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LECTURE 7: COMPUTATIONS AND APPLICATIONS OF L! FOURIER
TRANSFORMS

If f € L'(Aj,1); C), then it is clear that f is continuous and that

(7.1) ke < 1F 1123 o 0y 509 -
Lemma 7.1. If f € C*(R,C) N L*(Xjp,1); C) and f’ € L*(X\p,1); C), then
(7.2) 7'(&) = £ (©).

Proof. If f has compact support, then (7.2) is an easy application of integration by
parts. To prove it under the given conditions, choose a function n € C'*° (R; [0, 1})
for which n(y) = 1 when y € [-1,1] and n(y) = 0 when y ¢ [—2,2], and set
fa) =n(2)f(y). Then f, — f and f, — f’ in L'(Xjp1); C) and so
F1(€) = lim f1(6) = =€ lim fo(6) = —£f().
O
As a consequence of Lemma 7.1, it is easy to prove the Riemann-Lebesgue lemma
in this context. Namely, (7.2) makes it clear for compactly support f € C*(R;C),
and (7.1) makes it clear that the set of f’s for which it is holds is closed in
L1(>\[071);(C)- .
We next turn to the computation of f in two important cases.
Set gi(z) = (2nt)~"ze~T for (t,x) € (0,00) x R, and check that d,g:(x) =
%(’ﬁgt(x). Hence, for any ¢ € C, integration by parts leads to

1 2
Ht/e@gt(x) dr = 3 /egzaigt(x) dr = % /e@gt(a:) dx.
Since .
/e@”gt(:ﬂ) dzx = /eﬁq‘”gl(x) dr — 1
as t \, 0,

In particular

—~ _e
(7.3) gi(§) =e >
Equivalently, g; = (27”)% g1 and so
(74) (/g\t)/\ = 27Tgt.
Set py(x) = %a@yfyz for (y,z) € (0,00) x R, and note that

/py(x) dx = /pl(x) dx =1 for all y > 0.

In addition, because p,(z) is the real part of = with z = x 41y, (z,y) ~ py(z) is
harmonic. Thus, 82p, = —8§py, and so, by (7.2),

0y5y(€) = €2, ().
Thus, for each &,

—

Ppy(&) = a(€)e?s +b(&)e %,
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where, since py(0) = 1, a(§) + b(§) = 1. Because |}g®| <1,£&£>20 = a(§) =
0&b()=1and £ <0 = a(§) =1& b(§) = 0. Hence
(7.5) Py(€) = e YIEL
Here is an interesting application of equations (7.3) and (7.5). Since

o = /Do e HETY) gy — /00 e_tyzgz\t(f) dt

& +y? 0 0
and (ﬁg\t)/\ = 27gos,

™

o 2 1 > 1 2 z2
—evlzl = 27r/ e~ gy (a) dt = ﬂ/ tze W e dt.
y 0 0

Thus, for z,y € (0, c0),

> 22 e 2T
(7.6) / tTre W e T dt = _
0 Y
a computation which can also be done using a somewhat tricky change of variables.

Theorem 7.2. (Poisson Sum) Let f € L'(\g;C) N C(R;C), and assume that
> ( sup [f(z +n)[ + |f(27m)|) < oo.
net z€[0,1]

Then

(77) S f(n) = Y f2mm).

nez nez

Proof. Define f(z) = > mez f(@ +n). Then f is a continuous periodic function
with period 1, and

3 ! —12Tme _ —12Tmx —
(f,em)LQ()\[OYI];C) Zn%:Z/O e~ 2T f (x4 n) dr = /e mme f(p) do = f(—2mm).

Thus, since ), -, |(f, em)L|(A[011);C) < 0,
fl) =" f(=2mm)en(z) = D f2rm)e (),
mEZ meZ
where the convergence of the series is absolute and uniform. By taking = 0, (7.7)

follows. u

Equation (7.7) is known as the Poisson summation formule. Among its many
applications is the following.
When f = py, (7.7) says that

Y 1 _ —27y|n| _ 1 +672ﬂy _
;Eﬁ—&—nz —Ze g = coth 7y,

nez
and so
1 m coth my
(7.8) Z 242
nez Y +n Yy
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A famous application of (7.8) is Euler’s product formula:

. - 2
(7.9) sinTx = x H (1 — ﬁ) .

m=1
To prove it, first observe that
1
1'2 + m2

and that 7 coth my = J, log(sinh 7y). Hence, by (7.8)

1 9 oy 1 ( x2>
—23381;105;(90 +m)—2x8110g 1—i-m2 for m # 0

1 - z? 1 1
Eﬁx 1ogT£[1 (1 + ﬁ) + == ;81. log(sinh 7x),
which means that
oo 2
0y log H <1 + %) = 0, log(z ™! sinh 7).
n=1

Integrating both sides from 0 to x, one gets

o0 2 . h
log H (1 + %) = log(sinh 7z) — log 7 = log S 7rac7
n=1

T™r

which means that

. - a?
(7.10) sinhma = 7z H (1 + ﬁ)

n=1
from which (7.9) follows by analytic continuation.
Another application of (7.5) is a proof® that

R sinéx

(7.11) lim

Am )= dx =sgn(§)m for £ #0.

We begin with the more or less trivial observation that

R R IR
/ sinéx d:r:sgn(g)/ sin |¢|x d:ﬂzsgn(f)/ sine -

—R x —R x —|¢|R x

Thus, what we have to show is that

. R sing
lim
R—o0 _R

dr = . (*)
The first step in the proof (%), is to show that if

R _
gr(§,y) = /_R % dx — me™Y¢  for £ > 0, ()
then (x) holds. Indeed,
R .
sinéx
/ f dz — gr(&,y)

—-R

.
<22/ wdm)< ,
=L s ) =

and so (xx) implies (x).

5The most commonly given proof is based on contour integration and Cauchy’s theorem.
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The next step is to show that for each y > 0 there exists a continuous & €
(0,00) — g(&,y) € C such that gr(€,y) — ¢(§,y) uniformly for £ compact
subsets of (0,00). To this end, note that

R . I
gR(E,y)=2/O xsmgxdx:2< RCOSERjLQ/0 (3/2"’”2)‘30555”@)

22 + 42 e\ R24q2 (22 +12)2
2 < 1 /°° (y? — 2%) cos€x >
— = |- +2 S d
AV R

uniformly for £ in compacts subsets of (0, 00).
The final step is the identify g(¢,7) as me™¥¢. For this purpose, observe that

R €
%@m:ﬂ/ L de = B fr(Ey)

_rTr+y?
where

R
T T
fR(f:y):—*/ py(x)ezfxdx_>_fe (23

Y J-Rr Yy

Hence "
mw—m@:/gMWMa
13

and therefore 0
(e —emvm) =/ g(t,y) dt,
Yy 3

from which g(¢&,y) = me~¥¢ follows easily.

Exercise 7.3. Show that if f € L'(A,1);C) and fi(x) = ¢~ f(¢~'2), then fi(6) =
f(t).

Exercise 7.4. Show that if f € C*(R;C) N L (Ap,1); C) and both f” and f” are in
L'(Xjo,1y; C), then f € L'(Xp.1); C).

Exercise 7.5. Using cosht =1+ % +O(t*) and sinht = t — % +O(t?), prove from

2

(7.8) that >0 | L =T,

n=1 n2 6

Exercise 7.6. Show that

2 1 2

newz neZ
a formula that plays an important role in the theory of Theta functions.
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