
Lecture 26: Finite Fields

26 Finite Fields

26.1 Splitting Fields
Last time, we stated the uniqueness of the splitting field of a polynomial.

Proposition 26.1
If F is a field, and P a (not necessarily irreducible) polynomial in F , then there exists a unique extension
E/F up to isomorphism, such that P splits as a product of linear factors in E[x] as P (x) =

∏
(x−αi), and

E = F (α1, . . . , αn).

Proof. The idea of the proof is fairly easy — we essentially add in roots one by one, which immediately proves
existence. Uniqueness follows from uniqueness in adjoining a root of an irreducible polynomial (since adjoining
any root is equivalent to adjoining an abstract one).

First, we’ll prove existence by induction on the degree of P . Let P1 be an irreducible factor of P , and let
F1 = F [x]/(P1), which (as we’ve seen earlier) is essentially the construction of adjoining a root of P1 to F . Then
in F1[x], P factors as P (x) = (x− α)Q(x), where α is a root of P1.

Now let E be the splitting field for Q over F1 (which exists by the induction assumption). Then we claim E is
also a splitting field for P over F . This follows directly from the definition — suppose α = α1, α2, . . . , αn are
the roots of P . Then P splits completely in E[x]. But we also have E = F1(α2, . . . , αn), and since F1 = F (α1),
then E = F (α1, . . . , αn).

So we’ve proved existence of the splitting field. To prove uniqueness, we again use induction. Suppose that E′

is another splitting field; we’ll construct an isomorphism between E′ and E.

First, we can find a root α′ of P1 in E′. Then if we set F ′
1 = F (α′) ⊂ E′, we know that F (α′) ∼= F (α), since

both are isomorphic to the abstract construction F [x]/(P ).

This isomorphism between F (α) and F (α′) sends α 7→ α′. Suppose it sends Q ∈ F1[x] to Q′ ∈ F ′
1[x], so

we have P = (x − α′)Q′ (the isomorphism fixes F , and therefore P ). Now E′ is a splitting field for Q′ over
F ′
1. So uniqueness of the splitting field of Q (which we know by the induction assumption) implies that the

isomorphism between F1 and F ′
1 extends to an isomorphism between E and E′, and the two splitting fields are

isomorphic.

We’ll see more proofs similar to this last idea later, where we construct isomorphisms between field extensions.

Student Question. What happens if P has repeated roots?

Answer. In this case, it doesn’t matter — for instance, the splitting field of P 2 is the same as that of P .

26.2 Construction of Finite Fields
We’ll now turn to finite fields. First notice that if F is a finite field, it can’t contain Q (since Q is infinite), so
it must contain Fp — we saw last class that every field contains Q or Fp for some prime p. Moreover, since
F is finite as a set, the extension F/Fp is also finite, so F is finite-dimensional as a Fp-vector space. Let
n = [F : Fp] = dimFp F . Then we must have |F | = pn — if we choose a basis for F (forgetting we can multiply
elements, and only using the vector space structure), this identifies F with Fnp (n-tuples of elements in Fp,
corresponding to the coordinates in this basis), which has pn elements.

This was a fairly straightforward observation, but the converse is also true!

Theorem 26.2
For every prime p and every n ≥ 1, there exists a field of q = pn elements. Furthermore, any two such fields
are isomorphic.

As a result, we have a unique field of q = pn elements, which we denote by Fq. Note that except when n = 1,
the field Fq is very different from Z/qZ (which is not a field). They’re not even isomorphic as additive groups!
(For example, F2 = Z/2Z, but F4 and Z/4Z have very different structure.)
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One way to construct a field of q elements would be to find an irreducible polynomial of degree n in Fp[x] (and
quotient by that polynomial). This is easy to do when n is small — for example, if p = 4k + 3, the polynomial
x2 + 1 is irreducible, so

Fp2 = Fp[x]/(x2 + 1).

Similarly, we have
F8 = F2[x]/(x

3 + x+ 1).

But this is harder for general n — it’s possible to prove one always exists via a counting argument (counting all
polynomials, and all ways to produce a product of lower-degree polynomials), but this won’t be the approach
we use.

Instead, we’ll use a sort of “magic trick” — we’ll consider the Artin–Schreier polynomial A(x) = xq − x.

Lemma 26.3
Let F be any field containing Fp, and let q = pn. Then the set of roots of A in F ,

{x ∈ F | xq − x = 0},

is a subfield of F .

This is quite exceptional! Usually, to construct a field from a polynomial, we adjoin roots and then take
all possible sums and products. But in this case, when we take all roots, the result is actually closed under
arithmetic operations — and we don’t need to do anything more.

