Lecture 7: Computations and Applications of L^{1} Fourier
Transforms

If $f \in L^{1}\left(\lambda_{[0,1)} ; \mathbb{C}\right)$, then it is clear that \hat{f} is continuous and that

$$
\begin{equation*}
\|\hat{f}\|_{\mathrm{u}} \leq\|f\|_{L^{1}\left(\lambda_{[0,1)} ; \mathbb{C}\right)} \tag{7.1}
\end{equation*}
$$

Lemma 7.1. If $f \in C^{1}(\mathbb{R}, \mathbb{C}) \cap L^{1}\left(\lambda_{[0,1)} ; \mathbb{C}\right)$ and $f^{\prime} \in L^{1}\left(\lambda_{[0,1)} ; \mathbb{C}\right)$, then

$$
\begin{equation*}
\widehat{f^{\prime}}(\xi)=-\imath \xi \hat{f}(\xi) \tag{7.2}
\end{equation*}
$$

Proof. If f has compact support, then (7.2) is an easy application of integration by parts. To prove it under the given conditions, choose a function $\eta \in C^{\infty}(\mathbb{R} ;[0,1])$ for which $\eta(y)=1$ when $y \in[-1,1]$ and $\eta(y)=0$ when $y \notin[-2,2]$, and set $f_{n}(y)=\eta\left(\frac{y}{n}\right) f(y)$. Then $f_{n} \longrightarrow f$ and $f_{n}^{\prime} \longrightarrow f^{\prime}$ in $L^{1}\left(\lambda_{[0,1)} ; \mathbb{C}\right)$ and so

$$
\widehat{f^{\prime}}(\xi)=\lim _{n \rightarrow \infty} \widehat{f_{n}^{\prime}}(\xi)=-\imath \xi \lim _{n \rightarrow \infty} \widehat{f_{n}}(\xi)=-\imath \xi \hat{f}(\xi)
$$

As a consequence of Lemma 7.1, it is easy to prove the Riemann-Lebesgue lemma in this context. Namely, (7.2) makes it clear for compactly support $f \in C^{1}(\mathbb{R} ; \mathbb{C})$, and (7.1) makes it clear that the set of f 's for which it is holds is closed in $L^{1}\left(\lambda_{[0,1)} ; \mathbb{C}\right)$.

We next turn to the computation of \hat{f} in two important cases.
Set $g_{t}(x)=(2 \pi t)^{-\frac{1}{2}} e^{-\frac{x^{2}}{2}}$ for $(t, x) \in(0, \infty) \times \mathbb{R}$, and check that $\partial_{t} g_{t}(x)=$ $\frac{1}{2} \partial_{x}^{2} g_{t}(x)$. Hence, for any $\zeta \in \mathbb{C}$, integration by parts leads to

$$
\partial_{t} \int e^{\zeta x} g_{t}(x) d x=\frac{1}{2} \int e^{\zeta x} \partial_{x}^{2} g_{t}(x) d x=\frac{\zeta^{2}}{2} \int e^{\zeta x} g_{t}(x) d x
$$

Since

$$
\int e^{\zeta x} g_{t}(x) d x=\int e^{t^{\frac{1}{2}} \zeta x} g_{1}(x) d x \longrightarrow 1
$$

as $t \searrow 0$,

$$
\int e^{\zeta x} g_{t}(x) d x=e^{\frac{t \zeta^{2}}{2}}
$$

In particular

$$
\begin{equation*}
\widehat{g_{t}}(\xi)=e^{-\frac{\xi^{2}}{2}} \tag{7.3}
\end{equation*}
$$

Equivalently, $\widehat{g_{t}}=\left(\frac{2 \pi}{t}\right)^{\frac{1}{2}} g_{\frac{1}{t}}$ and so

$$
\begin{equation*}
\left(\widehat{g}_{t}\right)^{\wedge}=2 \pi g_{t} \tag{7.4}
\end{equation*}
$$

