
Lecture 5: Characters and Schur’s Lemma

5 Characters and Schur’s Lemma

5.1 Review
Last time, we stated the Main Theorem about characters.

Theorem 5.1
Let G be a finite group, and let ρ1, . . . , ρn be a full list of irreducible representations up to isomorphism.

(a) The characters χρ0 , . . . , χρn form a basis for the space of class functions on G.

(b) The basis formed by χρ0 , . . . , χρn is orthonormal.

(c) If di = dim ρi for each i, then
∑
d2i = |G|, and each di divides |G|.

Today we will look at some ways this can be used to describe characters, and begin developing the tools needed
to prove it.

5.2 Character Tables
The information about characters can be put into a table, known as a character table, where the columns cor-
respond to conjugacy classes and the rows to irreducible representations (this is enough to record all information
about the irreducible characters, since characters are constant on each conjugacy class).

A general observation we can make is that χρ(1G) = dim ρ for any representation ρ — this is because χρ(G) is
the identity matrix of dimension dim ρ, which whose trace is dim ρ.

Example 5.2
Consider the group Z/4Z. Since it’s an abelian group, each conjugacy class has one element. As we’ve seen
before, the irreducible representations of Z/4Z are all one-dimensional, and must send 1 to any fourth root
of unity. The choice of which one determines the rest of the representation, since 1 is a generator.

Using χj to denote the character of the representation where 1 7→ ij (so χ0 is the trivial representation),
we have the following table:

0 1 2 3

χ0 = 1 1 1 1 1
χ2 1 −1 1 −1
χ1 1 i −1 −i
χ3 1 −i −1 i

A very similar story occurs for Z/mZ for any integer m — the irreducible representations of Z/mZ are all
one-dimensional and send 1 to a mth root of unity, so a full list of irreducible characters is

χa : x 7→ e2πax/m

for all 0 ≤ a ≤ m− 1.

One observation about this table is that the product of any two rows is another row in the table. This isn’t a
coincidence — if χ and χ′ are one-dimensional characters, then χχ′ is again a one-dimensional character (since
for a one-dimensional representation, χρ is essentially the same as ρ, and is therefore a homomorphism).

Student Question. If you multiply two characters which are not one-dimensional, do you still get another
character?

Answer. Yes — we’ll actually come across a construction for this in a later class, when proving the Main
Theorem! But the new character will generally not be irreducible, even if the two characters we started with were
— so it won’t generally be an entry in the character table.

The fact that the product of two one-dimensional characters is also a character can be used to check orthogonality
quite directly:
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Proposition 5.3
Any two one-dimensional characters are orthogonal.

Proof. For two one-dimensional characters χ and χ′, we want to show that

∑
g∈G

χ′(g)χ(g) =

{
|G| if χ = χ′

0 otherwise.

We have χ(g) = χ(g)−1 since χ(g) is a root of unity. Now define the one-dimensional representation ψ = χ′χ.
Then ψ(g) = χ′(g)χ(g)−1 for each g, so ψ is trivial (meaning ψ(g) = 1 for each g) if and only if χ′ = χ.

So now proving orthogonality reduces to a statement about one representation, instead of two — we want to
check that ∑

g∈G
ψ(g) =

{
|G| if ψ is trivial
0 otherwise.

The first case is obvious — if ψ is trivial, we’re just summing |G| copies of 1. For the second case, we use
a familiar trick — let S =

∑
g∈G ψ(g), and pick some g0 ∈ G such that ψ(g0) ̸= 1 (which exists since ψ is

nontrivial); let ψ(g0) = λ. Now we have

λS =
∑
g∈G

ψ(g0)ψ(g) =
∑
g∈G

ψ(g0g) =
∑
g∈G

ψ(g) = S,

since as g runs over G, so does g0g. So then λS = S for some λ ̸= 1, which means S = 0.

Example 5.4
To make the above argument a bit more concrete, consider the case where our group is Z/nZ and ψ is the
representation x 7→ e2πix/n. Then the set of points ψ(g) form a regular n-gon, and our claim is that the
center of mass of this regular n-gon is the origin. Our proof corresponds to the fact that rotating the n-gon
by 2π/n preserves the n-gon and therefore its center of mass; but it must also rotate the center by 2π/n,
and the only point fixed by a 2π/n rotation is the origin.

2π/n

Proposition 5.5
If G is abelian, then every irreducible representation is one-dimensional.

This has several proofs.

Proof 1. We use the Main Theorem. Let d1, . . . , dn be the dimensions of the irreducible representations of G.
First, there must be exactly |G| irreducible representations, since the dimension of the space of class functions
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is |G| (every function is a class function, as every element is in its own conjugacy class). So we have n = |G|.
But then

d21 + d22 + · · ·+ d2n = |G| = n.

Since the di are positive integers, they must all be 1.

Proof 2 (Sketch). We’ve already proven this for cyclic groups — we’ve proven that for Z/nZ, all irreducible
representations are one-dimensional and are given by ρk : 1 7→ e2πik/n.

