Define $H_n(x) = (-1)^n e^{\frac{s^2}{2}} \partial_x^n e^{-\frac{x^2}{2}}$. Then H_n is an nth order monic polynomial known as the nth Hermite polynomial. Define the operator $A_+ = x\mathbf{1} - \partial_x$, and note that $A_+H_n = H_{n+1}$, for which reason it is called the raising operator. Using this, check that $H_n(-x) = (-1)^n H_n(x)$.

Next note that if $\varphi, \psi \in C^1(\mathbb{R}; \mathbb{C})$ which together with their derivatives have at most exponential growth, then

(10.1)
$$(A_{+}\varphi, \psi)_{L^{2}(\gamma;\mathbb{C})} = (\varphi, \partial \psi)_{L^{2}(\gamma;\mathbb{C})}.$$

Hence, if $0 \le m \le n$, then

$$(H_n, H_m)_{L^2(\gamma; \mathbb{C})} = (H_0, \partial^n H_m)_{L^2(\gamma; \mathbb{C})} = \begin{cases} m! & \text{if } n = m \\ 0 & \text{if } n > m. \end{cases}$$

Next, observe that if $n \ge 1$, then $\partial H_n \in \text{span}\{H_m : 0 \le m < n\}$, and so

$$\partial H_n = \sum_{m=0}^{n-1} \frac{(\partial H_n, H_m)_{L^2(\gamma; \mathbb{C})} H_m}{m!}$$

$$= \sum_{m=0}^{n-1} \frac{(H_n, H_{m+1})_{L^2(\gamma; \mathbb{C})} H_m}{m!} = \frac{(H_n, H_n)_{L^2(\gamma; \mathbb{C})} H_{n-1}}{(n-1)!}.$$

Hence $\partial H_n = nH_{n-1}$, and for this reason $A_- \equiv \partial$ is called the lowering operator.

Theorem 10.1. $||H_m||_{L^2(\gamma;\mathbb{C})} = (m!)^{\frac{1}{2}}$ and $\{H_m : m \geq 0\}$ is an orthogonal basis in $L^2(\gamma;\mathbb{C})$. Equivalently, if $\tilde{H}_m = \frac{H_m}{\sqrt{m!}}$, then $\{\tilde{H}_m : m \geq 0\}$ is an orthonormal basis in $L^2(\gamma;\mathbb{C})$

Proof. All that we need to show is that if $\varphi \in L^2(\gamma; \mathbb{C})$ and $(\varphi, H_m)_{L^2(\gamma; \mathbb{C})} = 0$ for all $m \geq 0$, then $\varphi = \mathbf{0}$. To this end, use Taylor's theorem to see that, for all $\zeta \in \mathbb{C}$,

(10.2)
$$e^{\zeta x - \frac{\zeta^2}{2}} = \sum_{m=0}^{\infty} \frac{\zeta^m}{m!} H_m(x),$$

where the series converges uniformly on compact subsets of $\mathbb{C} \times \mathbb{R}$, and, by the preceding calculation, in $L^2(\gamma;\mathbb{C})$ uniformly for ζ in compact subsets of \mathbb{C} . Now suppose that $\varphi \in L^2(\gamma;\mathbb{C})$, and set $\psi(x) = e^{-\frac{s^2}{2}}\varphi(x)$. Then

$$\|\psi\|_{L^{1}(\lambda_{\mathbb{R}},\mathbb{C})} = \int_{\mathbb{R}} e^{-\frac{x^{2}}{4}} \left(e^{-\frac{x^{2}}{4}} |\varphi(x)| \right) ds \le (2\pi)^{\frac{1}{2}} \|\varphi\|_{L^{2}(\gamma;\mathbb{C})},$$

and

$$e^{\frac{\xi^2}{2}} \hat{\psi}(\xi) = (2\pi)^{\frac{1}{2}} \int_{\mathbb{R}} e^{\imath \xi x - \frac{(\imath \xi)^2}{2}} \varphi(x) \gamma(dx) = (2\pi)^{\frac{1}{2}} \sum_{m=0}^{\infty} \frac{(\imath \xi)^m (\varphi, H_m)_{L^2(\gamma; \mathbb{C})}}{m!}.$$

Hence $\hat{\psi}$ and therefore φ vanish if $(\varphi, H_m)_{L^2(\gamma;\mathbb{C})} = 0$ for all $m \geq 0$.

Observe that $\mathcal{L} = -\frac{A_+A_-}{2}$, and therefore, by (10.1)

$$\left(\mathcal{L}\varphi,\psi\right)_{L^{2}(\gamma;\mathbb{C})}=-\left(\varphi',\psi'\right)_{L^{2}(\gamma;\mathbb{C})}=\left(\varphi,\mathcal{L}\psi\right)_{L^{2}(\gamma;\mathbb{C})}$$

for $\varphi, \psi \in C^2(\mathbb{R}; \mathbb{C})$ which together with their derivatives have at most exponential growth. Thus, by (9.6) and (9.9),

$$(\mathcal{L}P_t\varphi,\psi)_{L^2(\gamma;\mathbb{C})} = \partial_t (P_t\varphi,\psi)_{L^2(\gamma;\mathbb{C})} = \partial_t (\varphi,P_t\psi)_{L^2(\gamma;\mathbb{C})}$$
$$= (\varphi,\mathcal{L}P_t\psi)_{L^2(\gamma;\mathbb{C})} = (P_t\mathcal{L}\varphi,\psi)_{L^2(\gamma;\mathbb{C})},$$

and therefore $\mathcal{L}P_t = P_t\mathcal{L}$. In particular, because $-2\mathcal{L}H_n = nA_+H_{n-1} = nH_n$,

$$\partial_t P_t H_n = \mathcal{L} P_t H_n = P_t \mathcal{L} H_n = -\frac{n}{2} P_t H_n,$$

and so, because $\lim_{t\searrow 0} P_t H_n = H_n$,

(10.3)
$$P_t H_n = e^{-\frac{nt}{2}} H_n.$$

Exercise 10.2. Using (10.3), give another proof of (9.13), and, using $A_+H_m = H_{m+1}$, give another proof of (9.12).

RES.18-015 Topics in Fourier Analysis Spring 2024

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.