LECTURE 9: THE ORNSTEIN-UHLENBECK SEMIGROUP

Set
$$g_t(x) = (2\pi t)^{-\frac{1}{2}} e^{-\frac{x^2}{t}}$$
, and note that

(9.1)
$$\int g_s(x-\xi)g_t(\xi-y) \, d\xi = g_{s+t}(y-x) \text{ and } \partial_t g_t(x) = \frac{1}{2}\partial_x^2 g_t(x).$$

For $(t, x, y) \in (0, \infty) \times \mathbb{R} \times \mathbb{R}$, define

$$p(t, x, y) = g_{1-e^{-t}} (y - e^{-\frac{t}{2}}x)$$

(9.2)
$$= (2\pi(1-e^{-t}))^{-\frac{1}{2}} \exp\left(-\frac{(y-e^{-\frac{t}{2}}x)^2}{2(1-e^{-t})}\right) = e^{\frac{t}{2}}g_{e^t-1}(x-e^{\frac{t}{2}}y).$$

From the first part of (9.1) and the third equality in (9.2), we see that

$$\int p(s,x,\xi)p(t,\xi,y) d\xi = e^{\frac{t}{2}} \int g_{1-e^{-s}} (\xi - e^{-\frac{s}{2}}y) g_{e^t-1} (\xi - e^{\frac{t}{2}}x) d\xi$$
$$= e^{\frac{t}{2}} g_{e^t-e^{-s}} (e^{\frac{t}{2}}y - e^{-\frac{s}{2}}x) = p(s+t,x,y).$$

Hence p(t, x, y) satisfies the Chapman-Kolmogorov equation

$$(9.3) p(s+t,x,y) = \int p(s,x,\xi)p(t,\xi,y) d\xi.$$

In addition, using the second part of (9.1), one sees that

(9.4)
$$\partial_t p(t, x, y) = \mathcal{L}_x p(t, x, y) \text{ where } \mathcal{L}_x = \frac{1}{2} (\partial_x^2 - x \partial_x).$$

Next define

(9.5)
$$P_t \varphi(x) = \int \varphi(y) p(t, x, y) \, dy$$

for $\varphi \in C(\mathbb{R}; \mathbb{C})$ with at most exponential growth at ∞ , and use (9.3) to see that $\{P_t: t>0\}$ is a semigroup (i.e., $P_{s+t}=P_s\circ P_t$). In addition, use (9.4) to show that

$$\partial_t P_t \varphi = \mathcal{L} P_t \varphi.$$

After making the change of variable $y \to e^{\frac{t}{2}}y$, one sees that another expression for $P_t\varphi$ is

$$(9.7) P_t \varphi(x) = \int \varphi(e^{-\frac{t}{2}}y) g_{e^t - 1}(y - x) dy = \int g_1(y) \varphi((1 - e^{-t})^{\frac{1}{2}}y + x) dy,$$

from which it is easy to see that $P_t\varphi \longrightarrow \varphi$ uniformly on compact subsets as $t \searrow 0$. Further, if $p \in [1, \infty)$, then, by Minkowski's inequality,

$$||P_t f||_{L^p(\lambda_{\mathbb{R}};\mathbb{C})} \le \int g_1(y) \left(\int |f((1-e^{-t})^{\frac{1}{2}}y + x)|^p dy \right)^{\frac{1}{p}} = ||f||_{L^p(\lambda_{\mathbb{R}};\mathbb{C})},$$

and, as $t \searrow 0$,

$$||P_t f - f||_{L^p(\lambda_{\mathbb{R}};\mathbb{C})} \le \int g_1(y) \left(\int |f((1 - e^{-t})^{\frac{1}{2}}y + x) - f(x)|^p dy \right)^{\frac{1}{p}} dy \longrightarrow 0$$

since

$$2\|f\|_{L^p(\lambda_{\mathbb{R}};\mathbb{C})} \ge \left(\int |f((1-e^{-t})^{\frac{1}{2}}y+x)-f(x)|^p dy\right)^{\frac{1}{p}} \longrightarrow 0.$$

Therefore we know that

(9.8)
$$||P_t f||_{L^p(\lambda_{\mathbb{R}};\mathbb{C})} \le ||f||_{L^p(\lambda_{\mathbb{R}};\mathbb{C})} \text{ and } \lim_{t \to 0} ||P_t f - f||_{L^p(\lambda_{\mathbb{R}};\mathbb{C})} = 0.$$

In particular, we have now shown that $\{P_t: t>0\}$ is a continuous contraction semigroup, known as the *Ornstein-Uhlenbeck* semigroup, on $L^p(\lambda_{\mathbb{R}}; \mathbb{C})$ for each $p \in [1, \infty)$.