In a much later class, we’ll see that every finite abelian group is isomorphic to a product of cyclic groups,
meaning that G = G1×· · ·×Gn where each Gi is of the form Z/miZ. From this, we can deduce the proposition
for all abelian groups. One way to do so is to note that if we take any list of irreducible characters χ1,
. . . , χn of G1, . . . , Gn (which are all one-dimensional), we can define a one-dimensional character of G as
χ(g1, . . . , gn) = χ1(gn) · · ·χn(gn). Since each Gi has |Gi| irreducible characters, this gives us |G1| · · · |Gn| = |G|
one-dimensional characters of |G|. But we know there are exactly |G| irreducible characters, so this list must
contain all of them.

Proof 3. Finally, here is a proof that doesn’t rely on as much theory.

Claim. If we have a collection of pairwise commuting matrices, each of which is diagonalizable, then we can
diagonalize all of them simultaneously.

Proof. The key point is that if AB = BA, then if v is an eigenvector of A with Av = λv, then

A(Bv) = BAv = B(λv) = λ(Bv),

so Bv is also a λ-eigenvector, and so the λ-eigenspace of A is B-invariant.

Then using this, we can take the first matrix A, and split our vector space as a direct sum of the eigenspaces of
A. Now no matter what basis we choose for those eigenspaces, A will be diagonalized (since it acts as a scalar
matrix on each space). Meanwhile, since these eigenspaces are each invariant under all the other matrices, it’s
enough to diagonalize our remaining set of matrices on each of those spaces. So we can finish by using induction
on the number of matrices.

In our situation, we know all matrices ρg are diagonalizable (since they must have finite order). So by the claim,
it must be possible to diagonalize them simultaneously; this then splits V as a direct sum of one-dimensional
subspaces which are invariant under all ρg, and therefore ρ is a direct sum of one-dimensional representations.

Now let’s calculate the character tables for a few symmetric groups. In the first character table for Z/4Z, we
already knew what all the irreducible representations (and their characters) were. But here we’ll see that we
can actually use the Main Theorem to deduce information about the characters — for example, knowing that
we have listed all irreducible characters, or even calculating their values.

Example 5.6
Find the character table of S3.

Solution. There are three conjugacy classes, with representatives 1, (12), and (123). Meanwhile, we’ve already
seen three irreducible representations — the trivial representation 1, the sign representation sgn, and the
representation τ , the two-dimensional subrepresentation of the permutation representation acting on V =
{(x, y, z) | x+ y + z} ⊂ C3.

The characters of the trivial and sign representations are easy to compute. For τ , we know that C3 = V ⊕
Span((1, 1, 1)t), and the permutation representation is trivial on Span((1, 1, 1)t), so if ρ denotes the permutation
representation on C3, then ρ = τ ⊕ 1. This means

χρ = χρ + χ1 = χρ + 1.

But χρ(σ) is just the number of fixed points of σ — this is because ρσ is the permutation matrix corresponding
to σ, so 1’s on the diagonal of ρσ correspond to fixed points of σ. This gives the following table:
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1 (12) (123)

1 1 1 1
sgn 1 −1 1
τ 2 0 −1

Since we’ve already found three irreducible representations, we know these are the only ones (since the number
of irreducible representations is the same as the number of conjugacy classes).

As an example of the orthogonality of the character,

⟨τ, τ⟩ = 1

6
(2 · 2 · 1 + 0 · 0 · 3 + (−1)(−1) · 2) = 1

6
(4 + 2) = 1.

Note that we have to keep track of how many group elements are in each conjugacy class, since we’re summing
over the entire group and not conjugacy classes — for example, there are two elements in the conjugacy class
of (123), which is why we multiply (−1)(−1) by 2.

Example 5.7
Find the character table of S4.

Proof. There are five conjugacy classes, with representatives 1, (12), (12)(34), (123), and (1234). There are a few
representations we already know — 1 and sgn are still irreducible representations, and so is τ , the permutation
representation acting on V = {(w, x, y, z) | w + x+ y + z = 0} ⊂ C4 (whose character we can compute in the
same way as we did for S3). So far, this gives us the following table:

1 (12) (12)(34) (123) (1234)

1 1 1 1 1 1
sgn 1 −1 1 1 −1
τ 3 1 −1 0 −1

We earlier mentioned that the product of one-dimensional characters is again a character. But we actually only
need one of the characters to be one-dimensional, not both of them; so χsgn · χτ is also an irreducible character,
of the representation denoted sgn⊗τ . Now there’s one remaining representation which we don’t know how to
describe (since there must be exactly five representations); denote that by ρ.

