
Lecture 7: Proof of the Main Theorem

7 Proof of the Main Theorem

7.1 Review: Orthonormality of Characters
Last time, we proved the orthonormality of characters of irreducible representations — if we have a finite group
G and ρ1, . . . , ρn is the full list of irreducible representations of G up to isomorphism, then if we use χi to
denote χρi , we have

⟨χi, χj⟩ =
{
1 if i = j

0 otherwise.

In order to prove this, we interpreted ⟨χi, χj⟩ as the trace of an averaging operator, acting on the space of linear
maps Matm×n(C) = HomC(Vi, Vj), where Vi and Vj are the vector spaces that ρi and ρj act on.

From orthonormality, we immediately get a few corollaries:

Corollary 7.1
Any representation ρ : G→ GL(V ) can be split as a sum of irreducibles as

ρ ∼=
⊕

ρni
i ,

where for each k,
nk = ⟨χρ, χk⟩.

Recall that last class, we saw a different formula for the ni, which was quite abstract — it involved the dimensions
of HomG(ρk, ρ). In contrast, this formula is quite concrete — it’s easy to calculate the pairings ⟨χρ, χk⟩.

Proof. We know ρ can be written in this form for some coefficients ni, by Maschke’s Theorem. But then

χρ =
∑

niχi,

so by linearity we have
⟨χρ, χk⟩ =

∑
ni⟨χi, χk⟩ = nk,

since orthonormality implies that ⟨χi, χk⟩ is 0 for i ̸= k and 1 for i = k.

Using this, we can get a few concrete results:

Example 7.2
The dimension of the space of invariant vectors in ρ is

1

|G|
∑
g∈G

χρ(g).

Proof. This dimension is the multiplicity of the trivial representation χ1 when we decompose ρ into a sum
of irreducibles, which is n1. This is because ρ acts trivially on the space of invariant vectors, by definition,
and so each basis vector corresponds to one copy of the trivial representation. But the character of the trivial
representation is χ1(g) = 1 for all g, so using Corollary 7.1, we have

n1 = ⟨χρ, χ1⟩ =
1

|G|
∑
g∈G

χρ(g).

Corollary 7.3
If ρ =

⊕
ρni
i as before, then

⟨χρ, χρ⟩ =
∑

n2i .

In particular, ρ is irreducible if and only if ⟨χρ, χρ⟩ = 1.
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Proof. Using linearity, we can expand

⟨χρ, χρ⟩ =
∑
i

∑
j

ninj⟨χi, χj⟩ =
∑

n2i ,

since again by orthonormality, ⟨χi, χj⟩ is 0 when i ̸= j and 1 when i = j. (Intuitively, if we have any pairing
and we take a basis of vectors which are orthonormal under that pairing — here, the χi — then it becomes the
usual pairing on Cn.)

The second statement is then clear because the ni are nonnegative integers, so the only way for their sum of
squares to be 1 is if one is 1 and the rest are 0.

7.2 The Regular Representation
We’ve already proved part of the main theorem — we’ve shown that the characters χi are orthonormal, which
means they are linearly independent. But to show that they form a basis for the space of class functions, we
also need to show that they span that space. To do this — and to prove the sum of squares formula stated
earlier as well — we’ll introduce the regular representation.

If G acts on a finite set X of n elements, then we can form a matrix representation of G of dimension n, where
G acts by permutation matrices — we index the basis vectors by elements of X, and for each g ∈ G, we map g
to the permutation matrix that describes how g acts on X.

Example 7.4
As we’ve seen earlier, Sn acts on the set {1, 2, . . . , n}. This gives a n-dimensional representation of Sn
— the permutation representation, where each permutation is mapped to its corresponding permutation
matrix.

Given a group G, there can be many interesting sets X that it acts upon. But there’s one set that we
automatically always have; namely, G itself. Every group G acts on itself by left multiplication, where an
element g ∈ G sends h 7→ gh. We can use this to form a representation of G of dimension |G|:

Definition 7.5
Let V be a vector space with basis {vh} indexed by elements h ∈ G. Then the regular representation
of G is the representation ρ : G → GL(V ) such that for all g ∈ G, ρg is the linear operator on V sending
vh 7→ vgh for all h ∈ G.

So in the regular representation, each g ∈ G is sent to the permutation matrix of how left multiplication by g
permutes the elements of G.‖

Example 7.6
In the group Z/3Z, operating (in this case the group operation is addition) on the left by 1 corresponds to
the permutation 0 7→ 1, 1 7→ 2, 2 7→ 0. So in its regular representation, 1 acts by the permutation matrix0 0 1

1 0 0
0 1 0

 .
‖For left multiplication, ρg1ρg2 = ρg1g2 , so ρ is a homomorphism. Using right multiplication rather than left multiplication,

which would send ρ′g : vh 7−→ vhg , would be a anti-homomorphism rather than a homomorphism. That is, ρ′g1ρ
′
g2

(vh) = vhg2g1 =
ρ′g2g1 (vh).
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Example 7.7
In S3, left multiplication by (12) swaps (1) and (12), swaps (23) and (123), and (13) and (132). So in the
regular representation, (12) acts by the block diagonal matrix

0 1
1 0

0 1
1 0

0 1
1 0

 ,

where the rows and columns are indexed by elements of S3 in the order (1), (12), (23), (123), (13), (132).

