Lecture 9: The Ornstein-Uhlenbeck Semigroup

Set $g_{t}(x)=(2 \pi t)^{-\frac{1}{2}} e^{-\frac{x^{2}}{t}}$, and note that

$$
\begin{equation*}
\int g_{s}(x-\xi) g_{t}(\xi-y) d \xi=g_{s+t}(y-x) \text { and } \partial_{t} g_{t}(x)=\frac{1}{2} \partial_{x}^{2} g_{t}(x) \tag{9.1}
\end{equation*}
$$

For $(t, x, y) \in(0, \infty) \times \mathbb{R} \times \mathbb{R}$, define

$$
\begin{align*}
p(t, x, y) & =g_{1-e^{-t}}\left(y-e^{-\frac{t}{2}} x\right) \\
& =\left(2 \pi\left(1-e^{-t}\right)\right)^{-\frac{1}{2}} \exp \left(-\frac{\left(y-e^{-\frac{t}{2}} x\right)^{2}}{2\left(1-e^{-t}\right)}\right)=e^{\frac{t}{2}} g_{e^{t}-1}\left(x-e^{\frac{t}{2}} y\right) \tag{9.2}
\end{align*}
$$

From the first part of (9.1) and the third equality in (9.2), we see that

$$
\begin{aligned}
& \int p(s, x, \xi) p(t, \xi, y) d \xi=e^{\frac{t}{2}} \int g_{1-e^{-s}}\left(\xi-e^{-\frac{s}{2}} y\right) g_{e^{t}-1}\left(\xi-e^{\frac{t}{2}} x\right) d \xi \\
& \quad=e^{\frac{t}{2}} g_{e^{t}-e^{-s}}\left(e^{\frac{t}{2}} y-e^{-\frac{s}{2}} x\right)=p(s+t, x, y)
\end{aligned}
$$

Hence $p(t, x, y)$ satisfies the Chapman-Kolmogorov equation

$$
\begin{equation*}
p(s+t, x, y)=\int p(s, x, \xi) p(t, \xi, y) d \xi \tag{9.3}
\end{equation*}
$$

In addition, using the second part of (9.1), one sees that

$$
\begin{equation*}
\partial_{t} p(t, x, y)=\mathcal{L}_{x} p(t, x, y) \text { where } \mathcal{L}_{x}=\frac{1}{2}\left(\partial_{x}^{2}-x \partial_{x}\right) \tag{9.4}
\end{equation*}
$$

Next define

$$
\begin{equation*}
P_{t} \varphi(x)=\int \varphi(y) p(t, x, y) d y \tag{9.5}
\end{equation*}
$$

for $\varphi \in C(\mathbb{R} ; \mathbb{C})$ with at most exponential growth at ∞, and use (9.3) to see that $\left\{P_{t}: t>0\right\}$ is a semigroup (i.e., $P_{s+t}=P_{s} \circ P_{t}$). In addition, use (9.4) to show that

$$
\begin{equation*}
\partial_{t} P_{t} \varphi=\mathcal{L} P_{t} \varphi \tag{9.6}
\end{equation*}
$$

After making the change of variable $y \rightarrow e^{\frac{t}{2}} y$, one sees that another expression for $P_{t} \varphi$ is

$$
\begin{equation*}
P_{t} \varphi(x)=\int \varphi\left(e^{-\frac{t}{2}} y\right) g_{e^{t}-1}(y-x) d y=\int g_{1}(y) \varphi\left(\left(1-e^{-t}\right)^{\frac{1}{2}} y+x\right) d y \tag{9.7}
\end{equation*}
$$

from which it is easy to see that $P_{t} \varphi \longrightarrow \varphi$ uniformly on compact subsets as $t \searrow 0$. Further, if $p \in[1, \infty)$, then, by Minkowski's inequality,

$$
\left\|P_{t} f\right\|_{L^{p}\left(\lambda_{\mathbb{R}} ; \mathbb{C}\right)} \leq \int g_{1}(y)\left(\int\left|f\left(\left(1-e^{-t}\right)^{\frac{1}{2}} y+x\right)\right|^{p} d y\right)^{\frac{1}{p}}=\|f\|_{L^{p}\left(\lambda_{\mathbb{R}} ; \mathbb{C}\right)}
$$

