Lecture 7: Computations and Applications of L^1 Fourier Transforms

If $f \in L^1(\lambda_{[0,1)}; \mathbb{C})$, then it is clear that \hat{f} is continuous and that

(7.1)
$$||f||_{\mathbf{u}} \le ||f||_{L^1(\lambda_{[0,1)};\mathbb{C})}$$

Lemma 7.1. If $f \in C^1(\mathbb{R}, \mathbb{C}) \cap L^1(\lambda_{[0,1)}; \mathbb{C})$ and $f' \in L^1(\lambda_{[0,1)}; \mathbb{C})$, then

(7.2)
$$\widehat{f'}(\xi) = -\imath \xi \widehat{f}(\xi).$$

Proof. If f has compact support, then (7.2) is an easy application of integration by parts. To prove it under the given conditions, choose a function $\eta \in C^{\infty}(\mathbb{R}; [0, 1])$ for which $\eta(y) = 1$ when $y \in [-1, 1]$ and $\eta(y) = 0$ when $y \notin [-2, 2]$, and set $f_n(y) = \eta\left(\frac{y}{n}\right)f(y)$. Then $f_n \longrightarrow f$ and $f'_n \longrightarrow f'$ in $L^1(\lambda_{[0,1)}; \mathbb{C})$ and so

$$\widehat{f'}(\xi) = \lim_{n \to \infty} \widehat{f'_n}(\xi) = -i\xi \lim_{n \to \infty} \widehat{f_n}(\xi) = -i\xi \widehat{f}(\xi).$$

As a consequence of Lemma 7.1, it is easy to prove the *Riemann-Lebesgue lemma* in this context. Namely, (7.2) makes it clear for compactly support $f \in C^1(\mathbb{R}; \mathbb{C})$, and (7.1) makes it clear that the set of f's for which it is holds is closed in $L^1(\lambda_{[0,1)}; \mathbb{C})$.

We next turn to the computation of \hat{f} in two important cases.

Set $g_t(x) = (2\pi t)^{-\frac{1}{2}} e^{-\frac{x^2}{2}}$ for $(t,x) \in (0,\infty) \times \mathbb{R}$, and check that $\partial_t g_t(x) = \frac{1}{2} \partial_x^2 g_t(x)$. Hence, for any $\zeta \in \mathbb{C}$, integration by parts leads to

$$\partial_t \int e^{\zeta x} g_t(x) \, dx = \frac{1}{2} \int e^{\zeta x} \partial_x^2 g_t(x) \, dx = \frac{\zeta^2}{2} \int e^{\zeta x} g_t(x) \, dx.$$

Since

$$\int e^{\zeta x} g_t(x) \, dx = \int e^{t^{\frac{1}{2}\zeta x}} g_1(x) \, dx \longrightarrow 1$$

as $t \searrow 0$,

$$\int e^{\zeta x} g_t(x) \, dx = e^{\frac{t\zeta^2}{2}}.$$

In particular

(7.3)
$$\widehat{g_t}(\xi) = e^{-\frac{\xi^2}{2}}$$

Equivalently, $\widehat{g_t} = \left(\frac{2\pi}{t}\right)^{\frac{1}{2}} g_{\frac{1}{t}}$ and so

(7.4)
$$(\widehat{g}_t)^{\wedge} = 2\pi g_t.$$

Set
$$p_y(x) = \frac{1}{\pi} \frac{y}{x^2 + y^2}$$
 for $(y, x) \in (0, \infty) \times \mathbb{R}$, and note that
$$\int p_y(x) \, dx = \int p_1(x) \, dx = 1 \text{ for all } y > 0.$$

In addition, because $p_y(x)$ is the real part of $\frac{i}{\pi z}$ with z = x + iy, $(x, y) \rightsquigarrow p_y(x)$ is harmonic. Thus, $\partial_x^2 p_y = -\partial_y^2 p_y$, and so, by (7.2),

$$\partial_y^2 \widehat{p_y}(\xi) = \xi^2 \widehat{p_y}(\xi).$$

Thus, for each ξ ,

$$\widehat{p_y(\xi)} = a(\xi)e^{y\xi} + b(\xi)e^{-y\xi},$$

where, since $\widehat{p_y}(0) = 1$, $a(\xi) + b(\xi) = 1$. Because $|\widehat{p_y}(\xi)| \le 1$, $\xi \ge 0 \implies a(\xi) = 0$ & $b(\xi) = 1$ and $\xi < 0 \implies a(\xi) = 1$ & $b(\xi) = 0$. Hence

