
Lecture 34: Solving Polynomial Equations

34 Solving Polynomial Equations  (continued)

34.1 Cubic Polynomials

Last class, we looked at cubic polynomials of the form P (x) = x3 + px + q (called depressed cubics), which
have discriminant D = −4p3 − 27p2. For simplicity we assume the field has characteristic 0 , a s t he c ases of
characteristic 2 and 3 are somewhat different. We saw that if E is the splitting field of P , then E ⊃ F (δ)
where δ =

√
D; and Gal(E/F (δ)) = Z/3Z. (It’s possible that δ ∈ F , though it usually isn’t.) We saw that then

E = F (δ)(α), where α is a cube root of some element a ∈ E; our explicit construction was α = β+ωσ(β)+ω2σ2(β)
for some β ∈ E (which isn’t in F ).

It’s actually possible to turn these ideas into a formula for the roots of P . Let β1, β2, β3 be the roots of P (which
are elements in E). Then some σ ∈ Gal(E/F [δ]) must permute the roots in a 3-cycle β1 → β2 → β3 → β1; this
means we can take

α = β1 + ωβ2 + ω2β3.

We know α3 ∈ F (δ). In fact, using symmetric polynomials, we can express α3 in terms of p, q, and δ. It’s
possible to show this by a general argument — this is because

α3 = Q(β1, β2, β3)

for a polynomial Q which isn’t quite symmetric, but is invariant under even permutations. This is enough, as a
result of a slight generalization of the theorem on the elementary symmetric polynomials seen earlier:

Fact 34.1
We have

Q[x1, . . . , xn]
An = Q[x1, . . . , xn]

Sn ⊕ δQ[x1, . . . , xn]
Sn .

Intuitively, δ is invariant under An but changes sign under Sn; but this essentially accounts for all the new
polynomials allowed when we only consider even permutations.

Instead of using this theoretical argument, it’s also possible to just write down the expression for α3 directly —
we have

α3 = β3
1 + β3

2 + β3
3 + 6β1β2β3 + ω(β2

1β2 + β2
2β3 + β2

3β1) + ω2(β1β
2
2 + β2β

2
3 + β3β

2
1).

The first few terms are symmetric — we have the formulas

β1β2β3 = −q
β3
1 + β3

2 + β3
3 = −3q.

Meanwhile, we can let A = β2
1β2 + β2

2β3 + β2
3β1 and B = β1β

2
2 + β2β

2
3 + β3β

2
1 . We can then calculate that

A+B = σ1σ2 − 3σ3 = 3q.

Meanwhile, A−B is not symmetric, but by expanding we can see that

A−B = (β1 − β2)(β1 − β3)(β2 − β3) = δ.

Now we’re basically done — we can solve for A and B, and get a formula for α — we have

α = 3
√
−4q + 3ωA+ 3ω2B.

Then we can similarly define and compute α′ = β1 + ω2β2 + ωβ3. We then have β1 = (α+ α′)/3, and we can
calculate the other roots similarly. We won’t describe the full formula here, but it’s in the textbook. In fact, a
version of this formula was discovered by Cardano in 1545.

Student Question. If this formula was discovered before Galois theory, how did people come up with it?

Answer. The approach described here, of writing down formulas for these expressions, was invented by Legendre.
It doesn’t really need Galois theory in its full strength — it’s possible to just notice that if we write α =
β1 + ωβ2 + ω2β3, then α3 is an expression in the roots which can be calculated using symmetric polynomials
(and the discriminant).
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But not only was the formula discovered before Galois theory, it was also discovered before complex numbers.
Having to work with roots of negative numbers gave people a lot of trouble — this was controversial even in
the early 19th century. It mattered to people whether they could operate with real numbers, or had to work with
strange expressions involving roots of negative numbers.

In fact, suppose that P has 3 real roots. Then ∆ is nonnegative, so δ is real. But the expression α =
β1 + ωβ2 + ω2β3 is not real! So when you write down the answer in radicals, the final answer will be real; but
you’ll still need to work with a complex cubic root. This was referred to as casus irreducibilis.

If you’re interested in the history and philosophy of this story, a book by Barry Mazur called Imagining Numbers,
Especially

√
−15 talks about this history and reflects about how the understanding of such topics developed.