Set $p_{y}(x)=\frac{1}{\pi} \frac{y}{x^{2}+y^{2}}$ for $(y, x) \in(0, \infty) \times \mathbb{R}$, and note that

$$
\int p_{y}(x) d x=\int p_{1}(x) d x=1 \text { for all } y>0
$$

In addition, because $p_{y}(x)$ is the real part of $\frac{\imath}{\pi z}$ with $z=x+\imath y,(x, y) \rightsquigarrow p_{y}(x)$ is harmonic. Thus, $\partial_{x}^{2} p_{y}=-\partial_{y}^{2} p_{y}$, and so, by (7.2),

$$
\partial_{y}^{2} \widehat{p_{y}}(\xi)=\xi^{2} \widehat{p_{y}}(\xi)
$$

Thus, for each ξ,

$$
\widehat{p_{y}(\xi)}=a(\xi) e^{y \xi}+b(\xi) e^{-y \xi}
$$

where, since $\widehat{p_{y}}(0)=1, a(\xi)+b(\xi)=1$. Because $\left|\widehat{p_{y}(\xi)}\right| \leq 1, \xi \geq 0 \Longrightarrow a(\xi)=$ $0 \& b(\xi)=1$ and $\xi<0 \Longrightarrow a(\xi)=1 \& b(\xi)=0$. Hence

$$
\begin{equation*}
\widehat{p_{y}}(\xi)=e^{-y|\xi|} \tag{7.5}
\end{equation*}
$$

Here is an interesting application of equations (7.3) and (7.5). Since

$$
\frac{1}{\xi^{2}+y^{2}}=\int_{0}^{\infty} e^{-t\left(\xi^{2}+y^{2}\right)} d x=\int_{0}^{\infty} e^{-t y^{2}} \widehat{g_{2 t}}(\xi) d t
$$

and $\left(\widehat{g_{2 t}}\right)^{\wedge}=2 \pi g_{2 t}$,

$$
\frac{\pi}{y} e^{-y|x|}=2 \pi \int_{0}^{\infty} e^{-t y^{2}} g_{2 t}(x) d t=\pi^{\frac{1}{2}} \int_{0}^{\infty} t^{-\frac{1}{2}} e^{-t y^{2}} e^{-\frac{x^{2}}{4 t}} d t
$$

Thus, for $x, y \in(0, \infty)$,

$$
\begin{equation*}
\int_{0}^{\infty} t^{-\frac{1}{2}} e^{-t y^{2}} e^{-\frac{x^{2}}{t}} d t=\frac{\pi^{\frac{1}{2}} e^{-2 y x}}{y} \tag{7.6}
\end{equation*}
$$

a computation which can also be done using a somewhat tricky change of variables.
Theorem 7.2. (Poisson Sum) Let $f \in L^{1}\left(\lambda_{\mathbb{R}} ; \mathbb{C}\right) \cap C(\mathbb{R} ; \mathbb{C})$, and assume that

$$
\sum_{n \in \mathbb{Z}}\left(\sup _{x \in[0,1]}|f(x+n)|+|\hat{f}(2 \pi n)|\right)<\infty
$$

Then

$$
\begin{equation*}
\sum_{n \in \mathbb{Z}} f(n)=\sum_{n \in \mathbb{Z}} \hat{f}(2 \pi n) \tag{7.7}
\end{equation*}
$$

Proof. Define $\tilde{f}(x)=\sum_{n \in \mathbb{Z}} f(x+n)$. Then \tilde{f} is a continuous periodic function with period 1, and

$$
\left(\tilde{f}, \mathfrak{e}_{m}\right)_{L^{2}\left(\lambda_{[0,1]} ; \mathbb{C}\right)}=\sum_{n \in \mathbb{Z}} \int_{0}^{1} e^{-\imath 2 \pi m x} f(x+n) d x=\int e^{-\imath 2 \pi m x} f(x) d x=\hat{f}(-2 \pi m)
$$

Thus, since $\sum_{m \in \mathbb{Z}} \mid\left(\tilde{f}, \mathfrak{e}_{m}\right)_{L^{\mid}\left(\lambda_{[0,1)} ; \mathbb{C}\right)}<\infty$,

$$
\tilde{f}(x)=\sum_{m \in \mathbb{Z}} \hat{f}(-2 \pi m) \mathfrak{e}_{m}(x)=\sum_{m \in \mathbb{Z}} \hat{f}(2 \pi m) \mathfrak{e}_{-m}(x)
$$

where the convergence of the series is absolute and uniform. By taking $x=0,(7.7)$ follows.

