
Lecture 9: Building New Rings

9 Building New Rings

9.1 Review
Last time, we introduced the idea of rings (where we can both add and multiply) and their ideals. As an aside,
the term ring first appeared at the end of the 19th century in works by Hilbert; it’s unclear why exactly he
chose this term, but in the original German, the word essentially means a group of things coming together.
Meanwhile, the term ideal comes from “ideal divisors” (we’ll see later what this means).

As we saw earlier, ideals in rings work similarly to normal subgroups in groups. For an ideal I ⊂ R, we can
construct the quotient ring R/I, and analogous versions of the theorems from group theory apply here as well.
However, note that unlike the case of normal subgroups in groups, an ideal is generally not a subring. This is
because it doesn’t usually have 1R — for example, 2Z ⊂ Z clearly doesn’t contain 1. In fact, if the ideal did
contain 1R, it would have to be the entire ring. However, an ideal does satisfy the other axioms.

9.2 Product Rings
Now that we have an understanding of what rings are, we can think about how to construct them.

Guiding Question
How can we build new rings out of rings that we already have?

One construction is taking the product of two rings:

Definition 9.1
Let R and S be two rings. The product ring, denoted R × S, is the set of pairs (r, s) with r ∈ R and
s ∈ S (the Cartesian product of the two sets), along with componentwise addition and multiplication.

It’s clear that the ring axioms clearly hold, with 1R×S = (1R, 1S).

Given a product ring R× S, we have the projection homomorphism R× S → R given by (r, s) 7→ r. The
kernel of this homomorphism is the set (0, s) for s ∈ S. In other words, we could describe this kernel as the
ideal of R× S generated by (0, 1S), since (0, s) = (0, s) · (0, 1S).

Guiding Question
Given a ring Q, how can we recognize whether Q is isomorphic to R× S for some nonzero R and S?

(We ask this question about nonzero R and S because every ring Q is trivially the product of itself and the zero
ring.)

First, if Q = R× S, then we can consider the two elements e1 = (1R, 0) and e2 = (0, 1S). These are not units,
but they are somewhat similar to units — in particular, they are idempotent.

Definition 9.2
An element e is idempotent if e2 = e, or equivalently if e(1− e) = 0.

Note that if e is idempotent, so is 1− e.

In our situation, if we have a product of two rings, then we have two idempotent elements e1 and e2 (which are
neither 0 nor 1). We’ll soon see that the converse is true as well. The intuition here may be more familiar in a
linear algebra setting — suppose we have a vector space V and an idempotent matrix E, meaning that E2 = E.
Then its only eigenvalues are 0 and 1. So if we let V1 and V0 be the corresponding eigenspaces, then we can
split V = V1 ⊕V0. So an idempotent matrix can be used to split the vector space into two smaller ones; it turns
out it’s possible to do something similar for rings.

Note that in any ring, 0 and 1 are both idempotent. In a field, there are no other idempotents — if e(1− e) = 0,
then e or 1− e must be 0 — but this is not true in general, as we’ve just seen that there are other idempotents
in R× S.
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Proposition 9.3
A ring Q is isomorphic to a product of rings R × S if and only if Q contains an idempotent other than 0
and 1.

Proof. We’ve already seen that R× S contains the idempotent elements (1R, 0S) and (0R, 1S), so it suffices to
prove the other direction.

Given an idempotent e ∈ Q, take R = eQ and S = (1 − e)Q. Note that R (and similarly S) is a ring — it’s
clearly an abelian group under addition, and we can multiply the same way as in Q since

eq1 · eq2 = e2q1q2 = eq1q2.

In particular, e = 1R (it’s not a unit in the entire ring Q, but it is a unit in the smaller ring R). Similarly,
1− e = 1S .

Then to check that Q ∼= R× S, for any x ∈ Q, we can write

x = ex+ (1− e)x.

So then there is an isomorphism Q→ R×S, given by x 7→ (ex, (1−e)x); its inverse map is given by (r, s) 7→ r+s.
(It’s possible to explicitly check that these maps are inverses; the point is that e(1− e) = 0, so “mixed” terms
disappear when we multiply.)

Note 9.4
Note that R is a ring and is a subset of Q, but R is not a subring of Q in our terminology, since it doesn’t
contain 1Q.

Similarly, the map R→ R× S sending r 7→ (r, 0) is compatible with addition and multiplication; but it is
not a homomorphism in our terminology, since it does not send 1R to 1R×S .

Student Question. In our construction, we took R = eQ and S = (1 − e)Q for an idempotent e. But if Q
was a field, wouldn’t this require e to be 0 or 1?

Answer. Yes — this shows that a field cannot be written as a product of two rings (in a nontrivial way).

Furthermore, it is possible to define the product of any collection of rings, finite or infinite, in the same way
(with the operations performed componentwise).

9.3 Adjoining Elements to a Ring
A different way of creating new rings, which is quite important, is to adjoin elements.

Definition 9.5
If R is a subring of S, and α ∈ S, then the ring R[α] is defined as the smallest subring of S containing both
R and α.

If a subring contains R and α, then it must contain all powers of α, and therefore all linear combinations
∑
riα

i.
Meanwhile, the set of such linear combinations is a valid subring (multiplying two such linear combinations
gives us another), so R[α] can be explicitly described as

R[α] =

{
n∑
i=0

riα
i | ri ∈ R

}
.

Example 9.6
When S = C, R = Z, and α = i, we get the Gaussian integers Z[i] = {a+ bi | a, b ∈ Z}.
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Example 9.7
We have Q[

√
2] = {a+ b

√
2 | a, b ∈ Q}. (Note that

√
2
2
= 2 is already in Q, so we can ignore terms with

power at least 2; the same was true in the previous example Z[i].)

