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LECTURE 9: THE ORNSTEIN-UHLENBECK SEMIGROUP

1

Set g:(x) = (2mt) " ze _T'T and note that

(9.1) / 952 — E)g1(€ — y) dE = gasaly — ) and Bygy(x) = 102,(x).
For (t,z,y) € (0,00) X R x R, define

Pt 2, y) = g1t (y — e )

9.2 1 —e5g)? ¢ ¢
52) =@2r(1—e") Zexp <(y_)) =e2ge_1(z—ey).

2(1—e7t)
From the first part of (9.1) and the third equality in (9.2), we see that
[ptsc et de =t [orea(€ - e i)gu (6~ eha) de
—e2gut_o- (e%y - e_%:v) =p(s+t,x,y).
Hence p(t, z,y) satisfies the Chapman—Kolmogorov equation
93) s+t = [ ploa Oplt. &) de.
In addition, using the second part of (9.1), one sees that
(9.4) Op(t,x,y) = Lop(t,x,y) where L, = (02 — 20,).
Next define
(9-5) Prp(x) = /@(y)p(t,%y) dy

for ¢ € C(R;C) with at most exponential growth at oo, and use (9.3) to see that
{P; : t > 0} is a semigroup (i.e., Ps1+ = Ps; o P;). In addition, use (9.4) to show
that

After making the change of variable y — e%y, one sees that another expression for
PtQD is

(9.7)  Pip(z) = /w(e’%y)geu(y —z)dy = /gl(y)w((l —e )3y + ) dy,

from which it is easy to see that P,pp — ¢ uniformly on compact subsets as ¢ ~\, 0.
Further, if p € [1,00), then, by Minkowski’s inequality,

1P lrorser < [ o) ([17(0 =i+ 0)dy)” =17 lzsoec
and, as t \, 0,

[Pef — fllor(agsc) < /91(y) </|f((1 - eft)%y‘i'%‘) — f@)| dy>E dy — 0
since

2l = ([17(0 = ety +a) - s )" — 0.
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Therefore we know that
(9.8) 1P flle (rgsc) < I flle(agsc) and tlg% | Pef = fllze(apsc) = 0

In particular, we have now shown that {P; : ¢ > 0} is a continuous contraction
semigroup, known as the Ornstein—Uhlenbeck semigroup, on LP(\g;C) for each
p € [1,00).

Although {P; : t > 0} is a continuous semigroup on the Lebesgue spaces
L?(Ag; C), these are not the Lebesgue spaces on which it acts most naturally. In-
stead, one should consider its action on the spaces L?(y; C), where ~ is the standard

Gauss measure y(dx) = (QW)’%e*%)\R(daﬂ). The reason why is that

[N

Y

22
e” 2 p(t,x,y) = p(t,y,r)e” 7,

which means that

(99) ((pa th) L2(v;C) = (Pt% ¢) L2(y;C)"

Hence, since P11 =1,

/th dy = (0, P1) o0y = /wdv-

At the same time, by Jensen’s inequality, | P[P < P;|p|”, and so,
[1pspar < [pigray= [ jelr ar.

(9.10) ||Pt<PHLP(7;(C) < H(p||LTJ(7;C) for all p € [1, ).

Thus,

In addition, if ¢ € Cy(R;C), then |Pip|lu < [l¢|lu and Pip — ¢ pointwise as

t \ 0, and therefore, for each p € [1,00), || Pi — @[/ Lr(y;c) — 0 as t N\, 0. Finally,
if ¢ € LP(R;C), then there exists a sequence {¢, : n > 1} C Cp(R;C) such that
limy, o0 an - f”LP('y;(C) =0, and

| Prp — (P”LP(V;C) < 1Py — %)Hm(w;c) + | Prpn — @nHLP('y;(C) + lon — SOHLT’(W;C)
< 2[|pn — 80||Lv(~f;<c) + || Prpn — SDTLHLP(v;(C)-
Thus, after first letting ¢t \, 0 and then n — oo, we see that

(9.11) }{% | Pro — @l Lr(yic) = 0 for all p € [1, 00).

Summarizing, {P; : ¢ > 0} is a continuous contraction semigroup on LP(vy;C)
for each p € [1,00) and P is self-adjoint on L?(y; C).

Exercise 9.1. Show that

(912) H(p - (907 1)L2('y;C)Hiz(,ﬁc) < H(pl||%2(7;(C) for e Cé (R7 C)
and that
(9.13) HPth = (¢, I)LQ(W;C)‘|;(7;C) < e_tHgo = (%, 1)L2(7§C)H2L?('~/;C)

for ¢ € L?(7y; C). The inequality in (9.12) is the Poincaré inequality for -.
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Hint: Note that if suffices to handle ¢ € CZ(R;C) for which (¢,1)r2(,,c) = 0.
Next, given such a ¢, show that
_t
(Pip) = e 2P’ and — 8[|PipllT2(rc) = 1(Pr0) 12 (sc) -
Use these to show that

_ 2 _
at"Pt<p‘|%2(v;C) <e tH(Pt@)/HM(%c) <e tH‘PI”%?('y;C)'
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