1 (12) (12)(34) (123) (1234)

1 1 1 1 1 1
sgn 1 −1 1 1 −1
τ 3 1 −1 0 −1

sgn⊗τ 3 −1 −1 0 1
ρ

In order to figure out the last row, first we can use the fact that
∑
d2i = |G| to calculate the dimension of ρ —

this gives
12 + 12 + 32 + 32 + (dim ρ)2 = 24,

so dim ρ = 2. This means χρ(1) = 2.

1 (12) (12)(34) (123) (1234)

1 1 1 1 1 1
sgn 1 −1 1 1 −1
τ 3 1 −1 0 −1

sgn⊗τ 3 −1 −1 0 1
ρ 2 a b c d

In order to calculate the remaining entries a, b, c, and d, we use the orthogonality relations. By using the fact
that ⟨χρ, χ1 − χsgn⟩ and ⟨χρ, χτ − χsgn⊗τ ⟩ are both zero, we can get that a = d = 0, and by using two other
orthogonality relations, we can get b = 2 and c = −1. So our answer is the following table:
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1 (12) (12)(34) (123) (1234)

1 1 1 1 1 1
sgn 1 −1 1 1 −1
τ 3 1 −1 0 −1

sgn⊗τ 3 −1 −1 0 1
ρ 2 0 2 −1 0

Although we were able to compute χρ without knowing what ρ is by using the Main Theorem, it’s also possible
to describe ρ explicitly. Note that the Klein 4-group K4 is a normal subgroup of S4, with S4/K4

∼= S3. This
means we have a homomorphism S4 → S3, and a homomorphism S3 → GL2(C) given by the representation τ
of S3. Composing these gives a homomorphism S4 → GL2(C), which is exactly the representation ρ.

5.3 Schur’s Lemma
Now we’ll start proving the Main Theorem, starting with orthogonality of characters. For that, we’ll need
Schur’s Lemma, which is quite important in its own right.

We’ve defined what one representation is, but we can also ask how to compare two representations. The way
to do this is by looking at G-equivariant maps between them:

Definition 5.8
Suppose ρ : G→ GL(V ) and ψ : G→ GL(W ) are (not necessarily irreducible) representations. Then define

HomG(ρ, ψ) = {f : V →W | f is a linear map such that f(ρg(v)) = ψg(f(v)) for all g, v}.

Such linear maps f are called G-equivariant.

Intuitively, HomG(ρ, ψ) is the space of linear maps (or homomorphisms) from V to W which are compatible
with the G-action — such maps f are said to intertwine the G-action.

Also, HomG(ρ, ρ) is also denoted as EndG(ρ); this is the space of G-equivariant endomorphisms (an endomor-
phism is a homomorphism from a space to itself).

Note that HomG(ρ, ψ) is a C-vector space — we can add two G-equivariant homomorphisms or scale one, and
get another G-equivariant homomorphism. We’ll see later how to think about it in terms of matrices; but for
now, we’ll prove the following important theorem about it:

Theorem 5.9 (Schur’s Lemma)
Let ρ : G → GL(V ) and ψ : G → GL(W ) be irreducible representations. Then HomG(ρ, ψ) is 0 if ρ ̸∼= ψ,
and is one-dimensional if ρ ∼= ψ.

In other words, the second statement can be written as EndG(ρ) = C · Id — any G-equivariant endomorphism is
scalar. It’s clear that every scalar map is a G-equivariant endomorphism, so the second part of Schur’s Lemma
states that these are the only ones.

Proof. Suppose f : V →W is a nonzero linear map which is G-equivariant. We’re now going to show that f is
an isomorphism; it suffices to show that it’s both surjective and injective.

First consider im(f); this must be a G-invariant subspace of W , since for any f(v) ∈ im(f), we have that
ψg(f(v)) = f(ρg(v)) is also in the image of f for any g. But since ψ is irreducible, the only G-invariant
subspaces are 0 and W itself; so since f is nonzero (and therefore its image is nonzero), its image must be the
entire space W ! So f is surjective.

Now consider ker(f). This is also a G-invariant subspace of V , since if f(v) = 0, then f(ρg(v)) = ψg(f(v)) = 0,
so ρg is also in the kernel for any g. But since ρ is irreducible, the only G-invariant subspaces are 0 and V ; and
the kernel cannot be V since f is nonzero, so the kernel must be 0. This means f is injective.

Therefore f is both surjective and injective, and is therefore an isomorphism. So we’ve shown that if there exists
a nonzero G-equivariant homomorphism, then we must have ρ ∼= ψ; this proves the first part of Schur’s Lemma.
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Now to prove the second part of Schur’s Lemma, assume ρ = ψ, so f is a map V → V . Then f must have some
eigenvalue λ. Now consider the map f − λ Id, where Id denotes the identity map; this is also a G-equivariant
endomorphism. We must have ker(f −λ Id) ̸= 0, since f has a λ-eigenvector (which must be in the kernel). But
since the kernel must be a G-invariant subspace, this implies that ker(f − λ Id) = V . Therefore f − λ Id is the
zero map, and f = λ Id. So the only G-equivariant endomorphisms are scalar maps.
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