(7.5)
$$\widehat{p_y}(\xi) = e^{-y|\xi|}.$$

Here is an interesting application of equations (7.3) and (7.5). Since

$$\frac{1}{\xi^2 + y^2} = \int_0^\infty e^{-t(\xi^2 + y^2)} \, dx = \int_0^\infty e^{-ty^2} \widehat{g_{2t}}(\xi) \, dt$$

and $\left(\widehat{g_{2t}}\right)^{\wedge} = 2\pi g_{2t},$

$$\frac{\pi}{y}e^{-y|x|} = 2\pi \int_0^\infty e^{-ty^2} g_{2t}(x) \, dt = \pi^{\frac{1}{2}} \int_0^\infty t^{-\frac{1}{2}} e^{-ty^2} e^{-\frac{x^2}{4t}} \, dt.$$

Thus, for $x, y \in (0, \infty)$,

(7.6)
$$\int_0^\infty t^{-\frac{1}{2}} e^{-ty^2} e^{-\frac{x^2}{t}} dt = \frac{\pi^{\frac{1}{2}} e^{-2yx}}{y},$$

a computation which can also be done using a somewhat tricky change of variables.

Theorem 7.2. (Poisson Sum) Let $f \in L^1(\lambda_{\mathbb{R}}; \mathbb{C}) \cap C(\mathbb{R}; \mathbb{C})$, and assume that

$$\sum_{n\in\mathbb{Z}} \left(\sup_{x\in[0,1]} |f(x+n)| + |\hat{f}(2\pi n)| \right) < \infty.$$

Then

(7.7)
$$\sum_{n \in \mathbb{Z}} f(n) = \sum_{n \in \mathbb{Z}} \hat{f}(2\pi n).$$

Proof. Define $\tilde{f}(x) = \sum_{n \in \mathbb{Z}} f(x+n)$. Then \tilde{f} is a continuous periodic function with period 1, and

$$\left(\tilde{f}, \mathfrak{e}_{m}\right)_{L^{2}(\lambda_{[0,1]};\mathbb{C})} = \sum_{n \in \mathbb{Z}} \int_{0}^{1} e^{-i2\pi mx} f(x+n) \, dx = \int e^{-i2\pi mx} f(x) \, dx = \hat{f}(-2\pi m).$$

Thus, since $\sum_{m\in\mathbb{Z}} |(\tilde{f},\mathfrak{e}_m)_{L^{|}(\lambda_{[0,1)};\mathbb{C})} < \infty$,

$$\tilde{f}(x) = \sum_{m \in \mathbb{Z}} \hat{f}(-2\pi m) \mathbf{e}_m(x) = \sum_{m \in \mathbb{Z}} \hat{f}(2\pi m) \mathbf{e}_{-m}(x),$$

where the convergence of the series is absolute and uniform. By taking x = 0, (7.7) follows.

Equation (7.7) is known as the *Poisson summation formula*. Among its many applications is the following.

When $f = p_y$, (7.7) says that

$$\frac{y}{\pi} \sum_{n \in \mathbb{Z}} \frac{1}{y^2 + n^2} = \sum_{n \in \mathbb{Z}} e^{-2\pi y |n|} = \frac{1 + e^{-2\pi y}}{1 - e^{-2\pi y}} = \coth \pi y,$$

and so

(7.8)
$$\sum_{n\in\mathbb{Z}}\frac{1}{y^2+n^2} = \frac{\pi\coth\pi y}{y}$$

for y > 0.

A famous application of (7.8) is Euler's product formula:

(7.9)
$$\sin \pi x = \pi x \prod_{m=1}^{\infty} \left(1 - \frac{x^2}{m^2} \right).$$

To prove it, first observe that

$$\frac{1}{x^2 + m^2} = \frac{1}{2x} \partial_x \log(x^2 + m^2) = \frac{1}{2x} \partial_x \log\left(1 + \frac{x^2}{m^2}\right) \text{ for } m \neq 0$$

and that $\pi \coth \pi y = \partial_y \log(\sinh \pi y)$. Hence, by (7.8)

$$\frac{1}{x}\partial_x \log \prod_{n=1}^{\infty} \left(1 + \frac{x^2}{n^2}\right) + \frac{1}{x^2} = \frac{1}{x}\partial_x \log(\sinh \pi x),$$

which means that

$$\partial_x \log \prod_{n=1}^{\infty} \left(1 + \frac{x^2}{n^2} \right) = \partial_x \log(x^{-1} \sinh \pi x).$$

Integrating both sides from 0 to x, one gets

$$\log x \prod_{n=1}^{\infty} \left(1 + \frac{x^2}{n^2} \right) = \log(\sinh \pi x) - \log \pi = \log \frac{\sinh \pi x}{\pi x},$$

which means that

(7.10)
$$\sinh \pi x = \pi x \prod_{n=1}^{\infty} \left(1 + \frac{x^2}{n^2} \right)$$

from which (7.9) follows by analytic continuation.

