Lecture 11: Hermite Functions

Define $T: L^{2}(\gamma ; \mathbb{C}) \longrightarrow L^{2}\left(\lambda_{\mathbb{R}} ; \mathbb{C}\right)$ so that $T \varphi(x)=\pi^{-\frac{1}{4}} e^{-\frac{x^{2}}{2}} \varphi\left(2^{\frac{1}{2}} x\right)$, and check that

$$
\|T \varphi\|_{L^{2}\left(\lambda_{\mathbb{R}} ; \mathbb{C}\right)}=\|\varphi\|_{L^{2}(\gamma ; \mathbb{C})} \text { and } T^{-1} f(x)=\pi^{\frac{1}{4}} e^{\frac{x^{2}}{4}} f\left(2^{-\frac{1}{2}} x\right)
$$

Thus T is an isometric isomorphism from $L^{2}(\gamma ; \mathbb{C})$ onto $L^{2}\left(\lambda_{\mathbb{R}} ; \mathbb{C}\right)$.
Set $h_{m}=T H_{m}$ and $\tilde{h}_{m}=h_{m}=T \tilde{H}_{m}$. Then, because $\left\{\tilde{H}_{m}: m \geq 0\right\}$ is an orthonormal basis in $L^{2}(\gamma ; \mathbb{C}),\left\{\tilde{h}_{m}: m \geq 0\right\}$ is an orthonormal bases in $L^{2}\left(\lambda_{\mathbb{R}} ; \mathbb{C}\right)$.

Assuming that $\varphi \in C^{1}(\mathbb{R} ; \mathbb{C})$, it easy to show that

$$
T A_{ \pm} \varphi=a_{ \pm} T \varphi \text { where } a_{ \pm}=2^{-\frac{1}{2}}\left(x \mathbf{1} \mp \partial_{x}\right)
$$

and therefore that

$$
\begin{equation*}
a_{+} h_{m}=h_{m+1} \text { and } a_{-} h_{m}=m h_{m-1} \tag{11.1}
\end{equation*}
$$

Theorem 11.1. For all $m \geq 0, \widehat{h_{m}}=(2 \pi)^{\frac{1}{2}} \imath^{m} h_{m}$.
Proof. Certainly $\widehat{h_{0}}=(2 \pi)^{\frac{1}{2}} h_{0}$. Assuming that $\widehat{h_{m}}=(2 \pi)^{\frac{1}{2}} \imath^{m} h_{m}$, use integration by parts to see that

$$
\begin{aligned}
\widehat{h_{m+1}}(\xi) & =\int e^{\imath \xi x} a_{+} h_{m}(x) d x=\int x e^{\imath \xi x} h_{m}(x) d x+\imath \xi \widehat{h}_{m}(\xi) \\
& =-\imath\left(\widehat{h_{m}}\right)^{\prime}+\imath \xi \widehat{h}_{m}(\xi)=(2 \pi)^{\frac{1}{2}} \imath^{m+1} a_{+} h_{m}(\xi)=(2 \pi)^{\frac{1}{2}} \imath^{m+1} h_{m+1}(\xi)
\end{aligned}
$$

Corollary 11.2. For all $m \geq 0$,

$$
\begin{gather*}
\left\|\tilde{h}_{m}\right\|_{L^{1}\left(\lambda_{\mathbb{R}} ; \mathbb{C}\right)} \leq(2 \pi)^{\frac{1}{2}}(m+1)^{\frac{1}{2}},\left\|\tilde{h}_{m}\right\|_{\mathrm{u}} \leq(m+1)^{\frac{1}{2}} \text { and } \\
\left\|x \tilde{h}_{m}\right\|_{\mathrm{u}} \vee\left\|\partial \tilde{h}_{m}\right\|_{\mathrm{u}} \leq 2 m+\frac{3}{2} \tag{11.2}
\end{gather*}
$$

Proof. Since $\left\|\tilde{h}_{0}\right\|_{L^{1}\left(\lambda_{\mathbb{R}} ; \mathbb{C}\right)}=2^{\frac{1}{2}} \pi^{\frac{1}{4}},\left\|\tilde{h}_{0}\right\|_{\mathrm{u}} \leq \pi^{-\frac{1}{4}}$, and

$$
\pi^{\frac{1}{4}}\left\|\left(\tilde{h}_{0}\right)^{\prime}\right\|_{\mathrm{u}}=\sup _{x \geq 0} x e^{-\frac{x^{2}}{2}}=e^{-\frac{1}{2}}
$$

there is nothing to do when $m=0$.
Now assume that $m \geq 1$. Using the facts that $x h_{m}(x)-h_{m}^{\prime}=2^{\frac{1}{2}} h_{m+1}$ and $x h_{m}+h_{m}^{\prime}=2^{\frac{1}{2}} m h_{m-1}$, one sees that

$$
\begin{align*}
x \tilde{h}_{m}(x) & =\frac{m^{\frac{1}{2}} \tilde{h}_{m-1}(x)+(m+1)^{\frac{1}{2}} \tilde{h}_{m+1}(x)}{2^{\frac{1}{2}}} \\
\left(\tilde{h}_{m}\right)^{\prime}(x) & =\frac{m^{\frac{1}{2}} \tilde{h}_{m-1}(x)-(m+1)^{\frac{1}{2}} \tilde{h}_{m+1}(x)}{2^{\frac{1}{2}}} \tag{11.3}
\end{align*}
$$