It’s clear from the definition that the regular representation has exactly one invariant vector up to scaling, the
sum of all basis elements. This is because if

∑
ahvh is an invariant vector, then we must have∑

ahvh = ρg

(∑
ahvh

)
=
∑

ahvgh

for all g ∈ G, which implies that ah = agh for all g and h, and therefore all ah are equal. In particular, the
regular representation is not irreducible unless G is trivial (the regular representation has an invariant vector,
so it must have the trivial representation in its decomposition).

Note 7.8
It’s also possible to think of elements of V as C-valued functions on G — instead of thinking of them as
linear combinations of abstract basis vectors, we can think of

∑
ahvh as the function mapping h 7→ ah for

all h ∈ G.

We’ll now use ρ to denote the regular representation.

Guiding Question
What can we say about the character of ρ and its decomposition into irreducibles?

This turns out to have a simple answer.

Proposition 7.9
The character of the regular representation is

χρ(g) =

{
|G| if g = 1

0 otherwise.

Proof. The trace of a permutation matrix is its number of fixed points (a permutation matrix consists only of
0’s and 1’s, and 1’s on its diagonal correspond to fixed points).

It’s clear that the permutation corresponding to 1 fixes all elements of G (since multiplication by 1 doesn’t
change any element), so χρ(1) = |G|. Meanwhile, for all g ∈ G other than 1, the permutation corresponding
to g has no fixed points — if h were a fixed point, then we would have h = gh, which implies g = 1. So then
χρ(g) = 0 for all g ̸= 1.

Using this, we can decompose ρ into a sum of irreducibles pretty easily, using Corollary 7.1 — since our character
has such a simple form, it’s not hard to compute its pairing with anything.
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Proposition 7.10
The regular representation decomposes into irreducibles as

ρ ∼=
⊕

ρdii ,

where di denotes the dimension of ρi.

Proof. By Corollary 7.1, we know ρ =
⊕
ρni
i , where

ni = ⟨χi, χρ⟩ =
1

|G|
∑
g∈G

χi(g)χρ(g) =
1

|G|χi(1) · |G| = χi(1)

(all terms involving g ̸= 1 disappear, since χρ(g) = 0). But ρi(1) is the identity matrix of dimension di, which
has trace di — so χi(1) = di, which means ni = di as well.

Example 7.11
In an abelian group, all dimensions of irreducible representations are 1, so ρ ∼= ρ1 ⊕ · · · ⊕ ρn.

From this, we can immediately deduce the sum of squares formula stated in the main theorem.

Proposition 7.12
If the irreducible representations of G have dimensions d1, . . . , dn, then we have

|G| = d21 + · · ·+ d2n.

Proof. We can compare the dimensions on the two sides of Proposition 7.10. On the left-hand side, we have
dim(ρ) = |G|. Meanwhile, on the right-hand side, for each i we have di copies of ρi, which itself has dimension
di — this contributes d2i to the dimension (since when we take the direct sum of two representations, we add
their dimension). So then

|G| = dim(ρ) = dim
(⊕

ρdii

)
=
∑

d2i ,

which gives the desired equality.

7.3 Span of Irreducible Characters
Finally, we’ll again use the regular representation to prove that the characters of irreducible representations span
the space of class functions. We know that these characters are linearly independent (since they’re orthonormal),
so it will then follow that they form a basis for the space of class functions (the first statement of our main
theorem).

In order to prove this, we’ll show that any class function can be written in the following form:

Proposition 7.13
For any class function f , we have

f =
∑

⟨f, χi⟩χi.

Note that we already know this statement is true when f is the character of any representation. More generally,
if we can write f =

∑
niχi, then by orthonormality we know that ni = ⟨f, χi⟩ for each i. So Proposition 7.13

essentially tells us that this formula really works for all class functions. Note that the coefficients ⟨f, χi⟩ are
all in C, so Proposition 7.13 implies that the χi span the space of class functions — this proposition would
follow immediately if we already knew that the χi span the space of class functions, but we can actually use it
to prove that statement instead.

Proposition 7.13 is equivalent to the following statement:
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Proposition 7.14
If f is a class function and ⟨f, χk⟩ = 0 for all k, then f is the zero function.

First, to make this equivalence between Proposition 7.13 and Proposition 7.14 more explicit, we’ll write out the
details of how the second implies the first. (For the other direction, the first implies the second because if the
χi do span the space of class functions and f has zero pairing with each one, then f also has zero pairing with
itself. But the space of class functions under ⟨−,−⟩ is a Hermitian space, meaning that ⟨f, f⟩ > 0 unless f = 0.)

