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Lecture 1: Basic Theory of Fourier Series

Set em(x) = eı2πmx for m ∈ Z and x ∈ R, and observe that {em : m ∈ Z} is an
orthonormal family in L2(λ[0,1);C). Even though it involves an abuse of notation,

we will use (φ, em)L2(λ[0,1);C) to denote
∫
[0,1)

φ(y)e−m(y) dy for φ ∈ L1(λ[0,1);C).
Given a function φ : [0, 1) −→ C, define its periodic extension φ̃ : R −→ C

by φ̃(x) = φ
(
x − ⌊x⌋

)
, where ⌊x⌋ = max{n ∈ Z : x ≥ n}. Notice that if1.

φ ∈ L1(λ[0,1);C), then∫
[0,1)

φ(x) dx =

∫
[a,a+1)

φ̃(x) dx for all a ∈ R.

Similarly, ∫
[0,1)

φ̃(−x) dx =

∫
[0,1)

φ(x) dx.

For bounded, continuous functions φ and ψ on [0, 1), define

φ ∗ ψ(x) =
∫
[0,1)

φ(x− y)ψ(y) dy,

and use the preceding to check that

φ ∗ ψ(x) =
∫
[−x,−x+1]

φ̃(y)ψ̃(x− y) dy = ψ ∗ φ(x).

Finally, by the continuous version of Minkowski’s inequality,2

∥φ ∗ ψ∥Lp(λ[0,1);C) ≤ ∥φ∥Lp(λ[0,1);C)∥ψ∥L1(λ[0,1);C) ∧ ∥ψ∥Lp(λ[0,1);C)∥φ∥L1(λ[0,1);C)

for any p ∈ [1,∞). Hence, for each p ∈ [1,∞), (φ,ψ) ⇝ φ ∗ ψ has a unique
continuous extension as a map bilinear map from L1(λ[0,1);C) × Lp(λ[0,1);C) into
Lp(λ[0,1);C), and

(1.1) ∥φ ∗ ψ∥Lp(λ[0,1);C) ≤ ∥φ∥L1(λ[0,1);C)∥ψ∥Lp(λ[0,1);C)

continues to hold.

Theorem 1.1. If φ ∈ Lp
(
λ[0,1];C

)
for some p ∈ [1,∞), then

lim
r↗1

∥∥∥∥∥φ−
∑
m∈Z

r|m|(φ, em)L2(λ[0,1);C)
em

∥∥∥∥∥
Lp(λ[0,1];C)

= 0,

and, if φ ∈ C
(
[0, 1];C

)
satisfies φ(0) = φ(1), then3

lim
r↗1

∥∥∥∥∥φ−
∑
m∈Z

r|m|(φ, em)L2(λ[0,1);C)
em

∥∥∥∥∥
u

= 0.

1λS is the Lebesgue measure on a subset S of RN

2Lp(µ;C) is the Lebesgue space for the measure µ of C-valued functions, and ∥ · ∥Lp(µ;C) is

the corresponding norm.
3∥ · ∥u is the uniform (i.e., supremum norm).
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Proof. Define

pr(x) =
∑
m∈Z

r|m|em(x) for r ∈ [0, 1) and x ∈ [0, 1).

Clearly
∫ 1

0
pr(x) dx = 1, pr(−x) = pr(x), and p̃r is continuous. In addition,

pr(x) =
1

1− re1(x)
+

re−1(x)

1− re−1(x)
=

1− r2

|1− re1(x)|2
=

1− r2

1− 2r cos 2πx+ r2
for r ∈ [0, 1),

and so pr ≥ 0.
Obviously,∑

m∈Z
r|m|(φ, em)L2(λ[0,1);C)

em(x) = pr ∗ φ(x) =
∫
[0,1)

pr(y)φ̃(x+ y) dy

since pr is even. Now suppose that φ ∈ C
(
[0, 1] : C

)
with φ(0) = φ(1). Then, since

limr↗1

∫ 1

δ
pr(y) dy = 0 for each δ ∈ (0, 1), it is easy to check that

lim
r↗1

sup
x∈[0,1]

∣∣∣∣∣
∫ 1

0

(
φ(x+ y) dy − f(x)

)∣∣∣∣∣ ≤ ωφ(δ),

where ωφ is the modulus of continuity of φ. Thus the second part of the theorem
has been proved.