Although $\{P_t: t>0\}$ is a continuous semigroup on the Lebesgue spaces $L^p(\lambda_{\mathbb{R}};\mathbb{C})$, these are not the Lebesgue spaces on which it acts most naturally. Instead, one should consider its action on the spaces $L^p(\gamma;\mathbb{C})$, where γ is the standard Gauss measure $\gamma(dx) = (2\pi)^{-\frac{1}{2}} e^{-\frac{x^2}{2}} \lambda_{\mathbb{R}}(dx)$. The reason why is that

$$e^{-\frac{x^2}{2}}p(t,x,y) = p(t,y,x)e^{-\frac{y^2}{2}},$$

which means that

(9.9)
$$(\varphi, P_t \psi)_{L^2(\gamma; \mathbb{C})} = (P_t \varphi, \psi)_{L^2(\gamma; \mathbb{C})}$$

Hence, since $P_t \mathbf{1} = \mathbf{1}$,

$$\int P_t \varphi \, d\gamma = (\varphi, P_t \mathbf{1})_{L^2(\gamma; \mathbb{C})} = \int \varphi \, d\gamma.$$

At the same time, by Jensen's inequality, $|P_t\varphi|^p \leq P_t|\varphi|^P$, and so,

$$\int |P_t \varphi|^p \, d\gamma \le \int |P_t| \varphi|^p \, d\gamma = \int |\varphi|^p \, d\gamma.$$

Thus,

$$(9.10) ||P_t\varphi||_{L^p(\gamma;\mathbb{C})} \le ||\varphi||_{L^p(\gamma;\mathbb{C})} \text{ for all } p \in [1,\infty).$$

In addition, if $\varphi \in C_b(\mathbb{R}; \mathbb{C})$, then $\|P_t\varphi\|_u \leq \|\varphi\|_u$ and $P_t\varphi \longrightarrow \varphi$ pointwise as $t \searrow 0$, and therefore, for each $p \in [1, \infty)$, $\|P_t\varphi - \varphi\|_{L^p(\gamma;\mathbb{C})} \longrightarrow 0$ as $t \searrow 0$. Finally, if $\varphi \in L^p(\mathbb{R};\mathbb{C})$, then there exists a sequence $\{\varphi_n : n \geq 1\} \subseteq C_b(\mathbb{R};\mathbb{C})$ such that $\lim_{n\to\infty} \|f_n - f\|_{L^p(\gamma;\mathbb{C})} = 0$, and

$$||P_t\varphi - \varphi||_{L^p(\gamma;\mathbb{C})} \le ||P_t(\varphi - \varphi_n)||_{L^p(\gamma;\mathbb{C})} + ||P_t\varphi_n - \varphi_n||_{L^p(\gamma;\mathbb{C})} + ||\varphi_n - \varphi||_{L^p(\gamma;\mathbb{C})} \le 2||\varphi_n - \varphi||_{L^p(\gamma;\mathbb{C})} + ||P_t\varphi_n - \varphi_n||_{L^p(\gamma;\mathbb{C})}.$$

Thus, after first letting $t \searrow 0$ and then $n \to \infty$, we see that

(9.11)
$$\lim_{t \searrow 0} \|P_t \varphi - \varphi\|_{L^p(\gamma; \mathbb{C})} = 0 \text{ for all } p \in [1, \infty).$$

Summarizing, $\{P_t: t>0\}$ is a continuous contraction semigroup on $L^p(\gamma; \mathbb{C})$ for each $p \in [1, \infty)$ and P_t is self-adjoint on $L^2(\gamma; \mathbb{C})$.

Exercise 9.1. Show that

and that

for $\varphi \in L^2(\gamma; \mathbb{C})$. The inequality in (9.12) is the *Poincaré inequality* for γ .

Hint: Note that if suffices to handle $\varphi \in C^2_b(\mathbb{R}; \mathbb{C})$ for which $(\varphi, \mathbf{1})_{L^2(\gamma; \mathbb{C})} = 0$. Next, given such a φ , show that

$$(P_t\varphi)' = e^{-\frac{t}{2}} P_t\varphi' \text{ and } -\partial_t \|P_t\varphi\|_{L^2(\gamma;\mathbb{C})}^2 = \|(P_t\varphi)'\|_{L^2(\gamma;\mathbb{C})}^2.$$

Use these to show that

$$\partial_t \|P_t \varphi\|_{L^2(\gamma;\mathbb{C})}^2 \le e^{-t} \|(P_t \varphi)'\|_{L^2(\gamma;\mathbb{C})}^2 \le e^{-t} \|\varphi'\|_{L^2(\gamma;\mathbb{C})}^2.$$

RES.18-015 Topics in Fourier Analysis Spring 2024

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.