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Lecture 3: Bernoulli Polynomials

Theorem 3.1. Define {bℓ : ℓ ≥ 0} ⊆ R inductively by

b0 = 1 and bℓ+1 =
ℓ∑

k=0

(−1)kbℓ−k
(k + 2)!

,

and set

(3.1) Bℓ(x) =
ℓ∑

k=0

(−1)kbℓ−k
k!

xk for ℓ ≥ 0.

Then {Bℓ : ℓ ≥ 0} are the one and only functions satisfying

(3.2) B0 = 1, B′
ℓ+1 = −Bℓ for ℓ ≥ 0, and Bℓ(1) = Bℓ(0) for ℓ ≥ 2.

Proof. To see that there is at most one set of functions satisfying (3.2), let {Dℓ :
ℓ ≥ 0} be the set of differences between two solutions, and let ℓ = inf{ℓ : Dℓ ̸= 0}.
Then ℓ ≥ 1, and, if ℓ < ∞, then Dℓ is a constant a and there is a b ∈ R such that
Dℓ+1(x) = −ax + b. But −a + b = Dℓ+1(1) = Dℓ+1(0) = b, and therefore a = 0.
Since this would mean that Dℓ = −D′

ℓ+1 = 0, no such ℓ can exist.
By definition, B0 = 1, and it is easy to check that B′

ℓ+1 = −Bℓ. To verify the
periodicity property, note that

Bℓ+2(1)−Bℓ+2(0) =
ℓ+2∑
k=1

(−1)kbℓ+2−k

k!

= −bℓ+1 +

ℓ+2∑
k=2

(−1)kbℓ+2−k

k!
= −bℓ+1 +

ℓ∑
k=0

(−1)kbℓ−k
(k + 2)!

= 0.

□

The functions {Bℓ : ℓ ≥ 0} in (3.1) are known as Bernoulli polynomials.

Theorem 3.2. For ℓ ≥ 2 and x ∈ [0, 1],

(3.3) Bℓ(x) =
−ıℓ

(2π)ℓ

∑
n̸=0

en(x)

nℓ
.

In particular, b2ℓ+1 = 0 and

(3.4) ζ(2ℓ) ≡
∞∑
m=1

1

m2ℓ
= (−1)ℓ+122ℓ−1π2ℓb2ℓ

for ℓ ≥ 1.

Proof. First observe that, for ℓ ≥ 1,(
Bℓ, e0

)
L2(λ[0,1];C)

= −
∫ 1

0

B′
ℓ+1(x) dx = Bℓ+1(0)−Bℓ+1(1) = 0

and, for ℓ ≥ 2 and n ̸= 0,(
Bℓ, en

)
L2(λ[0,1];C)

=
ı

2πn

(
Bℓ−1, en

)
L2(λ[0,1];C)

and thereforeÅ
2πn

ı

ãℓ−1 (
Bℓ, en

)
L2(λ[0,1];C)

=
(
B1, en

)
L2(λ[0,1];C)

=

∫ 1

0

(
1
2 − x

)
en(x) dx =

−ı
2πn

.
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Hence (
Bℓ, en

)
L2(λ[0,1];C)

=
−ıℓ

(2πn)ℓ

for ℓ ≥ 2 and n ̸= 0, which completes the proof of (3.3). Finally, because bℓ = Bℓ(0),
it is clear from (3.3) that b2ℓ+1 = 0 and (3.4) holds. □

Besides (3.4), the Bernoulli polynomials play a critical role in what is known as
the Euler–Maclauren formula:

(3.5)

∫ n

0

f(x) dx−
n∑

m=1

f(m)

= −
ℓ∑

k=1

bk
(
f (k−1)(n)− fk−1(0)

)
+

∫ n

0

B̃ℓ(x)f
(ℓ)(x) dx

for ℓ ≥ 1,

where B̃ℓ is the periodic extension of Bℓ ↾ [0, 1) to R. To prove (3.5), first note that∫ n

0

f(x) dx−
n∑

m=1

f(m) =
n∑

m=1

∫ m

m−1

(
f(x)− f(m)

)
dx

= −
n∑

m=1

∫ m

m−1

(
x− (m− 1)

)
f ′(x) dx

=

n∑
m=1

Å
−b1

(
f(m)− f(m− 1)

)
+

∫ m

m−1

B1

(
x− (m− 1)

)
f ′(x) dx

ã
= −b1

(
f(n)− f(0)

)
+

∫ n

0

B̃1(x)f
′(x) dx.