and, as $t \searrow 0$,

$$
\left\|P_{t} f-f\right\|_{L^{p}\left(\lambda_{\mathbb{R}} ; \mathbb{C}\right)} \leq \int g_{1}(y)\left(\int\left|f\left(\left(1-e^{-t}\right)^{\frac{1}{2}} y+x\right)-f(x)\right|^{p} d y\right)^{\frac{1}{p}} d y \longrightarrow 0
$$

since

$$
2\|f\|_{L^{p}\left(\lambda_{\mathbb{R}} ; \mathbb{C}\right)} \geq\left(\int\left|f\left(\left(1-e^{-t}\right)^{\frac{1}{2}} y+x\right)-f(x)\right|^{p} d y\right)^{\frac{1}{p}} \longrightarrow 0
$$

Therefore we know that

$$
\begin{equation*}
\left\|P_{t} f\right\|_{L^{p}\left(\lambda_{\mathbb{R}} ; \mathbb{C}\right)} \leq\|f\|_{L^{p}\left(\lambda_{\mathbb{R}} ; \mathbb{C}\right)} \text { and } \lim _{t \searrow 0}\left\|P_{t} f-f\right\|_{L^{p}\left(\lambda_{\mathbb{R}} ; \mathbb{C}\right)}=0 \tag{9.8}
\end{equation*}
$$

In particular, we have now shown that $\left\{P_{t}: t>0\right\}$ is a continuous contraction semigroup, known as the Ornstein-Uhlenbeck semigroup, on $L^{p}\left(\lambda_{\mathbb{R}} ; \mathbb{C}\right)$ for each $p \in[1, \infty)$.

Although $\left\{P_{t}: t>0\right\}$ is a continuous semigroup on the Lebesgue spaces $L^{p}\left(\lambda_{\mathbb{R}} ; \mathbb{C}\right)$, these are not the Lebesgue spaces on which it acts most naturally. Instead, one should consider its action on the spaces $L^{p}(\gamma ; \mathbb{C})$, where γ is the standard Gauss measure $\gamma(d x)=(2 \pi)^{-\frac{1}{2}} e^{-\frac{x^{2}}{2}} \lambda_{\mathbb{R}}(d x)$. The reason why is that

$$
e^{-\frac{x^{2}}{2}} p(t, x, y)=p(t, y, x) e^{-\frac{y^{2}}{2}}
$$

which means that

$$
\begin{equation*}
\left(\varphi, P_{t} \psi\right)_{L^{2}(\gamma ; \mathbb{C})}=\left(P_{t} \varphi, \psi\right)_{L^{2}(\gamma ; \mathbb{C})} \tag{9.9}
\end{equation*}
$$

Hence, since $P_{t} \mathbf{1}=\mathbf{1}$,

$$
\int P_{t} \varphi d \gamma=\left(\varphi, P_{t} \mathbf{1}\right)_{L^{2}(\gamma ; \mathbb{C})}=\int \varphi d \gamma
$$

At the same time, by Jensen's inequality, $\left|P_{t} \varphi\right|^{p} \leq P_{t}|\varphi|^{P}$, and so,

$$
\int\left|P_{t} \varphi\right|^{p} d \gamma \leq \int P_{t}|\varphi|^{p} d \gamma=\int|\varphi|^{p} d \gamma
$$

Thus,

$$
\begin{equation*}
\left\|P_{t} \varphi\right\|_{L^{p}(\gamma ; \mathbb{C})} \leq\|\varphi\|_{L^{p}(\gamma ; \mathbb{C})} \text { for all } p \in[1, \infty) \tag{9.10}
\end{equation*}
$$

In addition, if $\varphi \in C_{\mathrm{b}}(\mathbb{R} ; \mathbb{C})$, then $\left\|P_{t} \varphi\right\|_{\mathrm{u}} \leq\|\varphi\|_{\mathrm{u}}$ and $P_{t} \varphi \longrightarrow \varphi$ pointwise as $t \searrow 0$, and therefore, for each $p \in[1, \infty),\left\|P_{t} \varphi-\varphi\right\|_{L^{p}(\gamma ; \mathbb{C})} \longrightarrow 0$ as $t \searrow 0$. Finally, if $\varphi \in L^{p}(\mathbb{R} ; \mathbb{C})$, then there exists a sequence $\left\{\varphi_{n}: n \geq 1\right\} \subseteq C_{\mathrm{b}}(\mathbb{R} ; \mathbb{C})$ such that $\lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|_{L^{p}(\gamma ; \mathbb{C})}=0$, and

