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Lecture 10: Hermite Polynomials

Define Hn(x) = (−1)ne
s2

2 ∂nx e
− x2

2 . Then Hn is an nth order monic polynomial
known as the nth Hermite polynomial. Define the operator A+ = x1−∂x, and note
that A+Hn = Hn+1, for which reason it is called the raising operator. Using this,
check that Hn(−x) = (−1)nHn(x).

Next note that if φ,ψ ∈ C1(R;C) which together with their derivatives have at
most exponential growth, then

(10.1)
(
A+φ,ψ

)
L2(γ;C) =

(
φ, ∂ψ

)
L2(γ;C).

Hence, if 0 ≤ m ≤ n, then(
Hn, Hm

)
L2(γ;C) =

(
H0, ∂

nHm

)
L2(γ;C) =

®
m! if n = m

0 if n > m.

Next, observe that if n ≥ 1, then ∂Hn ∈ span{Hm : 0 ≤ m < n}, and so

∂Hn =
n−1∑
m=0

(
∂Hn, Hm

)
L2(γ;C)Hm

m!

=
n−1∑
m=0

(
Hn, Hm+1

)
L2(γ;C)Hm

m!
=

(
Hn, Hn

)
L2(γ;C)Hn−1

(n− 1)!
.

Hence ∂Hn = nHn−1, and for this reason A− ≡ ∂ is called the lowering operator.

Theorem 10.1. ∥Hm∥L2(γ;C) = (m!)
1
2 and {Hm : m ≥ 0} is an orthogonal basis

in L2(γ;C). Equivalently, if H̃m = Hm√
m!

, then {H̃m : m ≥ 0} is an orthonormal

basis in L2(γ;C)

Proof. All that we need to show is that if φ ∈ L2(γ;C) and (φ,Hm)L2(γ;C) = 0 for
all m ≥ 0, then φ = 0. To this end, use Taylor’s theorem to see that, for all ζ ∈ C,

(10.2) eζx−
ζ2

2 =
∞∑
m=0

ζm

m!
Hm(x),

where the series converges uniformly on compact subsets of C × R, and, by the
preceding calculation, in L2(γ;C) uniformly for ζ in compact subsets of C. Now

suppose that φ ∈ L2(γ;C), and set ψ(x) = e−
s2

2 φ(x). Then

∥ψ∥L1(λR,C) =

∫
R
e−

x2

4

(
e−

x2

4 |φ(x)|
)
ds ≤ (2π)

1
2 ∥φ∥L2(γ;C),

and

e
ξ2

2 ψ̂(ξ) = (2π)
1
2

∫
R
eıξx−

(ıξ)2

2 φ(x)γ(dx) = (2π)
1
2

∞∑
m=0

(ıξ)m(φ,Hm)L2(γ;C)

m!
.

Hence ψ̂ and therefore φ vanish if (φ,Hm)L2(γ;C) = 0 for all m ≥ 0. □

Observe that L = −A+A−
2 , and therefore, by (10.1)(

Lφ,ψ
)
L2(γ;C) = −

(
φ′, ψ′)

L2(γ;C) =
(
φ,Lψ

)
L2(γ;C)
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for φ,ψ ∈ C2(R;C) which together with their derivatives have at most exponential
growth. Thus, by (9.6) and (9.9),(

LPtφ,ψ
)
L2(γ;C) = ∂t

(
Ptφ,ψ

)
L2(γ;C) = ∂t

(
φ, Ptψ

)
L2(γ;C)

=
(
φ,LPtψ

)
L2(γ;C) =

(
PtLφ,ψ

)
L2(γ;C),

and therefore LPt = PtL. In particular, because −2LHn = nA+Hn−1 = nHn,

∂tPtHn = LPtHn = PtLHn = −n
2
PtHn,

and so, because limt↘0 PtHn = Hn,

(10.3) PtHn = e−
nt
2 Hn.

Exercise 10.2. Using (10.3), give another proof of (9.13), and, using A+Hm =
Hm+1, give another proof of (9.12).
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