Lecture 10: Hermite Polynomials

Define $H_{n}(x)=(-1)^{n} e^{\frac{s^{2}}{2}} \partial_{x}^{n} e^{-\frac{x^{2}}{2}}$. Then H_{n} is an nth order monic polynomial known as the nth Hermite polynomial. Define the operator $A_{+}=x \mathbf{1}-\partial_{x}$, and note that $A_{+} H_{n}=H_{n+1}$, for which reason it is called the raising operator. Using this, check that $H_{n}(-x)=(-1)^{n} H_{n}(x)$.

Next note that if $\varphi, \psi \in C^{1}(\mathbb{R} ; \mathbb{C})$ which together with their derivatives have at most exponential growth, then

$$
\begin{equation*}
\left(A_{+} \varphi, \psi\right)_{L^{2}(\gamma ; \mathbb{C})}=(\varphi, \partial \psi)_{L^{2}(\gamma ; \mathbb{C})} \tag{10.1}
\end{equation*}
$$

Hence, if $0 \leq m \leq n$, then

$$
\left(H_{n}, H_{m}\right)_{L^{2}(\gamma ; \mathbb{C})}=\left(H_{0}, \partial^{n} H_{m}\right)_{L^{2}(\gamma ; \mathbb{C})}= \begin{cases}m! & \text { if } n=m \\ 0 & \text { if } n>m\end{cases}
$$

Next, observe that if $n \geq 1$, then $\partial H_{n} \in \operatorname{span}\left\{H_{m}: 0 \leq m<n\right\}$, and so

$$
\begin{aligned}
\partial H_{n} & =\sum_{m=0}^{n-1} \frac{\left(\partial H_{n}, H_{m}\right)_{L^{2}(\gamma ; \mathbb{C})} H_{m}}{m!} \\
& =\sum_{m=0}^{n-1} \frac{\left(H_{n}, H_{m+1}\right)_{L^{2}(\gamma ; \mathbb{C})} H_{m}}{m!}=\frac{\left(H_{n}, H_{n}\right)_{L^{2}(\gamma ; \mathbb{C})} H_{n-1}}{(n-1)!} .
\end{aligned}
$$

Hence $\partial H_{n}=n H_{n-1}$, and for this reason $A_{-} \equiv \partial$ is called the lowering operator.
Theorem 10.1. $\left\|H_{m}\right\|_{L^{2}(\gamma ; \mathbb{C})}=(m!)^{\frac{1}{2}}$ and $\left\{H_{m}: m \geq 0\right\}$ is an orthogonal basis in $L^{2}(\gamma ; \mathbb{C})$. Equivalently, if $\tilde{H}_{m}=\frac{H_{m}}{\sqrt{m!}}$, then $\left\{\tilde{H}_{m}: m \geq 0\right\}$ is an orthonormal basis in $L^{2}(\gamma ; \mathbb{C})$

Proof. All that we need to show is that if $\varphi \in L^{2}(\gamma ; \mathbb{C})$ and $\left(\varphi, H_{m}\right)_{L^{2}(\gamma ; \mathbb{C})}=0$ for all $m \geq 0$, then $\varphi=\mathbf{0}$. To this end, use Taylor's theorem to see that, for all $\zeta \in \mathbb{C}$,

$$
\begin{equation*}
e^{\zeta x-\frac{\zeta^{2}}{2}}=\sum_{m=0}^{\infty} \frac{\zeta^{m}}{m!} H_{m}(x) \tag{10.2}
\end{equation*}
$$

where the series converges uniformly on compact subsets of $\mathbb{C} \times \mathbb{R}$, and, by the preceding calculation, in $L^{2}(\gamma ; \mathbb{C})$ uniformly for ζ in compact subsets of \mathbb{C}. Now suppose that $\varphi \in L^{2}(\gamma ; \mathbb{C})$, and set $\psi(x)=e^{-\frac{s^{2}}{2}} \varphi(x)$. Then

$$
\|\psi\|_{L^{1}\left(\lambda_{\mathbb{R}}, \mathbb{C}\right)}=\int_{\mathbb{R}} e^{-\frac{x^{2}}{4}}\left(e^{-\frac{x^{2}}{4}}|\varphi(x)|\right) d s \leq(2 \pi)^{\frac{1}{2}}\|\varphi\|_{L^{2}(\gamma ; \mathbb{C})},
$$

and

$$
e^{\frac{\xi^{2}}{2}} \hat{\psi}(\xi)=(2 \pi)^{\frac{1}{2}} \int_{\mathbb{R}} e^{\imath \xi x-\frac{(\imath \xi)^{2}}{2}} \varphi(x) \gamma(d x)=(2 \pi)^{\frac{1}{2}} \sum_{m=0}^{\infty} \frac{(\imath \xi)^{m}\left(\varphi, H_{m}\right)_{L^{2}(\gamma ; \mathbb{C})}}{m!} .
$$

Hence $\hat{\psi}$ and therefore φ vanish if $\left(\varphi, H_{m}\right)_{L^{2}(\gamma ; \mathbb{C})}=0$ for all $m \geq 0$.
Observe that $\mathcal{L}=-\frac{A_{+} A_{-}}{2}$, and therefore, by (10.1)

$$
(\mathcal{L} \varphi, \psi)_{L^{2}(\gamma ; \mathbb{C})}=-\left(\varphi^{\prime}, \psi^{\prime}\right)_{L^{2}(\gamma ; \mathbb{C})}=(\varphi, \mathcal{L} \psi)_{L^{2}(\gamma ; \mathbb{C})}
$$

for $\varphi, \psi \in C^{2}(\mathbb{R} ; \mathbb{C})$ which together with their derivatives have at most exponential growth. Thus, by (9.6) and (9.9),

$$
\begin{aligned}
\left(\mathcal{L} P_{t} \varphi, \psi\right)_{L^{2}(\gamma ; \mathbb{C})} & =\partial_{t}\left(P_{t} \varphi, \psi\right)_{L^{2}(\gamma ; \mathbb{C})}=\partial_{t}\left(\varphi, P_{t} \psi\right)_{L^{2}(\gamma ; \mathbb{C})} \\
& =\left(\varphi, \mathcal{L} P_{t} \psi\right)_{L^{2}(\gamma ; \mathbb{C})}=\left(P_{t} \mathcal{L} \varphi, \psi\right)_{L^{2}(\gamma ; \mathbb{C})}
\end{aligned}
$$

and therefore $\mathcal{L} P_{t}=P_{t} \mathcal{L}$. In particular, because $-2 \mathcal{L} H_{n}=n A_{+} H_{n-1}=n H_{n}$,

$$
\partial_{t} P_{t} H_{n}=\mathcal{L} P_{t} H_{n}=P_{t} \mathcal{L} H_{n}=-\frac{n}{2} P_{t} H_{n}
$$

and so, because $\lim _{t \searrow 0} P_{t} H_{n}=H_{n}$,

$$
\begin{equation*}
P_{t} H_{n}=e^{-\frac{n t}{2}} H_{n} . \tag{10.3}
\end{equation*}
$$

Exercise 10.2. Using (10.3), give another proof of (9.13), and, using $A_{+} H_{m}=$ H_{m+1}, give another proof of (9.12).

MIT OpenCourseWare
https://ocw.mit.edu

RES.18-015 Topics in Fourier Analysis

Spring 2024

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