Example 9.8
The ring Z[1/2] is the set of fractions whose denominator is a power of 2.

Similarly, if we start with elements α1, . . . , αn in S, then R[α1, . . . , αn] is the smallest subring of S containing
R and all the αi. It consists of all sums of products of powers of the αi, with coefficients in R.

Student Question. Do the powers of α (when we write elements of R[α]) have to be finite?

Answer. Yes — when we write

R[α] =

{
n∑
i=0

riα
i | ri ∈ R

}
,

there are infinitely many n to consider, but each sum itself is finite. We don’t really have a way to make sense
of an infinite sum here — in a ring, we can iterate the operation of addition to get finite sums, but we can’t get
infinite sums.

Student Question. Are we allowed to adjoin π to Z, and does this give R?

Answer. Z[π] is definitely a legitimate example, and it’s a subring of R, but it’s not R itself. The fastest way
to see it’s not R is that Z[π] is countable and R is not.

9.4 Polynomial Rings
There is another way to think of adjoining elements:

Definition 9.9
Let R be a ring, and x a formal variable. Then the polynomial ring R[x] is the set

R[x] =

{
n∑
i=0

rix
i | ri ∈ R

}

(with addition and multiplication defined in the usual way).

Note that for rings such as R, C, or Q, we could instead think of R[x] as the ring of polynomial functions from
R to itself — but this doesn’t work in general.

In general, given any α ∈ R and P ∈ R[x], we can always plug in α in place of x and compute the expression
P (α); so every polynomial does give a function from R to itself. In fact, this map is compatible with the ring
structure:

Definition 9.10
For any fixed α ∈ R, there is a homomorphism R[x] → R which sends x 7→ α; this is called the evaluation
homomorphism at α.

Note that here we are fixing α and varying the polynomial (rather than the other way around).

So each P ∈ R[x] yields a function R→ R. But in general, it carries more information than just this function —
in general, it’s not possible to recover the polynomial from the function. So it’s better to think of polynomials
in terms of the formal variable rather than in terms of functions.
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Example 9.11
Consider the polynomial ring Fp[x], where Fp denotes the field Z/pZ. Even without writing down an
explicit example, it is possible to see that Fp is a finite set, and so the space of functions from Fp to itself
is finite-dimensional as a Fp-vector space. But the space Fp[x] is infinite-dimensional, since it is spanned
by powers of x. Thus, it cannot be possible to recover the polynomial P ∈ Fp[x] from its corresponding
function.

As an explicit example, take P (x) = xp − x, known as the Artin–Schreier polynomial. Then αp − α = 0
for all α ∈ Fp (by Fermat’s Little Theorem), so the polynomial xp − x corresponds to the zero function
Fp → Fp, but is not the zero polynomial.

We can define the ring of polynomials in multiple variables — denoted R[x1, . . . , xn] — in the same way, as
formal expressions of the form ∑

ri1...inx
i1
1 · · ·xinn .

We can build on the idea of the evaluation homomorphism, to get an important property of polynomial rings:

Proposition 9.12 (Mapping Property)
Suppose we have a ring R, and a ring homomorphism φ : R→ S. Then given α1, . . . , αn ∈ S, there exists
a unique extension of φ to a homomorphism φ̃ : R[x1, . . . , xn] → S such that φ̃(r) = φ(r) for r ∈ R, and
φ̃(xi) = αi for all i.

This is much less complicated than it appears. The unique extension is just evaluation — we must have

φ̃
(∑

ri1...inx
i1
1 · · ·xinn

)
=
∑

φ(ri1...in)α
i1
1 · · ·αinn

for any polynomial (this follows directly from the properties of a homomorphism), and this is a valid homomor-
phism. In some sense, all this proposition is saying is that given a polynomial and some values, we can evaluate
the polynomial at those values, and this is compatible with the ring structures.

But it’s important because it gives us another way of looking at our original definition of adjoining elements —
if R ⊂ S is a subring, then

R[α1, . . . , αn] = R[x1, . . . , xn]/ ker φ̃,

where φ is the inclusion map R ↪→ S given by r 7→ r. So we can obtain our initial construction of adjoining
specific elements αi ∈ S by instead adjoining formal variables to produce a polynomial ring, and then modding
out by an ideal.

Example 9.13
We have Q[

√
2] = Q[x]/(x2 − 2).

Example 9.14
We have C = R[x]/(x2 +1). This is a particularly good example of how we want to use this construction —
in some sense, this is the definition of how C is constructed. In R, there is no element satisfying x2 +1 = 0,
so we simply define some formal variable i which does satisfy this equation, and in doing so, we define how
C behaves.

This gives us an idea — we can construct new rings as the quotient of R[x1, . . . , xn] by ideals. Sometimes in
algebra, if you want an element with a certain property, you can just add in a variable and state that it satisfies
the property, as in the case of defining i to be an element satisfying i2 = −1 (although there is work to do in
order to make this construction make sense).

This motivates us to study ideals in polynomial rings. We’ll discuss this in more detail next time. But as an
example, we can consider F [x] for a field F (note that this is quite restrictive, as we must start with a field,
and we only adjoin one variable). We’ll see that every ideal in F [x] must be principal, meaning every ideal I
can be written as (P ) — this will essentially follow from polynomial division with remainder. We’ll then see
that the construction F [x]/(P ) can be thought of as adjoining a root of P to F .
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