Another application of (7.5) is a proof⁵ that

(7.11)
$$\lim_{R \to \infty} \int_{-R}^{R} \frac{\sin \xi x}{x} \, dx = \operatorname{sgn}(\xi)\pi \quad \text{for } \xi \neq 0.$$

We begin with the more or less trivial observation that

$$\int_{-R}^{R} \frac{\sin \xi x}{x} \, dx = \operatorname{sgn}(\xi) \int_{-R}^{R} \frac{\sin |\xi| x}{x} \, dx = \operatorname{sgn}(\xi) \int_{-|\xi|R}^{|\xi|R} \frac{\sin x}{x} \, dx$$

Thus, what we have to show is that

$$\lim_{R \to \infty} \int_{-R}^{R} \frac{\sin x}{x} \, dx = \pi. \tag{(*)}$$

The first step in the proof (*), is to show that if

$$g_R(\xi, y) \equiv \int_{-R}^{R} \frac{x \sin \xi x}{x^2 + y^2} \, dx \longrightarrow \pi e^{-y\xi} \quad \text{for } \xi > 0, \qquad (**)$$

then (*) holds. Indeed,

$$\left| \int_{-R}^{R} \frac{\sin \xi x}{x} \, dx - g_R(\xi, y) \right| \le 2y^2 \left| \int_{0}^{\infty} \frac{|\sin \xi x|}{x(x^2 + y^2)} \, dx \right| \le \xi \pi y,$$

and so (**) implies (*).

 $^{^5\}mathrm{The}$ most commonly given proof is based on contour integration and Cauchy's theorem.

The next step is to show that for each y > 0 there exists a continuous $\xi \in (0,\infty) \longrightarrow g(\xi,y) \in \mathbb{C}$ such that $g_R(\xi,y) \longrightarrow g(\xi,y)$ uniformly for ξ compact subsets of $(0,\infty)$. To this end, note that

$$g_R(\xi, y) = 2 \int_0^R \frac{x \sin \xi x}{x^2 + y^2} \, dx = \frac{2}{\xi} \left(-\frac{R \cos \xi R}{R^2 + y^2} + 2 \int_0^R \frac{(y^2 - x^2) \cos \xi x}{(x^2 + y^2)^2} \, dx \right)$$
$$\longrightarrow \frac{2}{\xi} \left(\frac{1}{y^2} + 2 \int_0^\infty \frac{(y^2 - x^2) \cos \xi x}{(x^2 + y^2)^2} \, dx \right)$$

uniformly for ξ in compacts subsets of $(0, \infty)$.

The final step is the identify $g(\xi, y)$ as $\pi e^{-y\xi}$. For this purpose, observe that

$$g_R(\xi, y) = -i \int_{-R}^{R} \frac{x e^{i\xi x}}{x^2 + y^2} \, dx = \partial_{\xi} f_R(\xi, y)$$

where

$$f_R(\xi, y) = -\frac{\pi}{y} \int_{-R}^{R} p_y(x) e^{i\xi x} \, dx \longrightarrow -\frac{\pi}{y} e^{-y\xi}$$

Hence

$$f_R(\eta) - f_R(\xi) = \int_{\xi}^{\eta} g_R(t, y) \, dt,$$

and therefore

$$\frac{\pi}{y} \left(e^{-y\xi} - e^{-y\eta} \right) = \int_{\xi}^{\eta} g(t,y) \, dt,$$

from which $g(\xi, y) = \pi e^{-y\xi}$ follows easily.

Exercise 7.3. Show that if $f \in L^1(\lambda_{[0,1)}; \mathbb{C})$ and $f_t(x) = t^{-1}f(t^{-1}x)$, then $\hat{f}_t(\xi) = \hat{f}(t\xi)$.

Exercise 7.4. Show that if $f \in C^2(\mathbb{R};\mathbb{C}) \cap L^1(\lambda_{[0,1)};\mathbb{C})$ and both f' and f'' are in $L^1(\lambda_{[0,1)};\mathbb{C})$, then $\hat{f} \in L^1(\lambda_{[0,1)};\mathbb{C})$.

Exercise 7.5. Using $\cosh t = 1 + \frac{t^2}{2} + O(t^4)$ and $\sinh t = t - \frac{t^3}{6} + O(t^5)$, prove from (7.8) that $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.

Exercise 7.6. Show that

$$\sum_{n\in\mathbb{Z}}e^{-\frac{\pi n^2}{t}} = t^{\frac{1}{2}}\sum_{n\in\mathbb{Z}}e^{-\pi tn^2},$$

a formula that plays an important role in the theory of Theta functions.

RES.18-015 Topics in Fourier Analysis Spring 2024

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.