Proof of Proposition 7.13. Given any class function, we can define f∗ =
∑⟨f, χi⟩χi. But then f − f∗ has zero

pairing with each χk, since

⟨f − f∗, χk⟩ = ⟨f, χk⟩ −
〈∑

⟨f, χi⟩χi, χk
〉

= ⟨f, χk⟩ −
∑

⟨f, χi⟩⟨χi, χk⟩
= ⟨f, χk⟩ − ⟨f, χk⟩
= 0

by orthonormality. (Intuitively, since f∗ is a linear combination of the χi, the pairing of f∗ with each χk is the
coefficient of χk, which we constructed to be the same as the pairing of f with χk.) But using Proposition 7.14,
the only class function that has zero pairing with every χk is the zero function, so we must have f − f∗ = 0,
and therefore f = f∗.

In order to prove Proposition 7.14, we’ll first introduce a bit of convenient notation:

Definition 7.15
For a function f : G→ C (not necessarily a class function) and a representation ρ : G→ GL(V ), define

ρ(f) =
∑
g∈G

f(g)ρg.

Note that ρ(f) is in End(V ) (or equivalently, in Matn×n(C) if we write down a basis and use matrix represen-
tations), since each ρg is in End(V ) and the coefficients f(g) are scalars. We can think of this definition as
extending the definition of ρ to linear combinations of group elements (in the obvious way), instead of just the
group elements themselves — in this interpretation, the function f stores the coefficient of each group element
in the linear combination.

We can make a few observations about this definition:

Lemma 7.16
For any representation ρ and function f , we have Tr ρ(f) = ⟨χρ, f⟩.

Proof. This follows directly from the linearity of trace — plugging in the definitions and using linearity, we have

⟨χρ, f⟩ =
∑
g∈G

(χρ(g)f(g)) =
∑
g∈G

(f(g) Tr ρg) = Tr

∑
g∈G

f(g)ρg

 = Tr ρ(f).

(The reason we have f and not f here is because we conjugate the second element of the pairing.)

Lemma 7.17
If f is a class function, then ρ(f) ∈ EndG(ρ).

Proof. Recall that class functions are functions which are invariant under conjugation, meaning that for each
conjugacy class, they take the same value on all its elements.
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But this means ρ(f) must be invariant under conjugation as well — more explicitly, for any g ∈ G, we have

ρgρ(f)ρ
−1
g =

∑
h∈G

f(h)ρgρhρ
−1
g =

∑
h∈G

f(h)ρghg−1 =
∑
h∈G

f(h)ρh = ρ(f),

since the new sum just permutes elements within each conjugacy class, and f(ghg−1) = f(h) for all h. We can
rearrange this to

ρgρ(f) = ρ(f)ρg

for all g ∈ G, so ρ(f) is indeed G-equivariant.

Using these observations, we can now prove our claim, that the only class function f which has zero pairing
with every χi is the zero function.

Proof of Proposition 7.14. For each i, we are given that ⟨χi, f⟩ = 0, so by Lemma 7.16 we also have

Tr ρi(f) = 0.

But we also know that ρi(f) ∈ EndG(ρi). And by Schur’s Lemma (since ρi is irreducible), the only elements of
EndG(ρi) are scalar matrices! So then ρi(f) is a scalar matrix with trace 0; this means it’s the zero matrix.

So now we know that ρi(f) is the zero matrix for all irreducible representations. But by Maschke’s Theorem,
every representation is the direct sum of irreducible representations — so this means ρ(f) is the zero matrix
for any representation ρ. (If we write ρ as a direct sum of irreducibles ρi, then ρ(f) is the corresponding direct
sum of the matrices ρi(f), and a direct sum of zero matrices is also the zero matrix.)

Now we’d like to use this to conclude that f itself is 0. To do so, we can take ρ to be the regular representation.
It turns out that we can essentially just read off the function by looking at its action in the regular representation
— in particular, f acts on the basis vector v1 as

ρ(f)(v1) =
∑
g

f(g)ρg(v1) =
∑
g

f(g)vg.

Since ρ(f) is the zero map, then the right-hand side must be zero as well; so f(g) = 0 for all g ∈ G.

This concludes our proof of the Main Theorem — we have proven that the irreducible characters χi are
orthonormal and form a basis for the space of class functions, and the dimensions of the irreducible representations
di satisfy

∑
d2i = |G|. The only remaining statement which we have not proven is that di divides |G| for each

i. We will not discuss this proof in class, but it is posted on Canvas; in these notes, a writeup of this proof is
included in the appendix.

7.4 Generalizations to Compact Groups
We’ve worked with representations of finite groups, but much of this generalizes to compact subgroups of GLn(C),
such as U(n) and O(n). In this case, we consider continuous representations.

Example 7.18
Consider U(1) = {z ∈ C× | |z| = 1}. The irreducible representations are all one-dimensional (as in the finite
case, this has to do with the fact that the group is abelian), and are indexed by integers, where ρn : z 7→ zn.

All functions f : U(1) → C are class functions, and we can think of such a function as a function f : R → C
which is 2π-periodic (by thinking of U(1) as the unit circle). Then if we try to decompose such a function
f in the same way as Proposition 7.13, we’ll get its Fourier series — under some reasonable conditions on
f (in particular, here we require it to be continuous), the expression

∑
χ⟨f, χ⟩ ends up being the Fourier

series of f .
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