^{k}+1$.

Primes $p=2^{k}+1$ are called Fermat primes. There's only 5 known Fermat primes (3, 17, 257, and 65537); it's conjectured that there are no others, but we don't even know whether there's finitely or infinitely many. (Note that if $2^{k}+1$ is prime, then k must be a power of 2 - otherwise, $2^{k}+1$ can be factored.)

We'll only show one direction: that if ζ_{p} is constructible, then p is a Fermat prime. To prove this, the following proposition will be useful:

Proposition 25.11
If p is prime, we have $\operatorname{deg}\left(\zeta_{n}\right)=p-1$, or equivalently $\left[\mathbb{Q}\left(\zeta_{p}\right): \mathbb{Q}\right]=p-1$.

The extension $\mathbb{Q}\left(\zeta_{p}\right)$ is called a cyclotomic extension.
Proof. We know ζ_{p} is a root of $x^{p}-1$. We can easily factor

$$
x^{p}-1=(x-1)\left(x^{p-1}+x^{p-2}+\cdots+1\right)
$$

so it suffices to show that the second factor, which we call $P(x)$, is irreducible. Since the polynomial is primitive, it's enough to show that it's irreducible over \mathbb{Z}.

Now we can perform a trick - substitute $t=x-1$. Then if we write $P(x)=Q(t)$, we have

$$
t Q(t)=(t+1)^{p}-1
$$

But by expanding and using the Binomial Theorem, we then have

$$
Q(t)=\sum_{i=0}^{p-1}\binom{p}{i+1} t^{i}
$$

(For example, when $p=3$, we have $Q(t)=t^{2}+3 t+3$.)
But the leading term is 1 , and all other terms are divisible by p; and the free term is not divisible by p^{2} (in fact, none of the terms are divisible by p^{2}, but we only need to use the free term here).
Now assume for contradiction that Q is reducible, so $Q=Q_{1} Q_{2}$ for polynomials Q_{1} and Q_{2} of degree at least 1 . Now consider the reduction mod p, where

$$
\bar{Q}=\overline{Q_{1} Q_{2}} .
$$

But \bar{Q} is now t^{p-1}, and the only way to factor t^{p-1} in $\mathbb{F}_{p}[x]$ is as $t^{i} t^{p-1-i}$. But we have $\operatorname{deg}\left(\overline{Q_{1}}\right)=\operatorname{deg}\left(Q_{1}\right)>1$ (and the same is true for Q_{2}), since the leading coefficients of Q_{1} and Q_{2} cannot be divisible by p (their product is the leading coefficient of Q, which is 1). So then we must have $i \neq 0, p-1$.

But then since Q_{1} and Q_{2} are t^{i} and t^{p-1-i} for $0<i<p-1$, their free terms must both be divisible by p. So the product of their free terms is divisible by p^{2}; but this product is the free term of Q, which is not divisible by p^{2}. So this is a contradiction, and Q is irreducible.

Proof of Necessity in Theorem 25.10. We've seen that $\operatorname{deg}\left(\zeta_{p}\right)=p-1$. So we have $\operatorname{deg}\left(\zeta_{p}\right)=p-1$. On the other hand, if $\zeta_{p} \in F_{n}$ for a field extension of the form described, then $\operatorname{deg}\left(\zeta_{p}\right)$ must divide $\left[F_{n}: \mathbb{Q}\right]$, which is a power of 2 . So $p-1$ must be a power of 2 as well.

With our current tools, we can only show one direction - to show the other direction, we need a better extension of which fields can be obtained as the top floor of a tower of quadratic extensions. It's necessary that the degree is a power of 2 , but this may not be sufficient. In the case of $\mathbb{Q}\left(\zeta_{p}\right)$, the condition turns out to be sufficient as well (as we'll see later).

25.4 Splitting Fields

We've seen the construction where we start with an irreducible polynomial $P \in F[x]$, and construct the field extension $E=F[x] /(P)$. This is an extension of F of degree $n=\operatorname{deg}(P)$, and we can think of it as adjoining a root of the polynomial.
But there's another construction which also produces a finite extension from a polynomial, which is in some sense harder to control. Here, we do not require the polynomial to be irreducible.

Definition 25.12

For a polynomial $P \in F[x]$, a splitting field of P is an extension E / F such that:

1. P splits as a product of linear factors in $E[x]$;
2. $E=F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$, where the α_{i} are the roots of P.

The first condition guarantees that P splits completely (so we can find all its roots) in E; the second prevents E from being too large (it only contains the elements which are necessary for P to split).

Proposition 25.13

Given any polynomial P, its splitting field exists, and any two splitting fields of P are isomorphic.

We'll discuss the proof in more detail next time - the main idea is to add one root of P so that it splits partially, then add another root of any remaining irreducible factor, and so on.

Example 25.14

The splitting field of $P(x)=x^{3}-2$ over $F=\mathbb{Q}$ is $E=\mathbb{Q}(\sqrt[3]{2}, \omega \sqrt[3]{2})$, where ω is a primitive 3rd root of unity. We have $[E: \mathbb{Q}]=6$.

On the other hand, we could start by adjoining ω :

Example 25.15

The splitting field of $P(x)=x^{3}-2$ over $F=\mathbb{Q}(\omega)$ is $E=F(\sqrt[3]{2})$ - the polynomial $x^{3}-2$ remains irreducible, but after adjoining one root, we already have all the others. Here $[E: F]=3$.

Note that E is the same in both examples (even though F is not).

Example 25.16

The splitting field of $P(x)=x^{p-1}+\cdots+1$ over $F=\mathbb{Q}$ is $E=\mathbb{Q}\left(\zeta_{p}\right)$ (since all roots are powers of ζ_{p}), where $[E: F]=p-1$.

MIT OpenCourseWare
https://ocw.mit.edu

Resource: Algebra II Student Notes

Spring 2022
Instructor: Roman Bezrukavnikov
Notes taken by Sanjana Das and Jakin Ng

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

