Lecture 3: Bernoulli Polynomials

Theorem 3.1. Define $\left\{b_{\ell}: \ell \geq 0\right\} \subseteq \mathbb{R}$ inductively by

$$
b_{0}=1 \text { and } b_{\ell+1}=\sum_{k=0}^{\ell} \frac{(-1)^{k} b_{\ell-k}}{(k+2)!}
$$

and set

$$
\begin{equation*}
B_{\ell}(x)=\sum_{k=0}^{\ell} \frac{(-1)^{k} b_{\ell-k}}{k!} x^{k} \text { for } \ell \geq 0 \tag{3.1}
\end{equation*}
$$

Then $\left\{B_{\ell}: \ell \geq 0\right\}$ are the one and only functions satisfying

$$
\begin{equation*}
B_{0}=1, B_{\ell+1}^{\prime}=-B_{\ell} \text { for } \ell \geq 0, \text { and } B_{\ell}(1)=B_{\ell}(0) \text { for } \ell \geq 2 \tag{3.2}
\end{equation*}
$$

Proof. To see that there is at most one set of functions satisfying (3.2), let $\left\{D_{\ell}\right.$: $\ell \geq 0\}$ be the set of differences between two solutions, and let $\ell=\inf \left\{\ell: D_{\ell} \neq \mathbf{0}\right\}$. Then $\ell \geq 1$, and, if $\ell<\infty$, then D_{ℓ} is a constant a and there is a $b \in \mathbb{R}$ such that $D_{\ell+1}(x)=-a x+b$. But $-a+b=D_{\ell+1}(1)=D_{\ell+1}(0)=b$, and therefore $a=0$. Since this would mean that $D_{\ell}=-D_{\ell+1}^{\prime}=\mathbf{0}$, no such ℓ can exist.

By definition, $B_{0}=\mathbf{1}$, and it is easy to check that $B_{\ell+1}^{\prime}=-B_{\ell}$. To verify the periodicity property, note that

$$
\begin{aligned}
B_{\ell+2}(1)-B_{\ell+2}(0) & =\sum_{k=1}^{\ell+2} \frac{(-1)^{k} b_{\ell+2-k}}{k!} \\
& =-b_{\ell+1}+\sum_{k=2}^{\ell+2} \frac{(-1)^{k} b_{\ell+2-k}}{k!}=-b_{\ell+1}+\sum_{k=0}^{\ell} \frac{(-1)^{k} b_{\ell-k}}{(k+2)!}=0
\end{aligned}
$$

The functions $\left\{B_{\ell}: \ell \geq 0\right\}$ in (3.1) are known as Bernoulli polynomials.
Theorem 3.2. For $\ell \geq 2$ and $x \in[0,1]$,

$$
\begin{equation*}
B_{\ell}(x)=\frac{-\imath^{\ell}}{(2 \pi)^{\ell}} \sum_{n \neq 0} \frac{\mathfrak{e}_{n}(x)}{n^{\ell}} . \tag{3.3}
\end{equation*}
$$

In particular, $b_{2 \ell+1}=0$ and

$$
\begin{equation*}
\zeta(2 \ell) \equiv \sum_{m=1}^{\infty} \frac{1}{m^{2 \ell}}=(-1)^{\ell+1} 2^{2 \ell-1} \pi^{2 \ell} b_{2 \ell} \tag{3.4}
\end{equation*}
$$

for $\ell \geq 1$.
Proof. First observe that, for $\ell \geq 1$,

$$
\left(B_{\ell}, \mathfrak{e}_{0}\right)_{L^{2}\left(\lambda_{[0,1]} ; \mathbb{C}\right)}=-\int_{0}^{1} B_{\ell+1}^{\prime}(x) d x=B_{\ell+1}(0)-B_{\ell+1}(1)=0
$$

and, for $\ell \geq 2$ and $n \neq 0$,

$$
\left(B_{\ell}, \mathfrak{e}_{n}\right)_{L^{2}\left(\lambda_{[0,1]} ; \mathbb{C}\right)}=\frac{\imath}{2 \pi n}\left(B_{\ell-1}, \mathfrak{e}_{n}\right)_{L^{2}\left(\lambda_{[0,1]} ; \mathbb{C}\right)}
$$

and therefore

$$
\left(\frac{2 \pi n}{\imath}\right)^{\ell-1}\left(B_{\ell}, \mathfrak{e}_{n}\right)_{L^{2}\left(\lambda_{[0,1]} ; \mathbb{C}\right)}=\left(B_{1}, \mathfrak{e}_{n}\right)_{L^{2}\left(\lambda_{[0,1]} ; \mathbb{C}\right)}=\int_{0}^{1}\left(\frac{1}{2}-x\right) \mathfrak{e}_{n}(x) d x=\frac{-\imath}{2 \pi n}
$$

Hence

$$
\left(B_{\ell}, \mathfrak{e}_{n}\right)_{L^{2}\left(\lambda_{[0,1]} ; \mathbb{C}\right)}=\frac{-\imath^{\ell}}{(2 \pi n)^{\ell}}
$$

for $\ell \geq 2$ and $n \neq 0$, which completes the proof of (3.3). Finally, because $b_{\ell}=B_{\ell}(0)$, it is clear from (3.3) that $b_{2 \ell+1}=0$ and (3.4) holds.