$$
\begin{aligned}
\left\|P_{t} \varphi-\varphi\right\|_{L^{p}(\gamma ; \mathbb{C})} & \leq\left\|P_{t}\left(\varphi-\varphi_{n}\right)\right\|_{L^{p}(\gamma ; \mathbb{C})}+\left\|P_{t} \varphi_{n}-\varphi_{n}\right\|_{L^{p}(\gamma ; \mathbb{C})}+\left\|\varphi_{n}-\varphi\right\|_{L^{p}(\gamma ; \mathbb{C})} \\
& \leq 2\left\|\varphi_{n}-\varphi\right\|_{L^{p}(\gamma ; \mathbb{C})}+\left\|P_{t} \varphi_{n}-\varphi_{n}\right\|_{L^{p}(\gamma ; \mathbb{C})}
\end{aligned}
$$

Thus, after first letting $t \searrow 0$ and then $n \rightarrow \infty$, we see that

$$
\begin{equation*}
\lim _{t \searrow 0}\left\|P_{t} \varphi-\varphi\right\|_{L^{p}(\gamma ; \mathbb{C})}=0 \text { for all } p \in[1, \infty) . \tag{9.11}
\end{equation*}
$$

Summarizing, $\left\{P_{t}: t>0\right\}$ is a continuous contraction semigroup on $L^{p}(\gamma ; \mathbb{C})$ for each $p \in[1, \infty)$ and P_{t} is self-adjoint on $L^{2}(\gamma ; \mathbb{C})$.

Exercise 9.1. Show that

$$
\begin{equation*}
\left\|\varphi-(\varphi, \mathbf{1})_{L^{2}(\gamma ; \mathbb{C})}\right\|_{L^{2}(\gamma ; \mathbb{C})}^{2} \leq\left\|\varphi^{\prime}\right\|_{L^{2}(\gamma ; \mathbb{C})}^{2} \text { for } \varphi \in C_{\mathrm{b}}^{1}(\mathbb{R} ; \mathbb{C}) \tag{9.12}
\end{equation*}
$$

and that

$$
\begin{equation*}
\left\|P_{t} \varphi-(\varphi, \mathbf{1})_{L^{2}(\gamma ; \mathbb{C})}\right\|_{L^{2}(\gamma ; \mathbb{C})}^{2} \leq e^{-t}\left\|\varphi-(\varphi, \mathbf{1})_{L^{2}(\gamma ; \mathbb{C})}\right\|_{L^{2}(\gamma ; \mathbb{C})}^{2} \tag{9.13}
\end{equation*}
$$

for $\varphi \in L^{2}(\gamma ; \mathbb{C})$. The inequality in (9.12) is the Poincaré inequality for γ.

Hint: Note that if suffices to handle $\varphi \in C_{\mathrm{b}}^{2}(\mathbb{R} ; \mathbb{C})$ for which $(\varphi, \mathbf{1})_{L^{2}(\gamma ; \mathbb{C})}=0$. Next, given such a φ, show that

$$
\left(P_{t} \varphi\right)^{\prime}=e^{-\frac{t}{2}} P_{t} \varphi^{\prime} \text { and }-\partial_{t}\left\|P_{t} \varphi\right\|_{L^{2}(\gamma ; \mathbb{C})}^{2}=\left\|\left(P_{t} \varphi\right)^{\prime}\right\|_{L^{2}(\gamma ; \mathbb{C})}^{2}
$$

Use these to show that

$$
\partial_{t}\left\|P_{t} \varphi\right\|_{L^{2}(\gamma ; \mathbb{C})}^{2} \leq e^{-t}\left\|\left(P_{t} \varphi\right)^{\prime}\right\|_{L^{2}(\gamma ; \mathbb{C})}^{2} \leq e^{-t}\left\|\varphi^{\prime}\right\|_{L^{2}(\gamma ; \mathbb{C})}^{2}
$$

MIT OpenCourseWare
https://ocw.mit.edu

RES.18-015 Topics in Fourier Analysis

Spring 2024

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

