LECTURE 2: GIBBS PHENOMENON

Here we will examine what can be said for a ¢ € C([0,1]; C) that is not periodic.
Consider the function ¢(z) = z for x € [0,1]. Clearly
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where S,, = S,,p. Now set
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Then ®,,,(z) is the imaginary part of
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After using a lot of trigonometric identities, one sees that
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In particular, |®,,(z)| < 3(1 A ).
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Summing by parts, one sees that
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which means that
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In particular, S, (x) is converging to x uniformly on compact subsets of (0,1).
To see what happens for x near to 0, consider x = % for £ > 1, and observe
that
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Hence, since (cf. (7.11) in §7)
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as n — 00. Therefore
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where lim,, o0 €,(k) = 0 and
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This shows that, for large n, Sn(%) is at least ﬁ if k£ is odd and at most —ﬁ
if k£ is even. This sort of oscillatory behavior is known as Gibbs’s phenomenon,

although Gibbs seems not to have been the first to discover it.

Exercise 2.1. By considering S, (3) and using equations (2.1) and (2.2), show

that
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Exercise 2.2. Show that if ¢ € C*
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[0, 1]; (C) then, for each d € (0, 1),
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