LECTURE 1: BAsiCc THEORY OF FOURIER SERIES

Set e, (x) = 2™ for m € Z and x € R, and observe that {e,, : m € Z} is an
orthonormal family in L? (A0,1); C). Even though it involves an abuse of notation,
we will use (¢, em)r2(x.,);c) to denote f[o,l) (y)e—m(y) dy for ¢ € L*(Ap 1); C).

Given a function ¢ : [0,1) — C, define its periodic extension ¢ : R — C
by @(z) = ¢(z — |z]), where [x] = max{n € Z : © > n}. Notice that if".
p < Ll(A[O’l); (C), then

/ o(z)dx = / P(x) dx for all a € R.
[0)1) [a,a+1)

Similarly,

/ P(—z)dr = / o(z) de.
[0,1) [0,1)

For bounded, continuous functions ¢ and ¢ on [0,1), define
prule) = [ ple -y dy,
[0,1)
and use the preceding to check that
¢ * () =/[ }@(y)iﬁ(w—y) dy = ¢ * p(x).
—x,—z+1

Finally, by the continuous version of Minkowski’s inequality,?

o * Yl Lero1:0) S Nellze oy 1P o0y A Ze o0y €N 21 (A0.1)50)

for any p € [1,00). Hence, for each p € [1,00), (¢,%) ~ © * ¢ has a unique
continuous extension as a map bilinear map from L* (A 1); C) x LP(Ap1); C) into
Lp()‘[(),l); (C)v and

(1.1) e % Yl Le(xo:0) S NlllLrgy 0 1Pl Le(p.qy:0)
continues to hold.

Theorem 1.1. If p € LP ()\[0,1];((:) for some p € [1,00), then

lim

b @Y — Z ’I“lm‘ (Spa em)L2()\[0,1)§(C) Cm

meZ

L (Xp,1];C)

and, if ¢ € C([0,1];C) satisfies p(0) = ¢(1), then®

=0.

u

lim

ki @ — Z T‘ml (30; em)LQ(A[O‘l);C)em

meZ

1)\5 is the Lebesgue measure on a subset S of RN

2LP(u; C) is the Lebesgue space for the measure p of C-valued functions, and || - lLp(usc) is
the corresponding norm.

3|| - |l is the uniform (i.e., supremum norm).



Proof. Define

pr(z) = Z rimle,, (z) for r € [0,1) and z € [0,1).
meEZ

Clearly fol pr(z)dx =1, p.(—x) = p.(x), and P, is continuous. In addition,

1 re_i(x) 1—r? 1—r?

r = = = f 07 1 3
pr(7) lfrel(x)—i_lfre_l(:c) [1 —rei(x)]2 1—2rcos2mx+r? orr €[0,1)
and so p, > 0.
Obviously,
D Prem) a0 om (@) = Prx (@) = /[O y pr(y)@(x +y) dy
meZ ,

since p, is even. Now suppose that ¢ € C([0,1] : C) with ¢(0) = ¢(1). Then, since
lim, ~ f; pr(y) dy = 0 for each 6 € (0, 1), it is easy to check that

/0 (p(z +y) dy — ()

lim sup

< wy(9),
L 0 (9)

where w,, is the modulus of continuity of ¢. Thus the second part of the theorem
has been proved.

To prove the first part, let ¢ € LP(X[g,1); C), and choose choose a sequence {¢y, :
k> 1} € C([0,1];C) which satisfy ¢ (0) = ¢x(1) and [l — @kl Lr(rg.,:0) — 0 as
k — oo. Then, for each k,

Hp’l‘ * © — QOHLP()\[OJ];(C)

< lpr * (2 = @)l Lr(ro.0:0) + [1Pr * 0 = Pkl Lo (ao0:0) + 110k = OllLr(ro.11:0)

and so, for all k.
L flpr @ = @l e (agi0) < 2ok = @llzrno,iyi0)-
Finally, let k — oo. O

Theorem 1.2. {e,, : m € Z} is an orthonormal basis in LQ()\[OJ);(C), and so, for
each @ € LZ()\[OJ); C),

Z (¢, em)Lz(Am);C)em = nh—>Holo Z (¢, em)m(,\[o,l);@ =,
meZ |m|<n

where the convergence is in Lz()\[071); C). In addition, for all p,¢ € Lz()\[071);((:),

(Sav 1/))L2(/\[0,1>;<C) = Z (90; em)L2()\[011);(C) (1)[}; em)[ﬁ(k[o,l);({j)'
mEZ

Proof. Tt suffices to check the first statement, and to do so all we need to know is
that (¢, em)L2(,\[o,1);C) = 0 for all m € Z implies ¢ = 0 for a set of ¢’s which is dense

in LQ()\[O)l); C). But, by Theorem 1.1, we know this for continuous ¢’s satisfying
©(0) = ¢(1), and these are dense in L*(Xj,1); C). O

Define the partial sum S, p = Z\m|§n(% em)Lz(,\[O,l);c)em.



4

Corollary 1.3. If ¢ € C([0,1];C) and

Z ‘(907 em)Lz(A[oyl);c)’ < 00,
m##0

then the series
Z (¢, em)LZ(A[D,l);C) em ()
meEZ

is uniformly absolutely convergent to w. In fact,

HSn(@) - <P||u < Z (e, em)L2(A[0,1);c)|~

[m|>n

Proof. That the series if uniformly absolutely convergent is obvious. To see that
it must be converging to ¢, let ¢ be uniform limit of {S,¢ : n > 0}. Then ¥ is
continuous and, because ¢ is the LQ()\[OJ); C) limit of this series, ¢ = ¢ A[p,1-almost
everywhere, which, since both are continues, means that they are equal everywhere.
Given these statements, the final estimate is trivial. |

Lemma 1.4. Let £ > 1 and assume that ¢ € C*([0,1]; C) satisfies o) (0) = o) (1)
for0<k<{€—1. Then

7

4
(@, em)L2(Ajp.1)5C) = ( ) (so(f), em)Lg(A[O’l);C) form # 0.

2mm

Proof. Clearly it suffices that prove the result when ¢ = 1. To do so, use integration
by parts and the condition ¢(0) = (1) to check that

/ oy)em(y) dy = — /so%y)e_m(y)dy.
0 0

—12T™m

O

As a consequence of Lemma 1.4, we see that if ¢ € C*(]0, 1]; C) satisfies ¢(0) =
©(1), then

/
Z |(<,0, em)LZ(A[o,l);C){ < Z ‘(()0 aem)LQ(A[Oﬁl);C)‘

Im|>n [m|>n 27T|m|
1
1 ’ 16 |2 (7 0.1):0)
< -2 ' < 0.1iC)
< 5 <m§>nm ) 0"l 2 (A p0.1)0) < Py
Hence, by Corollary 1.3,
Il
1S — ollu < 7
2mnz

Exercise 1.5. Prove the Riemann—Lebesgue lemma, which is the statement that
lim,, s 00 (2, en)L2(>\[o,1>;C) =0 for all p € Ll()\[o’l);(C).

Exercise 1.6. Let ¢ be a Lipschitz continuous function satisfying ¢(0) = ¢(1),
and show that

ll¢llLip
Sn - u S .
[|Snee — ¢l -

Hint: Introduce the functions py = pL*p.
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