Hence,

$$
\int x^{2} \tilde{h}_{m}(x)^{2} d x=m+\frac{1}{2}
$$

and so

$$
\int\left(1+x^{2}\right) \tilde{h}_{m}(x)^{2} d x=m+\frac{3}{2}
$$

which, by Schwarz's inequality, means that

$$
\left\|\tilde{h}_{m}\right\|_{L^{1}\left(\lambda_{\mathbb{R}} ; \mathbb{C}\right)}=\int\left(1+x^{2}\right)^{-\frac{1}{2}}\left(1+x^{2}\right)^{\frac{1}{2}} \tilde{h}_{m}(x)^{2} d x \leq \pi^{\frac{1}{2}}\left(m+\frac{3}{2}\right)^{\frac{1}{2}} \leq(2 \pi)^{\frac{1}{2}}(m+1)^{\frac{1}{2}}
$$

Because $\left(\tilde{h}_{m}\right)^{\wedge}=(2 \pi)^{\frac{1}{2}} \imath^{m} \tilde{h}_{m}$,

$$
\left\|\tilde{h}_{m}\right\|_{\mathrm{u}}=(2 \pi)^{-\frac{1}{2}}\left\|\left(\tilde{h}_{m}\right)^{\wedge}\right\|_{\mathrm{u}} \leq(2 \pi)^{-\frac{1}{2}}\left\|\tilde{h}_{m}\right\|_{L^{1}\left(\lambda_{\mathrm{R}} ; \mathrm{C}\right)} \leq(m+1)^{\frac{1}{2}} .
$$

To complete the proof, use the second part of (11.3) plus the preceding to see that

$$
\begin{aligned}
\left\|\partial \tilde{h}_{m}\right\|_{\mathrm{u}} & \leq\left(m^{\frac{1}{2}}\left\|\tilde{h}_{m-1}\right\|_{\mathrm{u}}+(m+1)^{\frac{1}{2}}\left\|\tilde{h}_{m+1}\right\|_{\mathrm{u}}\right) \\
& \leq\left(m+(m+1)^{\frac{1}{2}}(m+2)^{\frac{1}{2}}\right) \leq 2 m+\frac{3}{2} .
\end{aligned}
$$

The same argument, only this time using the first part of (11.3), proves the same estimate for $\left\|x \tilde{h}_{m}\right\|_{\mathrm{u}}$.

The kernel which plays the role for the Hermite functions that the OrnsteinUhlenbeck kernel (cf. (9.2)) $p(t, x, y)$ plays for the Hermite polynomial is

$$
\begin{align*}
q(t, x, y) & =2^{\frac{1}{2}} e^{-\frac{t}{2}} e^{-\frac{x^{2}}{2}} p\left(2 t, 2^{\frac{1}{2}} x, 2^{\frac{1}{2}} y\right) e^{\frac{y^{2}}{2}} \\
& =(2 \pi \sinh t)^{-\frac{1}{2}} \exp \left(-\frac{x^{2}}{2 \tanh t}+\frac{x y}{\sinh t}-\frac{y^{2}}{2 \tanh t}\right) . \tag{11.4}
\end{align*}
$$

Observe that $q(t, x, \cdot) \in L^{p}\left(\lambda_{\mathbb{R}} ; \mathbb{C}\right)$ for all $p \in[1, \infty]$ and that

$$
e^{\frac{t}{2}} \int q(t, x, y) f(y) d y=e^{-\frac{x^{2}}{2}} \int p\left(2 t, 2^{\frac{1}{2}} x, y\right) e^{\frac{y^{2}}{4}} f\left(2^{-\frac{1}{2}} y\right) d y=\left(T P_{2 t} T^{-1} f\right)(x) .
$$

