
Lecture 8: Rings

8 Rings
We’ll now discuss the second main topic of this course: rings.

Guiding Question
Groups have only one operation, but lots of familiar sets (Z,R,C,Q) have two operations: addition and
multiplication. How can we generalize the idea of sets with two operations, rather than one?

8.1 What is a Ring?
Informally, a ring is a set of elements which can be added and multiplied, so that the natural properties we
would expect of addition and multiplication all hold.

Example 8.1
The familiar sets Z,Q,R, and C are rings.

Example 8.2
There are various rings between Z and Q: for example,

Z[1/2] :=
{
a/2k | a, k ∈ Z

}
is a ring. Similarly, the Gaussian integers

Z[i] = {a+ bi | a, b ∈ Z}

and
Q[

√
2] = {a+ b

√
2 | a, b ∈ Q}

are rings. So is
Z[ζ] =

{
a0 + a1ζ + · · ·+ an−1ζ

n−1 | ai ∈ Z
}
,

where ζ is some nth root of unity.

We can now state the formal definition of a ring:

Definition 8.3
A ring R is a set with two binary operations R × R → R, written as + and · (and called addition and
multiplication), which satisfy the following axioms:

1. (R,+) is an abelian group: addition is associative and commutative, there is an additive identity 0R
such that 0R + a = a for all a ∈ R, and every element has an additive inverse.

2. Multiplication is also associative and commutative, and there is a multiplicative identity 1R. (In other
words, under multiplication, R is a semigroup — a group without the condition that every element
has an inverse.)

3. Addition and multiplication satisfy distributivity : for all a, b, c ∈ R, we have

a(b+ c) = ab+ ac.

In this class, we’ll use “ring” in this sense; but usually a ring satisfying this definition is called a commutative
unital ring. In defining a general ring, one can drop the requirement of commutativity of multiplication, or the
existence of 1R. If every condition holds except for ab = ba — and we add distributivity in the other direction
as well, meaning (b+ c)a = ba+ ca — then R is called a noncommutative ring.

Example 8.4 (Matrices)
The ring of matrices Matn×n(C) is a noncommutative ring, since matrix multiplication is noncommutative
(and all the other axioms are satisfied). Similarly, End(V ) for a vector space V is a noncommutative ring.
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Example 8.5 (Group Ring)
If G is a group, then take the vector space with basis vectors vg for g ∈ G (note that this is the vector
space acted on by the regular representation). Clearly, addition is already defined; and multiplication can
be defined in the natural way, as

vgvh = vgh.

Then this gives the group ring, which is noncommutative if G is nonabelian.

From now on, all rings will be commutative as in the definition, unless stated otherwise.

8.2 Zero and Inverses
The following proposition confirms a property that we would like rings to have.

Proposition 8.6
In any ring R, 0R · a = 0R for all a ∈ R.

Proof. Pick some x ∈ R. Then, since 0R + x = x, we have

xa = (0R + x)a = 0Ra+ xa.

We can cancel out xa (since R is an abelian group under addition), so 0R = 0Ra.

Corollary 8.7
The additive identity 0R cannot have a multiplicative inverse unless 0R = 1R. (In other words, division by
0 is only possible when 0 = 1.)

The axioms do not require that 0R ̸= 1R. But if 0R = 1R, then for any x ∈ R,

x = x · 1R = x · 0R = 0R.

So R must be a one-element ring; there’s only one binary operation on a set with one element, which does
satisfy the axioms. This ring is called the zero ring; it is a legitimate but trivial example. In all other cases,
0R ̸= 1R, as we would expect.

Definition 8.8
A (nonzero) ring where every nonzero element has a multiplicative inverse is called a field.

Note that by definition, the zero ring is not a field.

Example 8.9
The familiar sets Q, R, and C are fields.

Example 8.10
The integers Z do not form a field, since most numbers do not have inverses. For the same reason, the
Gaussian integers Z[i] are not a field either. For example, 2 is not invertible in either ring.

Example 8.11
The integers modulo n, denoted Z/nZ, form a field if and only if n is prime (since in general, a is invertible
mod n if and only if a and n are coprime).

More examples of rings (which are not fields) come from functions:
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Example 8.12
The set C[x], consisting of polynomials in one variable with complex coefficients, is a ring. The set C∞(R),
consisting of real-valued functions which are continuous and infinitely differentiable, is also a ring.

In some sense, you can think of fields as a generalization of numbers, and more general rings as generalizations
of functions.

8.3 Homomorphisms
When studying groups, one of the most powerful tools comes from thinking about mappings between groups.
In particular, homomorphisms, which are functions that respect the group operation, and their kernels/images
provide lots and lots of information about groups.

Guiding Question
How can we formalize the idea of "functions between rings that behave nicely with respect to addition and
multiplication"?

Similarly to the path we took when studying groups, we can now define a ring homomorphism.

Definition 8.13
A ring homomorphism from R to S is a map φ : R→ S such that:

1. φ(a+ b) = φ(a) + φ(b) for all a, b ∈ R;

2. φ(ab) = φ(a)φ(b) for all a, b ∈ R;

3. φ(1R) = 1S .

Example 8.14
The mapping Z → Z/nZ given by a 7→ a (where a denotes a mod n) is a ring homomorphism.

