26 Finite Fields

26.1 Splitting Fields

Last time, we stated the uniqueness of the splitting field of a polynomial.

Proposition 26.1

If F is a field, and P a (not necessarily irreducible) polynomial in F, then there exists a unique extension E / F up to isomorphism, such that P splits as a product of linear factors in $E[x]$ as $P(x)=\prod\left(x-\alpha_{i}\right)$, and $E=F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$.

Proof. The idea of the proof is fairly easy - we essentially add in roots one by one, which immediately proves existence. Uniqueness follows from uniqueness in adjoining a root of an irreducible polynomial (since adjoining any root is equivalent to adjoining an abstract one).
First, we'll prove existence by induction on the degree of P. Let P_{1} be an irreducible factor of P, and let $F_{1}=F[x] /\left(P_{1}\right)$, which (as we've seen earlier) is essentially the construction of adjoining a root of P_{1} to F. Then in $F_{1}[x], P$ factors as $P(x)=(x-\alpha) Q(x)$, where α is a root of P_{1}.
Now let E be the splitting field for Q over F_{1} (which exists by the induction assumption). Then we claim E is also a splitting field for P over F. This follows directly from the definition - suppose $\alpha=\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ are the roots of P. Then P splits completely in $E[x]$. But we also have $E=F_{1}\left(\alpha_{2}, \ldots, \alpha_{n}\right)$, and since $F_{1}=F\left(\alpha_{1}\right)$, then $E=F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$.
So we've proved existence of the splitting field. To prove uniqueness, we again use induction. Suppose that E^{\prime} is another splitting field; we'll construct an isomorphism between E^{\prime} and E.
First, we can find a root α^{\prime} of P_{1} in E^{\prime}. Then if we set $F_{1}^{\prime}=F\left(\alpha^{\prime}\right) \subset E^{\prime}$, we know that $F\left(\alpha^{\prime}\right) \cong F(\alpha)$, since both are isomorphic to the abstract construction $F[x] /(P)$.
This isomorphism between $F(\alpha)$ and $F\left(\alpha^{\prime}\right)$ sends $\alpha \mapsto \alpha^{\prime}$. Suppose it sends $Q \in F_{1}[x]$ to $Q^{\prime} \in F_{1}^{\prime}[x]$, so we have $P=\left(x-\alpha^{\prime}\right) Q^{\prime}$ (the isomorphism fixes F, and therefore P). Now E^{\prime} is a splitting field for Q^{\prime} over F_{1}^{\prime}. So uniqueness of the splitting field of Q (which we know by the induction assumption) implies that the isomorphism between F_{1} and F_{1}^{\prime} extends to an isomorphism between E and E^{\prime}, and the two splitting fields are isomorphic.

We'll see more proofs similar to this last idea later, where we construct isomorphisms between field extensions.
Student Question. What happens if P has repeated roots?
Answer. In this case, it doesn't matter - for instance, the splitting field of P^{2} is the same as that of P.

26.2 Construction of Finite Fields

We'll now turn to finite fields. First notice that if F is a finite field, it can't contain \mathbb{Q} (since \mathbb{Q} is infinite), so it must contain \mathbb{F}_{p} - we saw last class that every field contains \mathbb{Q} or \mathbb{F}_{p} for some prime p. Moreover, since F is finite as a set, the extension F / \mathbb{F}_{p} is also finite, so F is finite-dimensional as a \mathbb{F}_{p}-vector space. Let $n=\left[F: \mathbb{F}_{p}\right]=\operatorname{dim}_{\mathbb{F}_{p}} F$. Then we must have $|F|=p^{n}$ - if we choose a basis for F (forgetting we can multiply elements, and only using the vector space structure), this identifies F with \mathbb{F}_{p}^{n} (n-tuples of elements in \mathbb{F}_{p}, corresponding to the coordinates in this basis), which has p^{n} elements.
This was a fairly straightforward observation, but the converse is also true!

Theorem 26.2

For every prime p and every $n \geq 1$, there exists a field of $q=p^{n}$ elements. Furthermore, any two such fields are isomorphic.