Equation (7.7) is known as the Poisson summation formula. Among its many applications is the following.

When $f=p_{y},(7.7)$ says that

$$
\frac{y}{\pi} \sum_{n \in \mathbb{Z}} \frac{1}{y^{2}+n^{2}}=\sum_{n \in \mathbb{Z}} e^{-2 \pi y|n|}=\frac{1+e^{-2 \pi y}}{1-e^{-2 \pi y}}=\operatorname{coth} \pi y
$$

and so

$$
\begin{equation*}
\sum_{n \in \mathbb{Z}} \frac{1}{y^{2}+n^{2}}=\frac{\pi \operatorname{coth} \pi y}{y} \tag{7.8}
\end{equation*}
$$

for $y>0$.

A famous application of (7.8) is Euler's product formula:

$$
\begin{equation*}
\sin \pi x=\pi x \prod_{m=1}^{\infty}\left(1-\frac{x^{2}}{m^{2}}\right) \tag{7.9}
\end{equation*}
$$

To prove it, first observe that

$$
\frac{1}{x^{2}+m^{2}}=\frac{1}{2 x} \partial_{x} \log \left(x^{2}+m^{2}\right)=\frac{1}{2 x} \partial_{x} \log \left(1+\frac{x^{2}}{m^{2}}\right) \text { for } m \neq 0
$$

and that $\pi \operatorname{coth} \pi y=\partial_{y} \log (\sinh \pi y)$. Hence, by (7.8)

$$
\frac{1}{x} \partial_{x} \log \prod_{n=1}^{\infty}\left(1+\frac{x^{2}}{n^{2}}\right)+\frac{1}{x^{2}}=\frac{1}{x} \partial_{x} \log (\sinh \pi x)
$$

which means that

$$
\partial_{x} \log \prod_{n=1}^{\infty}\left(1+\frac{x^{2}}{n^{2}}\right)=\partial_{x} \log \left(x^{-1} \sinh \pi x\right)
$$

Integrating both sides from 0 to x, one gets

$$
\log x \prod_{n=1}^{\infty}\left(1+\frac{x^{2}}{n^{2}}\right)=\log (\sinh \pi x)-\log \pi=\log \frac{\sinh \pi x}{\pi x}
$$

which means that

$$
\begin{equation*}
\sinh \pi x=\pi x \prod_{n=1}^{\infty}\left(1+\frac{x^{2}}{n^{2}}\right) \tag{7.10}
\end{equation*}
$$

from which (7.9) follows by analytic continuation.
Another application of (7.5) is a proof ${ }^{5}$ that

$$
\begin{equation*}
\lim _{R \rightarrow \infty} \int_{-R}^{R} \frac{\sin \xi x}{x} d x=\operatorname{sgn}(\xi) \pi \quad \text { for } \xi \neq 0 \tag{7.11}
\end{equation*}
$$

We begin with the more or less trivial observation that

$$
\int_{-R}^{R} \frac{\sin \xi x}{x} d x=\operatorname{sgn}(\xi) \int_{-R}^{R} \frac{\sin |\xi| x}{x} d x=\operatorname{sgn}(\xi) \int_{-|\xi| R}^{|\xi| R} \frac{\sin x}{x} d x
$$

Thus, what we have to show is that

$$
\begin{equation*}
\lim _{R \rightarrow \infty} \int_{-R}^{R} \frac{\sin x}{x} d x=\pi \tag{*}
\end{equation*}
$$

The first step in the proof $(*)$, is to show that if

$$
\begin{equation*}
g_{R}(\xi, y) \equiv \int_{-R}^{R} \frac{x \sin \xi x}{x^{2}+y^{2}} d x \longrightarrow \pi e^{-y \xi} \quad \text { for } \xi>0 \tag{**}
\end{equation*}
$$

then $(*)$ holds. Indeed,

$$
\left.\left.\left|\int_{-R}^{R} \frac{\sin \xi x}{x} d x-g_{R}(\xi, y)\right| \leq 2 y^{2} \right\rvert\, \int_{0}^{\infty} \frac{|\sin \xi x|}{x\left(x^{2}+y^{2}\right)} d x\right) \leq \xi \pi y
$$

and so $(* *)$ implies $(*)$.