Why is it not necessary to require that φ(0R) = 0S? In fact, it is implied by the other axioms, because additive
inverses exist!

Proposition 8.15
For a ring homomorphism φ : R→ S, it must be the case that φ(0R) = 0S .

Proof. Using the first property, φ(a) = φ(a + 0R) = φ(a) + φ(0R), and so adding −φ(a) to both sides gives
0S = φ(0R).

On the other hand, because there are not necessarily multiplicative inverses, the property φ(1R) = 1S must be
explicitly written. In fact, there are examples of maps compatible with + and · (meaning they satisfy the first
two properties) that have φ(1R) ̸= 1S .

Example 8.16
Let R be the zero ring, and S be any nonzero ring (for example, Z). Then take the map 0R 7→ 0S . This is
compatible with the additive and multiplicative structure of the two rings; but since 1S ̸= 0S , it is not a
ring homomorphism. (There exist less trivial examples as well.)

If φ : R → S is one-to-one and onto (that is, φ is a bijection), then it is possible to check (as in the case of
group homomorphisms) that the inverse bijection is also a homomorphism.

Definition 8.17
A bijective homomorphism is called an isomorphism.
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If φ is one-to-one but not onto, then φ is an isomorphism from R to its image, so it identifies R with a subring
of S:

Definition 8.18
A subring S of R is a subset which is closed under addition, taking additive inverses, and multiplication,
and contains 1R.

Meanwhile, if φ is not one-to-one, then we can think about its kernel

ker(φ) = {a ∈ R : φ(a) = 0}.
(This is the same definition as we saw with groups.) If φ is not one-to-one, then ker(φ) is nontrivial.

Guiding Question
What information can be gained from ring homomorphisms with nontrivial kernel?

The kernel must be an additive subgroup of S. But it turns out that it must also be compatible with multiplication
in some ways; this brings us to the concept of ideals.

8.4 Ideals

Definition 8.19 (Ideal)
An ideal of R is a subset I ⊂ R such that I is an additive subgroup of R, and for any x ∈ I and a ∈ R, we
have ax ∈ I.

So an ideal isn’t just closed under multiplication, it’s in fact closed under multiplication by any element in R.

The kernel of a ring homomorphism is necessarily an ideal — if φ(x) = 0, then for any a ∈ R, we have

φ(ax) = φ(a)φ(x) = 0.

Example 8.20
For any n ∈ Z, the subset nZ (consisting of multiples of n) is an ideal. More generally, if R is any ring and
a an element of R, then aR = {ax | x ∈ R} is an ideal.

In fact, this is an important example of an ideal, as we’ll see later, so it has a name:

Definition 8.21 (Principal Ideal)
For an element a ∈ R, the ideal aR is called a principal ideal, and denoted (a).

Any additive subgroup of Z is cyclic, i.e., of the form nZ. This means every ideal of Z is principal (since every
ideal is an additive subgroup). However, in a general ring, not every ideal will be principal.

More generally, we can consider picking several elements:

Definition 8.22
For elements a1, . . . , an ∈ R, the set of linear combinations{∑

aixi | xi ∈ R
}

is an ideal of R, denoted as (a1, . . . , an); this is called the ideal generated by a1, . . . , an.

Note that (a1, . . . , an) is the smallest ideal containing all of a1, . . . , an (as it is an ideal, while all elements∑
aixi must be in the ideal by the axioms).

Ideals in rings are in some sense analogous to normal subgroups in groups (in particular, both arise as the kernel
of a homomorphism), and we can take quotients in a similar way as well:
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Proposition 8.23 (Quotient Ring)
Let R be a ring and I ⊂ R an ideal. Since I is a normal subgroup of R under addition (as both are
abelian groups), we can construct the quotient R/I of additive groups. Then R/I is in fact a ring (with
multiplication defined in the natural way — the product of the cosets corresponding to x and y is the coset
corresponding to xy), called the quotient ring.

Proof. For each x ∈ R, we use x to denote the coset x+ I.

We first need to check that multiplication is well-defined, meaning that if x is represented by two elements x1
and x2, then using either representative to calculate x · y will give us the same result. But we have x1 − x2 = a
for some a ∈ I, which means

x1y − x2y = ay ∈ I

as well (since I is closed under multiplication by any element y ∈ R), so x1y and x2y are also in the same coset.
So the product of two cosets doesn’t depend on our choice of representatives, which means multiplication really
is well-defined.

As in the case of groups, once we know that multiplication is well-defined, it is easy to check that all the ring
axioms are satisfied by R/I.

Without going into detail, replacing “group” by “ring” and “normal subgroup” by “ideal,” the story for rings is
extremely similar to that for groups. For example, if φ is a homomorphism, then there is an isomorphism

R/ ker(φ) ∼= im(φ).

Additionally, for an ideal I ⊂ R, there is a bijection between ideals in R/I and ideals in R containing I (this is
essentially the Correspondence Theorem for rings).

Example 8.24
For R = Z and I = nZ, we have R/I = Z/nZ (where Z/nZ denotes the integers mod n) as rings, not just
groups. This is essentially the fact that multiplication of residues mod n is well-defined, not just addition.
(This is where the notation Z/nZ comes from — to obtain the integers mod n, we’re quotienting out the
ring of integers by the ideal nZ.)
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