Hence, (3.5) holds when ℓ = 1. Next observe that for any ℓ ≥ 1,∫ n

0

B̃ℓ(x) = n

∫ 1

0

Bℓ(x) dx = n
(
Bℓ+1(1)−Bℓ+1(0)

)
= 0,

and therefore∫ n

0

B̃ℓ(x)f
(ℓ)(x) dx =

n∑
m=1

∫ m

m−1

Bℓ
(
x− (m− 1)

)(
f (ℓ)(x)− f (ℓ)(m)

)
dx

=
n∑

m=1

Å
−bℓ+1

(
f (ℓ)(m)− f (ℓ)(m− 1)

)
+

∫ m

m−1

Bℓ+1

(
x− (m− 1)

)
f (ℓ+1)(x) dx

ã
= −bℓ+1

(
f (ℓ)(n)− f(0)

)
+

∫ n

0

B̃ℓ+1(x)f
(ℓ+1)(x) dx.

Therefore, (3.5) for ℓ implies (3.5) for ℓ+ 1.

Theorem 3.3. If ℓ ≥ 1 and φ ∈ Cℓ
(
[0, 1];C

)
, then

(3.6)

∫ 1

0

φ(x)− 1

n

n∑
m=1

φ
(
m
n

)
= −

ℓ∑
k=1

bk
nk
(
φ(k−1)(1)− φ(k−1)(0)

)
+

1

nℓ

∫ 1

0

B̃ℓ(nx)φ
(ℓ)(x) dx,

.
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Proof. Take f(x) = φ
(
x
n

)
, apply (3.5) to f , and make a simple change of variables.

□

By Schwarz’s inequality,∣∣∣∣∣
∫ 1

0

B̃ℓ(nx)φ
(ℓ)(x) dx

∣∣∣∣∣ ≤
Ç∫ 1

0

B̃ℓ(nx)
2 dx

å 1
2

∥φ(ℓ)∥L2(λ[0,1];C),

and ∫ 1

0

B̃ℓ(nx)
2 dx =

1

n

∫ n

0

B̃ℓ(x)
2 dx = ∥Bℓ∥2L2(λR;C).

Further, by Parseval’s identity and (3.3),

∥Bℓ∥2L2(λR;C) =
1

(2π)2ℓ

∑
n̸=0

1

n2ℓ
.

Hence, by (3.6),

(3.7)

∣∣∣∣∣
∫ 1

0

φ(x) dx− 1

n

n∑
m=1

φ
(
m
n

)
+

ℓ∑
k=1

bk
nk
(
φ(k−1)(1)− φ(k−1)(0)

)∣∣∣∣∣
≤
√
2ζ(2ℓ)

(2πn)ℓ
∥φ(ℓ)∥L2(λ[0,1];C).

From (3.7) one sees that if, for some n ≥ 1,

(3.8) lim
ℓ→∞

∥φ(ℓ)∥L2(λ[0,1];C)

(2πn)ℓ
= 0,

then ∫ 1

0

φ(x) dx− 1

n

n∑
m=1

φ
(
m
n

)
= − lim

ℓ→∞

ℓ∑
k=1

bk
nk
(
φ(k−1)(1)− φ(k−1)(0)

)
.

In particular, if φ ∈ C∞([0, 1];C) and φ(k) is periodic for all k ≥ 0, then (3.8)
implies that ∫ 1

0

φ(x) dx =
1

n

n∑
m=1

φ
(
m
n

)
,

a result that has a much simpler derivation (cf. Exercise 3.4 below).
More generally, because

∣∣φ(k−1)(1)− φ(k−1)(0)
∣∣ ≤ ∥φ(k)∥L2(λ[0,1];C),

∞∑
k=1

∥φ(k)∥L2(λ[0,1];C)

(2πn)k
<∞

implies that

(3.9)

∫ 1

0

φ(x) dx− 1

n

n∑
m=1

φ
(
m
n

)
= −

∞∑
k=1

bk
nk
(
φ(k−1)(1)− φ(k−1)(0)

)
,

where the series is absolutely convergent.
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Exercise 3.4. Suppose that φ and all its derivatives are periodic on [0, 1], and
show that

lim
ℓ→∞

∥φ(ℓ)∥L2(λ[0,1];C)

(2πn)ℓ
= 0 ⇐⇒

(
φ, em

)
L2(λ[0,1];C)

= 0 if |m| ≥ n

⇐⇒ φ =
∑

|m|<n

(
φ, em

)
L2(λ[0,1];C)

em.

Next, show that

1

n

n∑
j=1

em
(
j
n

)
= 0

for 1 ≤ |m| < n, and thereby arrive at the conclusion reached above.
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