Proof. We must check that for α, β ∈ F with A(α) = 0 and A(β) = 0, we have:

(1) A(αβ) = 0,

(2) A(β−1) = 0 (if β ̸= 0), and

(3) A(α+ β) = 0.

The first two are straightforward (and would work if we replaced q with any exponent) — for (1), since αq = α
and βq = β, we have (αβ)q = αqβq = αβ. We can check (2) similarly.

Now for (3), note that in any ring containing Fp, we have

(x+ y)p = xp = yp.

This follows from the Binomial Theorem, since
(
p
i

)
≡ 0 (mod p) for i = 1, . . . , p − 1 — if we write

(
p
i

)
=

p!/i!(p − i)!, the numerator is divisible by p and the denominator is not. Now using induction, we see that
(x+ y)q = xq + yq if q = pn for any n. So αq = α and βq = β implies that

(α+ β)q = αq + βq = α+ β,

and thus A(α+ β) = 0.

With this tool, we can now prove Theorem 26.2.

Proof of Theorem 26.2. We’ll first prove uniqueness. Suppose that F is a field of q = pn elements. Now consider
the multiplicative group F× (the group of all nonzero elements of F under multiplication). This has q − 1
elements, so the order of any element of F× must divide q − 1; therefore αq−1 = 1 for all α ̸= 0. Then αq = α
for all α ∈ F (since this is true for 0 as well). So A(α) = 0 for all α ∈ F .

But now we have a polynomial of degree q, which has q roots in F . The only way this happens is if the
polynomial splits completely — we have that x− α | A(x) for all α ∈ F , so by unique factorization in F [x], the
product of all terms x− α must divide A(x) as well, and since deg(A(x)) = q (and both sides are monic), we
must then have

A(x) =
∏
α∈F

(x− α).

But then F is a splitting field of A over Fp, and the uniqueness of F follows from the uniqueness of the splitting
field.
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To prove existence, we can simply let F be the splitting field of A over Fp; we then need to check that |F | = q.

First, by Lemma 26.3, we have A(α) = 0 for all α ∈ F — we know that F is generated by the roots of A, but
the lemma implies that these roots are closed under arithmetic operations, so all elements of F are roots of A.

So then the number of elements in F is the number of roots of A (which splits completely in F ). In particular,
we immediately see that |F | ≤ degA = q. To see that equality holds, it suffices to check that A has no multiple
roots.

To check this, we use derivatives — in real or complex analysis, we know that a function has a higher-order root
at a if a is also a root of the derivative. Of course, here we’re in a much more abstract setting, and we can’t
define derivatives using limits. However, we can still use this idea, by using formal derivatives — the formal
derivative of a polynomial P (x) = anx

n + · · ·+ a0 is the familiar formula P ′(x) = nanx
n−1 + · · ·+ a1. It’s easy

to check that the formulas (P + Q)′ = P ′ + Q′ and (PQ)′ = PQ′ + P ′Q still hold. Now, if P has a multiple
root at α, then P (x) = (x− α)2Q(x) for some Q, which means

P ′(x) = 2(x− α)Q(x) + (x− α)2Q′(x)

also has a root at α. So it’s still true that a multiple root of P is also a root of its derivative. In particular, if
gcd(P, P ′) = 1, then P has no multiple roots (in any field containing its field of coefficients).

But it’s easy to compute the derivative of A — we have A′(x) = (xq − x)′ = qxq−1 − 1. But q is 0 in F (since
F has characteristic p)! So A′(x) is just −1, and gcd(A,A′) = 1. So A has no multiple roots, which means
|F | = q.

Once we have this construction, we can then derive concrete information about irreducible polynomials.

26.3 Structure of Finite Fields
There’s more that we can say about the structure of Fq.

Proposition 26.4
The multiplicative group F×

q is cyclic, and is therefore isomorphic to Z/(q − 1)Z.

Proof. Since F×
q is a finite abelian group, it’s isomorphic to

∏
Z/pdii Z for some di. By the Chinese Remainder

Theorem, it’s enough to show that each prime p appears at most once in this decomposition.

But assume for contradiction that some prime p appears twice (here p is used to denote any prime, not the
characteristic of Fq). Then there’s at least p2 elements of order dividing p, meaning that αp = 1 (since the group
Z/pdZ contains p elements of order dividing p, so we can take one such element from each copy and elements of
order 1 from the remaining terms in the product). But then the polynomial xp − 1 would have p2 roots; this is
impossible, since a polynomial of degree p can have at most p roots.

117



MIT OpenCourseWare 
https://ocw.mit.edu 

Resource: Algebra II Student Notes
Spring 2022  
Instructor: Roman Bezrukavnikov
Notes taken by Sanjana Das and Jakin Ng

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms. 

https://ocw.mit.edu/pages/privacy-and-terms-of-use/
https://ocw.mit.edu



