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LECTURE 6: THE L' FOURIER TRANSFORM

By an easy rescaling argument, one knows that, for any L € Z™ and f €
CY([~L, L]; C) satistying f(—L) = f(L),
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Now suppose that f € C(R;C). Then

L
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f(z) = lim lim 3L g e Bt f(y) dy.
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Thus, if one can justify reversing the order in which the limits are taken, one would
have that

R
f(z) = lim ( / e’@”“y)d&) f(y) dy
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= Jlim 727T/2ﬂ36 </e f(y) dy) ds.

In other words, there is reason to hope that, under suitable conditions on f,

O f@)= 5 [ TR d where f(6) = [ e fg)dy.

The function f is called the Fourier transform of f, and our primary goal here
will be to find out in what sense (6.1) is true when f € L'(\g;C), but we will begin
with some computations involving f that don’t require it.
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