To prove the first part, let φ ∈ Lp(λ[0,1);C), and choose choose a sequence {φk :

k ≥ 1} ⊆ C
(
[0, 1];C

)
which satisfy φk(0) = φk(1) and ∥φ− φk∥Lp(λ[0,1];C) −→ 0 as

k → ∞. Then, for each k,

∥pr ∗ φ− φ∥Lp(λ[0,1];C)

≤ ∥pr ∗ (φ− φk)∥Lp(λ[0,1];C) + ∥pr ∗ φk − φk∥Lp(λ[0,1];C) + ∥φk − φ∥Lp(λ[0,1];C),

and so, for all k.

lim
r↗1

∥pr ∗ φ− φ∥Lp(λ[0,1];C) ≤ 2∥φk − φ∥Lp(λ[0,1];C).

Finally, let k → ∞. □

Theorem 1.2. {em : m ∈ Z} is an orthonormal basis in L2(λ[0,1);C), and so, for

each φ ∈ L2(λ[0,1);C),∑
m∈Z

(φ, em)L2(λ[0,1);C)em ≡ lim
n→∞

∑
|m|≤n

(φ, em)L2(λ[0,1);C) = φ,

where the convergence is in L2(λ[0,1);C). In addition, for all φ,ψ ∈ L2(λ[0,1);C),

(φ,ψ)L2(λ[0,1);C) =
∑
m∈Z

(φ, em)L2(λ[0,1);C)(ψ, em)L2(λ[0,1);C).

Proof. It suffices to check the first statement, and to do so all we need to know is
that (φ, em)L2(λ[0,1);C) = 0 for all m ∈ Z implies φ = 0 for a set of φ’s which is dense

in L2(λ[0,1);C). But, by Theorem 1.1, we know this for continuous φ’s satisfying

φ(0) = φ(1), and these are dense in L2(λ[0,1);C). □

Define the partial sum Snφ =
∑

|m|≤n(φ, em)L2(λ[0,1);C)em.
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Corollary 1.3. If φ ∈ C([0, 1];C) and∑
m̸=0

∣∣(φ, em)L2(λ[0,1);C)
∣∣ <∞,

then the series ∑
m∈Z

(φ, em)L2(λ[0,1);C)em(x)

is uniformly absolutely convergent to φ. In fact,∥∥Sn(φ)− φ
∥∥
u
≤
∑

|m|>n

∣∣(φ, em)L2(λ[0,1);C)
∣∣.

Proof. That the series if uniformly absolutely convergent is obvious. To see that
it must be converging to φ, let ψ be uniform limit of {Snφ : n ≥ 0}. Then ψ is
continuous and, because φ is the L2(λ[0,1);C) limit of this series, ψ = φ λ[0,1]-almost
everywhere, which, since both are continues, means that they are equal everywhere.
Given these statements, the final estimate is trivial. □

Lemma 1.4. Let ℓ ≥ 1 and assume that φ ∈ Cℓ([0, 1];C) satisfies φ(k)(0) = φ(k)(1)
for 0 ≤ k ≤ ℓ− 1. Then

(φ, em)L2(λ[0,1);C) =
( ı

2πm

)ℓ (
φ(ℓ), em

)
L2(λ[0,1);C)

for m ̸= 0.

Proof. Clearly it suffices that prove the result when ℓ = 1. To do so, use integration
by parts and the condition φ(0) = φ(1) to check that∫ 1

0

φ(y)e−m(y) dy =
1

−ı2πm

∫ 1

0

φ′(y)e−m(y) dy.

□

As a consequence of Lemma 1.4, we see that if φ ∈ C1([0, 1];C) satisfies φ(0) =
φ(1), then ∑

|m|>n

∣∣(φ, em)L2(λ[0,1);C)
∣∣ ≤ ∑

|m|>n

∣∣(φ′, em)L2(λ[0,1);C)
∣∣

2π|m|

≤ 1

2π

(∑
m>n

m−2

) 1
2

∥φ′∥L2(λ[0,1);C) ≤
∥φ′∥L2(λ[0,1);C)

2πn
1
2

.

Hence, by Corollary 1.3,

∥Snφ− φ∥u ≤ ∥φ′∥u
2πn

1
2

.

Exercise 1.5. Prove the Riemann–Lebesgue lemma, which is the statement that
limn→∞(φ, en)L2(λ[0,1);C) = 0 for all φ ∈ L1(λ[0,1);C).

Exercise 1.6. Let φ be a Lipschitz continuous function satisfying φ(0) = φ(1),
and show that ∥∥Snφ− φ∥u ≤ ∥φ∥Lip

2πn
1
2

.

Hint: Introduce the functions φk = p 1
k
∗ φ.
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