Essentially, people were working with complex numbers three centuries before they were fully realized and accepted
as existing.

34.2 Quartic Polynomials
We’ll also briefly discuss quartics. The key point is that the analysis of solutions can be guided by the structure
of the Galois group.

The Galois group is a subgroup of S4. We know S4 contains the normal subgroup K4 (the Klein 4-group
Z/2Z× Z/2Z), consisting of {(12)(34), (13)(24), (14)(23), 1}. We then have S4/K4

∼= S3, corresponding to the
resolvent cubic.

So if P (x) = (x− α1)(x− α2)(x− α3)(x− α4), we can write down the expressions

β1 = α1α2 + α3α4,

β2 = α1α3 + α2α4,

β3 = α1α4 + α2α3.

These expressions are permuted by the Galois group, and we know that if we take

Q(x) = (x− β1)(x− β2)(x− β3),

then when we expand, the coefficients will be symmetric polynomials in the αi. So if P (x) = x4 + a3x
3 + a2x

2 +
a1x+ a0, then we have Q(x) = x3 + b2x

2 + b1x+ b0 where the bi are polynomials in the ai — for concreteness,
the exact formulas are b2 = −a2, b1 = a1a3 − 4a0, and b0 = 4a0a2 − a21 − a0a

2
3.

Now to find a root, we first find the roots of the resolvent cubic Q(x) (since we already know how to solve a
cubic polynomial). Then, since K4 = Z/2Z× Z/2Z, it just remains to solve a few quadratic equations. More
explicitly, we can write the equations

(α1 + α2)(α3 + α4) = β1 + β3

α1 + α2 + α3 + α4 = −a3.

This gives a quadratic for α1 + α2 and α3 + α4, which we know how to solve. We can similarly find the other
pairwise sums, and then compute the roots themselves by solving the resulting linear system.

This shows how to find the roots explicitly, but similarly to the cubic case, we can also try to compute the
Galois group:

Guiding Question
How do we compute Gal(E/F ) for a given polynomial P (x) = x4 + a3x

3 + a2x
2 + a1x+ a0?

In degree 3, all we needed to know was whether the discriminant was a square or not — this determined whether
the group was Z/3Z or S3. In this case, the process is longer, but somewhat similar.

First, there are five transitive subgroups of S4 — these are S4, A4, K4 (the Klein 4-group, described earlier),
C4 (the cyclic group, generated by (1234)), and D4 (the dihedral group, generated by (1234) and (24), which
we can think of as the group of symmetries of a square).

One test we can perform still uses the discriminant. It’s a lengthy expression, so we won’t explicitly write it
down, but it’s still theoretically possible to compute it. Then

√
D ∈ F if and only if G ⊂ A4. The groups which

are subsets of A4 are K4 and A4 itself.
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Then we can obtain more information from looking at the resolvent cubic (since we’ve already seen how to
analyze cubics). We know that Q(x) splits completely in F if and only if G = K4 (since then all elements of G
fix α1α2 + α3α4 and the other two expressions, which means they must lie in K4).

Meanwhile, if Q(x) has exactly one root in F , then the elements of G preserve one root of Q, say α1α3 + α2α4.
In this case, we claim that the Galois group is C4 or D4 — we can visualize this by considering a square.

α1

α2 α3

α4

The square naturally splits into two subsets, by drawing its diagonals. So any permutation which fixes the
square will either fix or swap α1α3 and α2α4, which means it fixes α1α3 + α2α4 (while not every permutation
in C4 fixes the other two expressions).

So this information resolves nearly all cases — the only ambiguity left is whether the group is C4 or D4. We
won’t explain how to distinguish between them, but an explanation is in Keith Conrad’s notes.

34.3 Main Theorem of Algebra
We’ll finish with another application of Galois theory — we’ll use it to give another proof of the Main Theorem of
Algebra. We’ll see that this proof brings in some nice considerations about finite groups, although it’s somewhat
less direct than the proof we’ve seen before.

