LECTURE 3: BERNOULLI POLYNOMIALS

Theorem 3.1. Define {b; : £ > 0} C R inductively by
4
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and set
~ (=1)"by
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(3.1) By(w) = Y =tk for £ 0.

k=0
Then {By : £ > 0} are the one and only functions satisfying

(3.2) By=1, By, = —By for £ >0, and By(1) = Be(0) for £ > 2.

Proof. To see that there is at most one set of functions satisfying (3.2), let {D; :
£ > 0} be the set of differences between two solutions, and let £ = inf{¢: D, # 0}.
Then ¢ > 1, and, if ¢ < oo, then Dy is a constant a and there is a b € R such that
Dyyi(x) = —ax +b. But —a+b = Dyy1(1) = Dyy1(0) = b, and therefore a = 0.
Since this would mean that D, = —Dj; = 0, no such £ can exist.

By definition, By = 1, and it is easy to check that By, , = —B;. To verify the
periodicity property, note that
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k=1
e+2

b b
:—le—l—Z €+2k——b£+1+z k+2€k:0

The functions {By : £ > 0} in (3.1) are known as Bernoulli polynomials.
Theorem 3.2. For { > 2 and z € [0,1],

(3.3)

In particular, begr1 = 0 and

— 1
(3.4) Zmi [-1—122@ 1 26()2

for£>1.
Proof. First observe that, for £ > 1,

1
(B, eO)LQ(A[Ovl];(C) = 7/0 By 1(x) dz = Be11(0) — Beya (1) =0

and, for £ > 2 and n # 0,
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(B, en)y(,\[o,u;C) ~ 2

0,15C)
and therefore

1
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2mn\ 1
(T) (B&eﬂ)m(,\[o,l];c) = (Bhe”)LZ(A[O,l];cc) :/0 (% - x)en(x) dx = o



Hence
—f

(Be,en) L2(Xo,1;C) (2mn)*

for ¢ > 2 and n # 0, which completes the proof of (3.3). Finally, because b, = B,(0),
it is clear from (3.3) that bysy1 = 0 and (3.4) holds. O

Besides (3.4), the Bernoulli polynomials play a critical role in what is known as
the Euler—Maclauren formula:
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(3.5) for £ > 1,

where By is the periodic extension of By, | [0,1) to R. To prove (3.5), first note that

/nf(m)dx— Zf(m)z Z/m (f(x) = f(m)) dz
0 1 m

m=1
__ Z:l/mml(z(ml))f'(x)dx
— —bl(f(m)—f(m—l))+/mlBl($—(m—1))f/(x)dx)

= by (f(n) — £(0)) + / " Bi()f () do.

Hence, (3.5) holds when ¢ = 1. Next observe that for any ¢ > 1,

/On By(x) = n/o By(x) dz = n(Bey1(1) — Bey1(0)) = 0,

and therefore

/ " Bua) fO@yde = 3 / mlBe(z ~(m— 1) (O () — O (m)) da
0 m=1"v™M—
= Z (—le(f(@)(m) — fO(m-1) + /mml Bogi(z — (m — 1)) f4 () d:r)

= b (1) = £0) + [ B (@)1 o)
0
Therefore, (3.5) for ¢ implies (3.5) for £ + 1.
Theorem 3.3. If { > 1 and p € C*([0,1];C), then
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Proof. Take f(z) = (%), apply (3.5) to f, and make a simple change of variables.
[l

By Schwarz’s inequality,

1
/Bz(nw)w(@ _</ By(nx) dw) 1N L2 a0 110
0
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| Bt e = 5 [ Buw do = 1Bl ey

and

Further, by Parseval’s identity and (3.3),
1 1
2 —
I1Bellz2(reie) = gyt >
n#0

Hence, by (3.6),

n
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(3.7)

H@(E)HL2(>\0 11;6) -

From (3.7) one sees that if, for some n > 1,

(3.8) lim 4”@(2) 22 (0,1550)

{— 00 (27‘(?’1)Z - 0’

then

n

! 1 d by
_ = m) _ _ | (k=1) _ pk=1)
/0 pla)de — — m§:1 p(%) = — fim 2 ("0 (1) = 1(0)).

In particular, if ¢ € COO([O, 1];(C) and ) is periodic for all k& > 0, then (3.8)
implies that

E

);

a result that has a much simpler derivation (cf. Exercise 3.4 below).
More generally, because |<,0(k71)( ) — ‘P(k )( )| < HSD( )||L2(>\[0,1];nc),

/Olw(m)dLEZiZn:w(

1

o o™ 2200
k

Pt (27n)

implies that

n

' 1 m - k (k—1)
B9 [ et > em) = -3 I - 0),
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=

where the series is absolutely convergent.
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Exercise 3.4. Suppose that ¢ and all its derivatives are periodic on [0,1], and
show that

. ”90(2) ||L2(>\[0,1];(C)
lim —————
(=0 (27n)*

<~ ® = Z (S07em)L2()\[g,1];C)em'

Im|<n

1 & ,
gzem(%) =0
J=1

for 1 < |m| < n, and thereby arrive at the conclusion reached above.

=0 <= (¢ em)Lz(/\[o)I];C) =0if jm|>n

Next, show that
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