As a result, we have a unique field of $q=p^{n}$ elements, which we denote by \mathbb{F}_{q}. Note that except when $n=1$, the field \mathbb{F}_{q} is very different from $\mathbb{Z} / q \mathbb{Z}$ (which is not a field). They're not even isomorphic as additive groups! (For example, $\mathbb{F}_{2}=\mathbb{Z} / 2 \mathbb{Z}$, but \mathbb{F}_{4} and $\mathbb{Z} / 4 \mathbb{Z}$ have very different structure.)

One way to construct a field of q elements would be to find an irreducible polynomial of degree n in $\mathbb{F}_{p}[x]$ (and quotient by that polynomial). This is easy to do when n is small - for example, if $p=4 k+3$, the polynomial $x^{2}+1$ is irreducible, so

$$
\mathbb{F}_{p^{2}}=\mathbb{F}_{p}[x] /\left(x^{2}+1\right)
$$

Similarly, we have

$$
\mathbb{F}_{8}=\mathbb{F}_{2}[x] /\left(x^{3}+x+1\right)
$$

But this is harder for general n - it's possible to prove one always exists via a counting argument (counting all polynomials, and all ways to produce a product of lower-degree polynomials), but this won't be the approach we use.

Instead, we'll use a sort of "magic trick" - we'll consider the Artin-Schreier polynomial $A(x)=x^{q}-x$.

Lemma 26.3

Let F be any field containing \mathbb{F}_{p}, and let $q=p^{n}$. Then the set of roots of A in F,

$$
\left\{x \in F \mid x^{q}-x=0\right\}
$$

is a subfield of F.

This is quite exceptional! Usually, to construct a field from a polynomial, we adjoin roots and then take all possible sums and products. But in this case, when we take all roots, the result is actually closed under arithmetic operations - and we don't need to do anything more.

Proof. We must check that for $\alpha, \beta \in F$ with $A(\alpha)=0$ and $A(\beta)=0$, we have:
(1) $A(\alpha \beta)=0$,
(2) $A\left(\beta^{-1}\right)=0($ if $\beta \neq 0)$, and
(3) $A(\alpha+\beta)=0$.

The first two are straightforward (and would work if we replaced q with any exponent) - for (1), since $\alpha^{q}=\alpha$ and $\beta^{q}=\beta$, we have $(\alpha \beta)^{q}=\alpha^{q} \beta^{q}=\alpha \beta$. We can check (2) similarly.
Now for (3), note that in any ring containing \mathbb{F}_{p}, we have

$$
(x+y)^{p}=x^{p}=y^{p} .
$$

This follows from the Binomial Theorem, since $\binom{p}{i} \equiv 0(\bmod p)$ for $i=1, \ldots, p-1-$ if we write $\binom{p}{i}=$ $p!/ i!(p-i)!$, the numerator is divisible by p and the denominator is not. Now using induction, we see that $(x+y)^{q}=x^{q}+y^{q}$ if $q=p^{n}$ for any n. So $\alpha^{q}=\alpha$ and $\beta^{q}=\beta$ implies that

$$
(\alpha+\beta)^{q}=\alpha^{q}+\beta^{q}=\alpha+\beta
$$

and thus $A(\alpha+\beta)=0$.
With this tool, we can now prove Theorem 26.2.
Proof of Theorem 26.2. We'll first prove uniqueness. Suppose that F is a field of $q=p^{n}$ elements. Now consider the multiplicative group F^{\times}(the group of all nonzero elements of F under multiplication). This has $q-1$ elements, so the order of any element of F^{\times}must divide $q-1$; therefore $\alpha^{q-1}=1$ for all $\alpha \neq 0$. Then $\alpha^{q}=\alpha$ for all $\alpha \in F$ (since this is true for 0 as well). So $A(\alpha)=0$ for all $\alpha \in F$.
But now we have a polynomial of degree q, which has q roots in F. The only way this happens is if the polynomial splits completely - we have that $x-\alpha \mid A(x)$ for all $\alpha \in F$, so by unique factorization in $F[x]$, the product of all terms $x-\alpha$ must divide $A(x)$ as well, and since $\operatorname{deg}(A(x))=q$ (and both sides are monic), we must then have

$$
A(x)=\prod_{\alpha \in F}(x-\alpha)
$$

But then F is a splitting field of A over \mathbb{F}_{p}, and the uniqueness of F follows from the uniqueness of the splitting field.

