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Lecture 7: Computations and Applications of L1 Fourier
Transforms

If f ∈ L1(λ[0,1);C), then it is clear that f̂ is continuous and that

(7.1) ∥f̂∥u ≤ ∥f∥L1(λ[0,1);C).

Lemma 7.1. If f ∈ C1(R,C) ∩ L1(λ[0,1);C) and f ′ ∈ L1(λ[0,1);C), then

(7.2) “f ′(ξ) = −ıξf̂(ξ).

Proof. If f has compact support, then (7.2) is an easy application of integration by
parts. To prove it under the given conditions, choose a function η ∈ C∞(R; [0, 1])
for which η(y) = 1 when y ∈ [−1, 1] and η(y) = 0 when y /∈ [−2, 2], and set
fn(y) = η

(
y
n

)
f(y). Then fn −→ f and f ′n −→ f ′ in L1(λ[0,1);C) and so“f ′(ξ) = lim

n→∞
f̂ ′n(ξ) = −ıξ lim

n→∞
f̂n(ξ) = −ıξf̂(ξ).

□

As a consequence of Lemma 7.1, it is easy to prove the Riemann-Lebesgue lemma
in this context. Namely, (7.2) makes it clear for compactly support f ∈ C1(R;C),
and (7.1) makes it clear that the set of f ’s for which it is holds is closed in
L1(λ[0,1);C).

We next turn to the computation of f̂ in two important cases.

Set gt(x) = (2πt)−
1
2 e−

x2

2 for (t, x) ∈ (0,∞) × R, and check that ∂tgt(x) =
1
2∂

2
xgt(x). Hence, for any ζ ∈ C, integration by parts leads to

∂t

∫
eζxgt(x) dx =

1

2

∫
eζx∂2xgt(x) dx =

ζ2

2

∫
eζxgt(x) dx.

Since ∫
eζxgt(x) dx =

∫
et

1
2 ζxg1(x) dx −→ 1

as t↘ 0, ∫
eζxgt(x) dx = e

tζ2

2 .

In particular

(7.3) “gt(ξ) = e−
ξ2

2

Equivalently, “gt = ( 2πt ) 1
2 g 1

t
and so

(7.4)
(
ĝt)

∧ = 2πgt.

Set py(x) =
1
π

y
x2+y2 for (y, x) ∈ (0,∞)× R, and note that∫

py(x) dx =

∫
p1(x) dx = 1 for all y > 0.

In addition, because py(x) is the real part of ı
πz with z = x+ ıy, (x, y)⇝ py(x) is

harmonic. Thus, ∂2xpy = −∂2ypy, and so, by (7.2),

∂2y“py(ξ) = ξ2“py(ξ).
Thus, for each ξ, ’py(ξ) = a(ξ)eyξ + b(ξ)e−yξ,
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where, since “py(0) = 1, a(ξ) + b(ξ) = 1. Because |’py(ξ)| ≤ 1, ξ ≥ 0 =⇒ a(ξ) =
0 & b(ξ) = 1 and ξ < 0 =⇒ a(ξ) = 1 & b(ξ) = 0. Hence

(7.5) “py(ξ) = e−y|ξ|.

Here is an interesting application of equations (7.3) and (7.5). Since

1

ξ2 + y2
=

∫ ∞

0

e−t(ξ
2+y2) dx =

∫ ∞

0

e−ty
2”g2t(ξ) dt

and
(”g2t)∧ = 2πg2t,

π

y
e−y|x| = 2π

∫ ∞

0

e−ty
2

g2t(x) dt = π
1
2

∫ ∞

0

t−
1
2 e−ty

2

e−
x2

4t dt.

Thus, for x, y ∈ (0,∞),

(7.6)

∫ ∞

0

t−
1
2 e−ty

2

e−
x2

t dt =
π

1
2 e−2yx

y
,

a computation which can also be done using a somewhat tricky change of variables.

Theorem 7.2. (Poisson Sum) Let f ∈ L1(λR;C) ∩ C(R;C), and assume that∑
n∈Z

Ç
sup
x∈[0,1]

|f(x+ n)|+ |f̂(2πn)|
å
<∞.

Then

(7.7)
∑
n∈Z

f(n) =
∑
n∈Z

f̂(2πn).

Proof. Define f̃(x) =
∑
n∈Z f(x + n). Then f̃ is a continuous periodic function

with period 1, and(
f̃ , em

)
L2(λ[0,1];C)

=
∑
n∈Z

∫ 1

0

e−ı2πmxf(x+ n) dx =

∫
e−ı2πmxf(x) dx = f̂(−2πm).

Thus, since
∑
m∈Z |(f̃ , em)L|(λ[0,1);C) <∞,

f̃(x) =
∑
m∈Z

f̂(−2πm)em(x) =
∑
m∈Z

f̂(2πm)e−m(x),

where the convergence of the series is absolute and uniform. By taking x = 0, (7.7)
follows. □

Equation (7.7) is known as the Poisson summation formula. Among its many
applications is the following.