Besides (3.4), the Bernoulli polynomials play a critical role in what is known as the Euler-Maclauren formula:

$$
\begin{align*}
& \int_{0}^{n} f(x) d x-\sum_{m=1}^{n} f(m) \\
& =-\sum_{k=1}^{\ell} b_{k}\left(f^{(k-1)}(n)-f^{k-1}(0)\right)+\int_{0}^{n} \tilde{B}_{\ell}(x) f^{(\ell)}(x) d x \tag{3.5}
\end{align*}
$$

where \tilde{B}_{ℓ} is the periodic extension of $B_{\ell} \upharpoonright[0,1)$ to \mathbb{R}. To prove (3.5), first note that

$$
\begin{array}{rl}
\int_{0}^{n} & f(x) d x-\sum_{m=1}^{n} f(m)=\sum_{m=1}^{n} \int_{m-1}^{m}(f(x)-f(m)) d x \\
& =-\sum_{m=1}^{n} \int_{m-1}^{m}(x-(m-1)) f^{\prime}(x) d x \\
& =\sum_{m=1}^{n}\left(-b_{1}(f(m)-f(m-1))+\int_{m-1}^{m} B_{1}(x-(m-1)) f^{\prime}(x) d x\right) \\
& =-b_{1}(f(n)-f(0))+\int_{0}^{n} \tilde{B}_{1}(x) f^{\prime}(x) d x
\end{array}
$$

Hence, (3.5) holds when $\ell=1$. Next observe that for any $\ell \geq 1$,

$$
\int_{0}^{n} \tilde{B}_{\ell}(x)=n \int_{0}^{1} B_{\ell}(x) d x=n\left(B_{\ell+1}(1)-B_{\ell+1}(0)\right)=0
$$

and therefore

$$
\begin{aligned}
& \int_{0}^{n} \tilde{B}_{\ell}(x) f^{(\ell)}(x) d x=\sum_{m=1}^{n} \int_{m-1}^{m} B_{\ell}(x-(m-1))\left(f^{(\ell)}(x)-f^{(\ell)}(m)\right) d x \\
& =\sum_{m=1}^{n}\left(-b_{\ell+1}\left(f^{(\ell)}(m)-f^{(\ell)}(m-1)\right)+\int_{m-1}^{m} B_{\ell+1}(x-(m-1)) f^{(\ell+1)}(x) d x\right) \\
& =-b_{\ell+1}\left(f^{(\ell)}(n)-f(0)\right)+\int_{0}^{n} \tilde{B}_{\ell+1}(x) f^{(\ell+1)}(x) d x .
\end{aligned}
$$

Therefore, (3.5) for ℓ implies (3.5) for $\ell+1$.
Theorem 3.3. If $\ell \geq 1$ and $\varphi \in C^{\ell}([0,1] ; \mathbb{C})$, then

$$
\begin{align*}
& \int_{0}^{1} \varphi(x)-\frac{1}{n} \sum_{m=1}^{n} \varphi\left(\frac{m}{n}\right) \\
& =-\sum_{k=1}^{\ell} \frac{b_{k}}{n^{k}}\left(\varphi^{(k-1)}(1)-\varphi^{(k-1)}(0)\right)+\frac{1}{n^{\ell}} \int_{0}^{1} \tilde{B}_{\ell}(n x) \varphi^{(\ell)}(x) d x \tag{3.6}
\end{align*}
$$

Proof. Take $f(x)=\varphi\left(\frac{x}{n}\right)$, apply (3.5) to f, and make a simple change of variables.