Hence, the operator Q_{t} given by

$$
Q_{t} f(x)=\int q(t, x, y) f(y) d y
$$

is well defined on $L^{2}\left(\lambda_{\mathbb{R}} ; \mathbb{C}\right)$ and is equal to $e^{-\frac{t}{2}} T P_{2 t} T^{-1}$. In particular, by (9.10),

$$
e^{\frac{t}{2}}\left\|Q_{t} f\right\|_{L^{2}\left(\lambda_{\mathbb{R}} ; \mathbb{C}\right)}=\left\|P_{2 t} T^{-1} f\right\|_{L^{2}(\gamma ; \mathbb{C})} \leq\left\|T^{-1} f\right\|_{L^{2}(\gamma ; \mathbb{C})}=\|f\|_{L^{2}\left(\lambda_{\mathbb{R}} ; \mathbb{C}\right)},
$$

and, by (9.11)

$$
\begin{aligned}
\left\|e^{\frac{t}{2}} Q_{t} f-f\right\|_{L^{2}\left(\lambda_{\mathbb{R}} ; \mathbb{C}\right)} & =\left\|T\left(P_{2 t} T^{-1} f-T^{-1} f\right)\right\|_{L^{2}\left(\lambda_{\mathbb{R}} ; \mathbb{C}\right)} \\
& =\left\|P_{2 t} T^{-1} f-T^{-1} f\right\|_{L^{2}(\gamma ; \mathbb{C})} \longrightarrow 0 \text { as } t \searrow 0 .
\end{aligned}
$$

Hence

$$
\left\|Q_{t} f\right\|_{L^{2}\left(\lambda_{R} ; \mathbb{C}\right)} \leq e^{-\frac{t}{2}}\|f\|_{L^{2}\left(\lambda_{\mathrm{R}} ; \mathbb{C}\right)} \text { and } \lim _{t \searrow 0}\left\|Q_{t} f-f\right\|_{L^{2}\left(\lambda_{\mathrm{R}} ; \mathbb{C}\right)}=0 .
$$

In addition, by (10.3), $Q_{t} h_{m}=e^{-\frac{t}{2}} T P_{2 t} H_{m}=e^{-\left(m+\frac{1}{2}\right) t} h_{m}$.
Theorem 11.3. If $f \in L^{1}\left(\lambda_{\mathbb{R}} ; \mathbb{C}\right) \cup L^{2}\left(\lambda_{\mathbb{R}} ; \mathbb{C}\right)$, then

$$
\int q(t, x, y) f(y) d y=e^{-\frac{1}{2}} \sum_{m=0}^{\infty} e^{-m t}\left(f, \tilde{h}_{m}\right)_{L^{2}\left(\lambda_{\mathbb{R}} ; C\right)} \tilde{h}_{m} \text { for } t>0,
$$

where the convergence of the series is absolute uniformly for $x \in \mathbb{R}$.
Proof. First observe that, by the estimates in Corollary 11.2, the series is absolutely convergent uniformly in $x \in \mathbb{R}$ and that both sides are continuous as functions of $f \in L^{1}(\mathbb{R} ; \mathbb{C})$ or of $f \in L^{2}\left(\lambda_{\mathbb{R}} ; \mathbb{C}\right)$. In particular, it suffices to prove the equality when $f \in C_{\mathrm{c}}(\mathbb{R} ; \mathbb{C})$.

Given $f \in C_{\mathrm{c}}(\mathbb{R} ; \mathbb{C})$, set $f_{n}=\sum_{m=0}^{n}\left(f, \tilde{h}_{m}\right)_{L^{2}\left(\lambda_{\mathbb{R}} ; \mathbb{C}\right)} \tilde{h}_{m}$. Then

$$
\int q(t, x, y) f_{n}(y) d y=e^{-\frac{t}{2}} \sum_{m=0}^{n} e^{-m t}\left(f, \tilde{h}_{m}\right)_{L^{2}\left(\lambda_{\mathbb{R}} ; \mathbb{C}\right)} \tilde{h}_{m}(x)
$$

Because $q(t, x, \cdot) \in L^{2}\left(\lambda_{\mathbb{R}} ; \mathbb{C}\right)$ and $f_{n} \longrightarrow f$ in $L^{2}\left(\lambda_{\mathbb{R}} ; \mathbb{C}\right)$, the left hand side converges to $\int q(t, x, y) f(y) d y$.
Exercise 3.3: Define the Mehler kernel $M(\theta, x, y)$ for $(\theta, x, y) \in(0,1) \times \mathbb{R} \times \mathbb{R}$ by

$$
M(\theta, x, y)=\left(2 \pi\left(1-\theta^{2}\right)\right)^{-\frac{1}{2}} \exp \left(-\frac{\theta^{2} x^{2}-2 \theta x y+\theta^{2} y^{2}}{1-\theta^{2}}\right)
$$

and show that

$$
M(\theta, x, y)=\sum_{m=0}^{\infty} \theta^{m} \frac{H_{m}(x) H_{m}(y)}{m!}
$$

where the series converges uniformly for (x, y) in compact subsets. This famous equation is known as Mehler's formula.

MIT OpenCourseWare
https://ocw.mit.edu

RES.18-015 Topics in Fourier Analysis

Spring 2024

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