[^0]The next step is to show that for each $y>0$ there exists a continuous $\xi \in$ $(0, \infty) \longmapsto g(\xi, y) \in \mathbb{C}$ such that $g_{R}(\xi, y) \longrightarrow g(\xi, y)$ uniformly for ξ compact subsets of $(0, \infty)$. To this end, note that

$$
\begin{aligned}
g_{R}(\xi, y) & =2 \int_{0}^{R} \frac{x \sin \xi x}{x^{2}+y^{2}} d x=\frac{2}{\xi}\left(-\frac{R \cos \xi R}{R^{2}+y^{2}}+2 \int_{0}^{R} \frac{\left(y^{2}-x^{2}\right) \cos \xi x}{\left(x^{2}+y^{2}\right)^{2}} d x\right) \\
& \longrightarrow \frac{2}{\xi}\left(\frac{1}{y^{2}}+2 \int_{0}^{\infty} \frac{\left(y^{2}-x^{2}\right) \cos \xi x}{\left(x^{2}+y^{2}\right)^{2}} d x\right)
\end{aligned}
$$

uniformly for ξ in compacts subsets of $(0, \infty)$.
The final step is the identify $g(\xi, y)$ as $\pi e^{-y \xi}$. For this purpose, observe that

$$
g_{R}(\xi, y)=-\imath \int_{-R}^{R} \frac{x e^{\imath \xi x}}{x^{2}+y^{2}} d x=\partial_{\xi} f_{R}(\xi, y)
$$

where

$$
f_{R}(\xi, y)=-\frac{\pi}{y} \int_{-R}^{R} p_{y}(x) e^{\imath \xi x} d x \longrightarrow-\frac{\pi}{y} e^{-y \xi}
$$

Hence

$$
f_{R}(\eta)-f_{R}(\xi)=\int_{\xi}^{\eta} g_{R}(t, y) d t
$$

and therefore

$$
\frac{\pi}{y}\left(e^{-y \xi}-e^{-y \eta}\right)=\int_{\xi}^{\eta} g(t, y) d t
$$

from which $g(\xi, y)=\pi e^{-y \xi}$ follows easily.
Exercise 7.3. Show that if $f \in L^{1}\left(\lambda_{[0,1)} ; \mathbb{C}\right)$ and $f_{t}(x)=t^{-1} f\left(t^{-1} x\right)$, then $\hat{f}_{t}(\xi)=$ $\hat{f}(t \xi)$.

Exercise 7.4. Show that if $f \in C^{2}(\mathbb{R} ; \mathbb{C}) \cap L^{1}\left(\lambda_{[0,1)} ; \mathbb{C}\right)$ and both f^{\prime} and $f^{\prime \prime}$ are in $L^{1}\left(\lambda_{[0,1)} ; \mathbb{C}\right)$, then $\hat{f} \in L^{1}\left(\lambda_{[0,1)} ; \mathbb{C}\right)$.
Exercise 7.5. Using $\cosh t=1+\frac{t^{2}}{2}+O\left(t^{4}\right)$ and $\sinh t=t-\frac{t^{3}}{6}+O\left(t^{5}\right)$, prove from (7.8) that $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$.

Exercise 7.6. Show that

$$
\sum_{n \in \mathbb{Z}} e^{-\frac{\pi n^{2}}{t}}=t^{\frac{1}{2}} \sum_{n \in \mathbb{Z}} e^{-\pi t n^{2}}
$$

a formula that plays an important role in the theory of Theta functions.

MIT OpenCourseWare
https://ocw.mit.edu

RES.18-015 Topics in Fourier Analysis

Spring 2024

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

[^0]: ${ }^{5}$ The most commonly given proof is based on contour integration and Cauchy's theorem.

