Lecture 35: Final Remarks

35 Final Remarks

35.1 Galois Theory in Finite Fields

We’ve seen that when F' is a number field (a finite extension of Q), the Galois group Gal(E/F') can be complicated.
But Q is only one of the primary fields — we can also consider finite extensions of F, for p prime (which are
the other primary fields). Then our base field is F' = F, where ¢ = p™ for some m, and a finite extension of F'
is & = Fyn for some n.

In this case, the answer is much simpler, and we’ve essentially seen it already:

Theorem 35.1
The extension Fn /F, is always a Galois extension; and Gal(Fy» /IF,) is cyclic and generated by the Frobe-
nius automorphism Fr, : z — z.

Proof. We’ve seen earlier that
(a+b)?=a? 409,

so Fry is compatible with the field operations; and it’s also one-to-one. So Fry : Fgn — [Fyn is a field automorphism.
Its fixed points are exactly the set {x | ¢ = x} = F,. So then we know Fr, € Gal(Fy /F,).

But we can also compute its order — we know Fry : z z9". For a = n, we have that Frg» = Id (since 9" =z
for all z € Fyn). Meanwhile, if 1 < a < n, not all x € F,» satisfy 27 = 2. So then ord(Fr,) = n. This means

Gal(Fgn /Fq) D Z/nZ

(considering the cyclic group generated by Fr,). But we have [Fy» : F;] = n, so the Galois group cannot have
more than n elements; so we must have Gal(Fy» /F,) = Z/nZ. O

Note 35.2

Properties of the Frobenius automorphism are useful when doing algebraic geometry in fields of positive
characteristic. In order to count the number of solutions to a system of polynomial equations over F,, one
first looks at solutions over its algebraic closure F' = | JFyn (a bigger field in which every polynomial has a
root, similarly to C). Then solutions in (F,)™ are the fixed points of Fr, : (z1,...,2,) — (2f,...,2%). One
uses intuition from a similar problem in topology, of counting the number of fixed points of an automorphism
of some geometric shape X . (This relates to the Lipschitz Fixed Points Theorem and the Weil conjectures.)

35.2 Further Directions

Finally, we’ll go over the topics that have been covered in this class, and where they can lead.

35.2.1 Representation Theory
The first topic we discussed is the representations of finite groups. The class 18.715 develops this topic.

We've actually already seen the main general structural theorems about the representations of an abstract
finite group; but one further direction is the classification and computation of the characters of irreducible
representations for a specific group — in particular, S,,. We know the number of irreducible representations
equals the number of conjugacy classes. But in this case, it’s actually possible to index both by the same set
— the set of partitions of n (ways to write n = ny + - -+ 4+ ng, where order doesn’t matter). It turns out that
irreducible representations are in bijection with partitions. Meanwhile, partitions are also in bijection with the
cycle type of a permutation (which determines the conjugacy class) — in order to describe a conjugacy class,
we’re interested in the lengths of the cycles.

Example 35.3
The conjugacy class of (12)(345) can be described by the partition 5 = 3 + 2.

Partitions are usually depicted by Young diagrams, where the length of rows correspond to the summands.
(These are also studied in classes on combinatorics.)
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Example 35.4
The Young diagram

corresponds to the partition 11 = 6 + 5.

As an example of how this correspondence can be used, recall a problem we saw earlier:

Example 35.5
For which n is 7 ® sgn = 7?7 (Here 7 is the tautological representation of S,,, where elements of S,, act on
the space with 1 + - - - + x,, = 0 by permuting coordinates.)

Earlier, we solved this directly by looking at the characters, but there’s a nice way to solve it by looking at
Young diagrams as well.

In this correspondence, the Young diagram

HEEER

(corresponding to n = n) corresponds to the trivial representation, and the Young diagram

(corresponding ton =141+ --- + 1) corresponds to sgn. Meanwhile, the Young diagram

[ [ ]

(corresponding to n = (n — 1) + 1) corresponds to 7. More generally, p ® sgn corresponds to the transpose of
the diagram for p. So the fact that 7 ® sgn = 7 exactly when n = 3 corresponds to the observation that the
transpose of

(where we reflect it over the diagonal) is itself if and only if n = 3.

35.2.2 Compact Lie Groups

Another direction in which representation theory can lead is compact Lie groups:

Definition 35.6
A compact Lie group is a closed compact subgroup in GL(n,C).

Example 35.7
One compact Lie group (which we’ve mentioned earlier) is SU(2). Some other compact Lie groups include
U(n), SU(n), SO(n), and the quaternionic unitary groups Sp(n) (which we haven’t seen before).

It turns out that there’s a classification of all such groups, along with some exceptional ones — Gso, Fy, Eg,
FE7, and Eg. The largest exceptional group, Eg, has dimension 248. This can be studied further in 18.745 and
18.755.

For each such group, there’s also a classification of its irreducible representations.
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Fact 35.8
The irreducible representations of U(n) are indexed by sequences of n integers dy > -+ > d,.

Example 35.9
Irreducible representations of SU(2) are indexed by one nonnegative integer n. To n, we assign the action
on the space V,, of homogeneous polynomials of degree n in two variables (so V,, has a basis consisting of

™, 2"y, ..., y", and has dimension n + 1).

This connects to a more familiar situation — recall that SU(2)/{£1} = SO(3) (which is the group of rotations
in 3-space). Then V,, for even n comes from a representation of SO(3).