When f = py, (7.7) says that

y

π

∑
n∈Z

1

y2 + n2
=
∑
n∈Z

e−2πy|n| =
1 + e−2πy

1− e−2πy
= cothπy,

and so

(7.8)
∑
n∈Z

1

y2 + n2
=
π cothπy

y

for y > 0.
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A famous application of (7.8) is Euler’s product formula:

(7.9) sinπx = πx
∞∏
m=1

Å
1− x2

m2

ã
.

To prove it, first observe that

1

x2 +m2
=

1

2x
∂x log

(
x2 +m2

)
=

1

2x
∂x log

Å
1 +

x2

m2

ã
for m ̸= 0

and that π cothπy = ∂y log(sinhπy). Hence, by (7.8)

1

x
∂x log

∞∏
n=1

Å
1 +

x2

n2

ã
+

1

x2
=

1

x
∂x log(sinhπx),

which means that

∂x log
∞∏
n=1

Å
1 +

x2

n2

ã
= ∂x log(x

−1 sinhπx).

Integrating both sides from 0 to x, one gets

log x
∞∏
n=1

Å
1 +

x2

n2

ã
= log(sinhπx)− log π = log

sinhπx

πx
,

which means that

(7.10) sinhπx = πx
∞∏
n=1

Å
1 +

x2

n2

ã
from which (7.9) follows by analytic continuation.

Another application of (7.5) is a proof5 that

(7.11) lim
R→∞

∫ R

−R

sin ξx

x
dx = sgn(ξ)π for ξ ̸= 0.

We begin with the more or less trivial observation that∫ R

−R

sin ξx

x
dx = sgn(ξ)

∫ R

−R

sin |ξ|x
x

dx = sgn(ξ)

∫ |ξ|R

−|ξ|R

sinx

x
dx.

Thus, what we have to show is that

lim
R→∞

∫ R

−R

sinx

x
dx = π. (∗)

The first step in the proof (∗), is to show that if

gR(ξ, y) ≡
∫ R

−R

x sin ξx

x2 + y2
dx −→ πe−yξ for ξ > 0, (∗∗)

then (∗) holds. Indeed,∣∣∣∣∣
∫ R

−R

sin ξx

x
dx− gR(ξ, y)

∣∣∣∣∣ ≤ 2y2
∣∣∣∣∫ ∞

0

| sin ξx|
x(x2 + y2)

dx

ã
≤ ξπy,

and so (∗∗) implies (∗).

5The most commonly given proof is based on contour integration and Cauchy’s theorem.
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The next step is to show that for each y > 0 there exists a continuous ξ ∈
(0,∞) 7−→ g(ξ, y) ∈ C such that gR(ξ, y) −→ g(ξ, y) uniformly for ξ compact
subsets of (0,∞). To this end, note that

gR(ξ, y) = 2

∫ R

0

x sin ξx

x2 + y2
dx =

2

ξ

Ç
−R cos ξR

R2 + y2
+ 2

∫ R

0

(y2 − x2) cos ξx

(x2 + y2)2
dx

å
−→ 2

ξ

Å
1

y2
+ 2

∫ ∞

0

(y2 − x2) cos ξx

(x2 + y2)2
dx

ã
uniformly for ξ in compacts subsets of (0,∞).

The final step is the identify g(ξ, y) as πe−yξ. For this purpose, observe that

gR(ξ, y) = −ı
∫ R

−R

xeıξx

x2 + y2
dx = ∂ξfR(ξ, y)

where

fR(ξ, y) = −π
y

∫ R

−R
py(x)e

ıξx dx −→ −π
y
e−yξ.

Hence

fR(η)− fR(ξ) =

∫ η

ξ

gR(t, y) dt,

and therefore
π

y

(
e−yξ − e−yη

)
=

∫ η

ξ

g(t, y) dt,

from which g(ξ, y) = πe−yξ follows easily.

Exercise 7.3. Show that if f ∈ L1(λ[0,1);C) and ft(x) = t−1f
(
t−1x), then f̂t(ξ) =

f̂(tξ).

Exercise 7.4. Show that if f ∈ C2(R;C)∩L1(λ[0,1);C) and both f ′ and f ′′ are in

L1(λ[0,1);C), then f̂ ∈ L1(λ[0,1);C).

Exercise 7.5. Using cosh t = 1+ t2

2 +O(t4) and sinh t = t− t3

6 +O(t5), prove from

(7.8) that
∑∞
n=1

1
n2 = π2

6 .

Exercise 7.6. Show that ∑
n∈Z

e−
πn2

t = t
1
2

∑
n∈Z

e−πtn
2

,

a formula that plays an important role in the theory of Theta functions.
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