Proposition 34.2
Every p-group is solvable — if G is a finite group with |G| = pn for a prime p, then G is solvable. Moreover,
there exists a chain of subgroups

G = G0 ⊃ G1 ⊃ · · · ⊃ Gn = {1},

such that for all i, Gi+1 is a normal subgroup of Gi and Gi/Gi+1
∼= Z/p.

Proof. We’ll essentially start from the right end (instead of the left). We’ll need the following lemma:

Lemma 34.3
G has a nontrivial center.

Proof. Consider the class equation mod p. Every conjugacy class has size pm for some m. But the class equation
states that

pn = 1 +
∑

|Ci|
(where the 1 comes from the conjugacy class of the identity, which has 1 element). If all other conjugacy classes
contained more than one element, then |Ci| would be divisible by p for all i, and the right-hand side would be 1
mod p, contradiction. So there must exist conjugacy classes of size 1 (other than the one of the identity), and
their elements are in the center of G.

Now to prove the proposition, we induct on n. By the lemma, we have G ⊃ Z (where Z is the center, and
Z ̸= {1}). Then we can find an element g ∈ Z of order p (the center is a nontrivial p-group, so if we pick any
element, it will have some power which has order p). Then let G = G/⟨g⟩ (which is valid because g is in the
center of G, so ⟨g⟩ is clearly normal).

We have |G| = pn−1, so by the inductive assumption, G is solvable. Suppose we have a chain of subgroups

G = G0 ⊃ · · · ⊃ Gd = {1}.

Now let Gi be the pre-image of Gi, and let Gd+1 = {1}; this works by the homomorphism theorem.

Now we can prove the Main Theorem of Algebra:
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Theorem 34.4
C is the only finite extension of R.

This implies the standard formulation, that every polynomial (over C) has a root in C.

Proof. Let F = R, and suppose E is a finite extension. Without loss of generality assume E is a splitting field
(since it’s a finite extension, it’s obtained by adding some of the roots of some polynomial, and we can add in
all the remaining roots), so E/F is a Galois extension. Let G = Gal(E/F ).

Lemma 34.5
|G| is a power of 2.

Proof. Let H ⊂ G be a Sylow 2-subgroup (a subgroup of order 2n, where n is the exponent of 2 in |G|). Then
consider the extension EH/F — we have that

[EH : F ] =
[E : F ]

[EH : E]
=

|G|
|H| ,

which is odd. But any odd-degree polynomial in R[x] has a real root (by the intermediate value theorem — the
polynomial goes to +∞ on one end and −∞ on the other). So this means there are no odd-degree extensions
of R; so H = G, which means |G| = 2n. (This argument works even if G is odd, as then H is trivial.)

But now we can use the proposition — we have

G = G0 ⊃ G1 ⊃ · · · ⊃ Gk = {1}

where Gi/Gi+1
∼= Z/2Z for all i, and we can consider their fixed fields

R = F0 ⊃ F1 ⊃ · · · ⊃ Fk = E,

where Fi is the fixed field of Gi. Then we have [Fi+1 : Fi] = 2 for all i.

But it’s clear that C is the only quadratic extension of R, and C itself has no quadratic extensions (we can
check that every quadratic over C has a root, since we can extract square roots using the trigonometric form of
a complex number). So then G is {1} or Z/2Z, and E is R or C.

Next class, we’ll discuss the Galois group of extensions of finite fields. We’ll see that

Gal(Fqn/Fq) = Z/nZ,

which essentially follows from the fact that Fq = {x | xq = x} (we previously thought of these x as roots of a
polynomial, but we can now think of them as fixed points under the map t 7→ tq).

Student Question. How did we get that |G| = |H| (when showing |G| was a power of 2)?

Answer. By the Primitive Element Theorem (assuming EH ̸= F ), the extension EH/F is generated by one
element. We can consider the minimal polynomial of this element; the degree of the minimal polynomial is equal
to the degree of the extension. So the minimal polynomial has odd degree, which is a contradiction (since if it
has a root, it’s reducible).

It’s actually possible to avoid using the Primitive Element Theorem — if we take any element in EH , the degree
of its minimal polynomial has to divide the degree of the extension (by the fact that [K : F ] = [K : E][E : F ] for
a tower of extensions K/E/F ), and therefore has to be odd.
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