By Schwarz's inequality,

$$
\left|\int_{0}^{1} \tilde{B}_{\ell}(n x) \varphi^{(\ell)}(x) d x\right| \leq\left(\int_{0}^{1} \tilde{B}_{\ell}(n x)^{2} d x\right)^{\frac{1}{2}}\left\|\varphi^{(\ell)}\right\|_{L^{2}\left(\lambda_{[0,1]} ; \mathbb{C}\right)}
$$

and

$$
\int_{0}^{1} \tilde{B}_{\ell}(n x)^{2} d x=\frac{1}{n} \int_{0}^{n} \tilde{B}_{\ell}(x)^{2} d x=\left\|B_{\ell}\right\|_{L^{2}\left(\lambda_{\mathbb{R}} ; \mathbb{C}\right)}^{2}
$$

Further, by Parseval's identity and (3.3),

$$
\left\|B_{\ell}\right\|_{L^{2}\left(\lambda_{\mathbb{R}} ; \mathbb{C}\right)}^{2}=\frac{1}{(2 \pi)^{2 \ell}} \sum_{n \neq 0} \frac{1}{n^{2 \ell}}
$$

Hence, by (3.6),

$$
\begin{align*}
& \left|\int_{0}^{1} \varphi(x) d x-\frac{1}{n} \sum_{m=1}^{n} \varphi\left(\frac{m}{n}\right)+\sum_{k=1}^{\ell} \frac{b_{k}}{n^{k}}\left(\varphi^{(k-1)}(1)-\varphi^{(k-1)}(0)\right)\right| \tag{3.7}\\
& \quad \leq \frac{\sqrt{2 \zeta(2 \ell)}}{(2 \pi n)^{\ell}}\left\|\varphi^{(\ell)}\right\|_{L^{2}\left(\lambda_{[0,1]} ; \mathbb{C}\right)} .
\end{align*}
$$

From (3.7) one sees that if, for some $n \geq 1$,

$$
\begin{equation*}
\lim _{\ell \rightarrow \infty} \frac{\left\|\varphi^{(\ell)}\right\|_{L^{2}\left(\lambda_{[0,1]} ; \mathbb{C}\right)}}{(2 \pi n)^{\ell}}=0 \tag{3.8}
\end{equation*}
$$

then

$$
\int_{0}^{1} \varphi(x) d x-\frac{1}{n} \sum_{m=1}^{n} \varphi\left(\frac{m}{n}\right)=-\lim _{\ell \rightarrow \infty} \sum_{k=1}^{\ell} \frac{b_{k}}{n^{k}}\left(\varphi^{(k-1)}(1)-\varphi^{(k-1)}(0)\right)
$$

In particular, if $\varphi \in C^{\infty}([0,1] ; \mathbb{C})$ and $\varphi^{(k)}$ is periodic for all $k \geq 0$, then (3.8) implies that

$$
\int_{0}^{1} \varphi(x) d x=\frac{1}{n} \sum_{m=1}^{n} \varphi\left(\frac{m}{n}\right)
$$

a result that has a much simpler derivation (cf. Exercise 3.4 below).
More generally, because $\left|\varphi^{(k-1)}(1)-\varphi^{(k-1)}(0)\right| \leq\left\|\varphi^{(k)}\right\|_{L^{2}\left(\lambda_{[0,1]} ; \mathbb{C}\right)}$,

$$
\sum_{k=1}^{\infty} \frac{\left\|\varphi^{(k)}\right\|_{L^{2}\left(\lambda_{[0,1]} ; \mathbb{C}\right)}}{(2 \pi n)^{k}}<\infty
$$

implies that

$$
\begin{equation*}
\int_{0}^{1} \varphi(x) d x-\frac{1}{n} \sum_{m=1}^{n} \varphi\left(\frac{m}{n}\right)=-\sum_{k=1}^{\infty} \frac{b_{k}}{n^{k}}\left(\varphi^{(k-1)}(1)-\varphi^{(k-1)}(0)\right), \tag{3.9}
\end{equation*}
$$

where the series is absolutely convergent.

Exercise 3.4. Suppose that φ and all its derivatives are periodic on $[0,1]$, and show that

$$
\begin{gathered}
\lim _{\ell \rightarrow \infty} \frac{\left\|\varphi^{(\ell)}\right\|_{L^{2}\left(\lambda_{[0,1]} ; \mathbb{C}\right)}}{(2 \pi n)^{\ell}}=0 \Longleftrightarrow\left(\varphi, \mathfrak{e}_{m}\right)_{L^{2}\left(\lambda_{[0,1]} ; \mathbb{C}\right)}=0 \text { if }|m| \geq n \\
\Longleftrightarrow \varphi=\sum_{|m|<n}\left(\varphi, \mathfrak{e}_{m}\right)_{L^{2}\left(\lambda_{[0,1]} ; \mathbb{C}\right)^{\prime}} .
\end{gathered}
$$

Next, show that

$$
\frac{1}{n} \sum_{j=1}^{n} \mathfrak{e}_{m}\left(\frac{j}{n}\right)=0
$$

for $1 \leq|m|<n$, and thereby arrive at the conclusion reached above.

MIT OpenCourseWare
https://ocw.mit.edu

RES.18-015 Topics in Fourier Analysis

Spring 2024

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