This has an application to the spectrum of a hydrogen atom and the structure of the periodic table. The rows
of the table have lengths 2, 8, 8, 18, 18, 32, 32 — these are 2n? for small n, and n? arises as 1 +3+---+ (n — 1),
where the odd numbers come from the dimensions of irreducible representations of SO(3).

The connection comes from an optional problem set problem on greedy monsters — we had monsters at the
vertices of a cube, each with some amount of gold; and at every minute, the gold of each monster is equally
distributed among its neighbors. The question asked us to understand how this process behaves over a long
time. This is a special case of the Laplace operator on a graph:

Definition 35.10
Given a graph with certain weights assigned to the vertices, the Laplace operator redistributes the weight
of every vertex equally among its neighbors.

This is the discrete version of the Laplace operator, but there’s also a continuous version — for functions on
R?, take the differential operator

d? d?

= — 4+ —.

dz? = dy?
This measures the extent to which the function is not harmonic — it vanishes exactly on functions whose value
at each point is the average of the values on a small circle around it. (This is a continuous analog of the greedy
monsters case, where our operator vanishes when the weight of each point equals the average weight of its
neighbors.)

For symmetric graphs (such as the cube, in the case of the greedy monsters), we can understand the eigenvalues
and eigenvectors of the operator using representation theory (as we did in the optional problem). Meanwhile,
for the Laplace operator of the sphere S2, its eigenvalues can be analyzed using representation theory of SO(3);
these eigenvalues then have connections to quantum physics.

Another important identity we saw was that

Gl = _d;,

where the d; are the dimensions of irreducible representations. This fact came from looking at the regular
representation C[G], and decomposing it as

cle) =Pt
But we have V;% 2 End(V;), where we can think of End(V;) as Matg, (C) (this is because V; is d;-dimensional,

so specifying an endomorphism (or linear operator) on V; is the same as specifying the d; images of the basis
vectors). So we can write

ClG]) = @ End(V;).

This generalizes to compact groups — except that if looking at functions, a typical function can’t be written as
a sum of elements, but rather as an infinite series. So we instead have

€(6) = D End(v))
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Example 35.11
If G = U(1) (which is just S* = {2 | |z2| = 1}), then irreducible representations are indexed by integers.
This turns into the theory of Fourier series, as mentioned earlier.

The generalization of this case is harmonic analysis, where functions on the group are written in terms of an
infinite series. In fact, to understand the spectrum of the Laplacian on the sphere, we consider this decomposition
for functions on SO(3).

But if we don’t work with infinite series, and just consider @ End(V;), then we arrive at the notion of an
algebraic group — we have

MSpec(@ End(V;)) = G,
where G¢ is an algebraic group (for example, GL(n,C)). This is studied in 18.737.

Beyond the theory of representations of compact groups, one can also work with non-compact Lie groups
(closed but not necessarily compact subgroups of GL(n, C)), such as SL(n,R). Then most representations are
infinite-dimensional. This is also studied in 18.755 and its continuations.

35.2.3 Factorization

We’ve seen a story about factorization in quadratic number fields. This is considered closer to number theory
than abstract algebra — factorization in Z(v/d) generalizes to rings of algebraic integers in number fields. This
is studied in number theory, by using the action of the Galois group. A typical question is to start with a prime
ideal in a number field, and try to understand how it decomposes in a larger number field.

An example of this is quadratic reciprocity, a classical result in number theory (which is explained in 18.781).
Part of the theorem is the following:

Example 35.12
If p and ¢ are primes with p = 1 (mod 4), then p is a square mod ¢ if and only if ¢ is a square mod p.

This is an important result with many proofs, including elementary ones. But there’s also a proof that generalizes
and connects well to algebraic number theory, and in fact it relates to ideas we’ve seen in class. The idea is to
consider Q((,), where {, = exp(2mi/p). As proved in class, this contains Q(1/£p). By analyzing the factorization
of ¢ in these two fields, and looking at it in two ways using the description of the Galois group, one can obtain
this beautiful statement. In number theory, this is generalized to higher reciprocity laws.

35.2.4 Rings and Modules

In rings and modules, one of the main theorems we saw was the classification of finitely generated modules over
a PID. The class 18.705 on commutative algebra develops this much further.

Commutative algebra is also closely related to algebraic geometry. For example, if we have a ring R =
Clz1,...,2n]/I, we can consider its maximal spectrum MSpec(R) C C".

Then for an R-module M and = € MSpec(R), we get a C-vector space — x corresponds to a maximal ideal m,,,
and R/m, = C (as we proved using Nullstelensatz). So M/m,M is a C-vector space (which is finite-dimensional
if M was finitely generated). This gives a family of vector spaces indexed by = € MSpec(R). This idea is also
studied in topology and differential geometry, namely vector bundles; and this analogy (connecting it to ideals
in commutative algebra) is important.

35.2.5 Galois Theory

We saw a story relating groups to extensions; the key examples were extensions of number fields and of C(¢)
(the latter was just sketched, but it’s still an important example).

Historically, at about the same time Galois worked on this, Abel was thinking about the same problem, but
more in terms of geometry. Galois theory as presented here allows us to say that for a specific polynomial
equation, there’s no formula for the solution in radicals. On the other hand, Abel’s work considered universal
formulas, and showed that they relate to Riemann surfaces (which relate to complex analysis).
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