To prove existence, we can simply let F be the splitting field of A over \mathbb{F}_{p}; we then need to check that $|F|=q$.
First, by Lemma 26.3, we have $A(\alpha)=0$ for all $\alpha \in F$ - we know that F is generated by the roots of A, but the lemma implies that these roots are closed under arithmetic operations, so all elements of F are roots of A.
So then the number of elements in F is the number of roots of A (which splits completely in F). In particular, we immediately see that $|F| \leq \operatorname{deg} A=q$. To see that equality holds, it suffices to check that A has no multiple roots.

To check this, we use derivatives - in real or complex analysis, we know that a function has a higher-order root at a if a is also a root of the derivative. Of course, here we're in a much more abstract setting, and we can't define derivatives using limits. However, we can still use this idea, by using formal derivatives - the formal derivative of a polynomial $P(x)=a_{n} x^{n}+\cdots+a_{0}$ is the familiar formula $P^{\prime}(x)=n a_{n} x^{n-1}+\cdots+a_{1}$. It's easy to check that the formulas $(P+Q)^{\prime}=P^{\prime}+Q^{\prime}$ and $(P Q)^{\prime}=P Q^{\prime}+P^{\prime} Q$ still hold. Now, if P has a multiple root at α, then $P(x)=(x-\alpha)^{2} Q(x)$ for some Q, which means

$$
P^{\prime}(x)=2(x-\alpha) Q(x)+(x-\alpha)^{2} Q^{\prime}(x)
$$

also has a root at α. So it's still true that a multiple root of P is also a root of its derivative. In particular, if $\operatorname{gcd}\left(P, P^{\prime}\right)=1$, then P has no multiple roots (in any field containing its field of coefficients).

But it's easy to compute the derivative of A - we have $A^{\prime}(x)=\left(x^{q}-x\right)^{\prime}=q x^{q-1}-1$. But q is 0 in F (since F has characteristic $p)$! So $A^{\prime}(x)$ is just -1 , and $\operatorname{gcd}\left(A, A^{\prime}\right)=1$. So A has no multiple roots, which means $|F|=q$.

Once we have this construction, we can then derive concrete information about irreducible polynomials.

26.3 Structure of Finite Fields

There's more that we can say about the structure of \mathbb{F}_{q}.
Proposition 26.4
The multiplicative group \mathbb{F}_{q}^{\times}is cyclic, and is therefore isomorphic to $\mathbb{Z} /(q-1) \mathbb{Z}$.

Proof. Since \mathbb{F}_{q}^{\times}is a finite abelian group, it's isomorphic to $\Pi \mathbb{Z} / p_{i}^{d_{i}} \mathbb{Z}$ for some d_{i}. By the Chinese Remainder Theorem, it's enough to show that each prime p appears at most once in this decomposition.
But assume for contradiction that some prime p appears twice (here p is used to denote any prime, not the characteristic of \mathbb{F}_{q}). Then there's at least p^{2} elements of order dividing p, meaning that $\alpha^{p}=1$ (since the group $\mathbb{Z} / p^{d} \mathbb{Z}$ contains p elements of order dividing p, so we can take one such element from each copy and elements of order 1 from the remaining terms in the product). But then the polynomial $x^{p}-1$ would have p^{2} roots; this is impossible, since a polynomial of degree p can have at most p roots.

MIT OpenCourseWare
https://ocw.mit.edu

Resource: Algebra II Student Notes

Spring 2022
Instructor: Roman Bezrukavnikov
Notes taken by Sanjana Das and Jakin Ng

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

