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LECTURE 11: HERMITE FUNCTIONS

2

x

Define T : L2(v; C) — L2(Ag; C) so that Tp(z) = 7~ ie~ T p(221), and check
that )
— 1 =z _1
1Tl L2 (rnesc) = @l L2 (vse) and T f(x) = wie’™ f(27 2 ).

Thus T is an isometric isomorphism from L?(+;C) onto LQ()\R;~ C).

Set h,, = TH,, and h,, = hm = THp,. Then, because {Hy, : m > 0} is an
orthonormal basis in L?(7; C), {hy, : m > 0} is an orthonormal bases in L?(Ag; C).

Assuming that ¢ € C'(R;C), it easy to show that

TAtrp = a+Tp where a4 = 2_%(951 FO:)

and therefore that
(11.1) ayhpy = hpy1 and a_hy, = mhy, 1.
Theorem 11.1. For all m >0, hy, = (27) 20 ™ hypy.

Proof. Certainly ho = (2m)2 ho. Assuming that m = (27)24™ Ry, use integration
by parts to see that

—

Fo 11 (€) = / ¢ ay iy (z) da = / €7 hy () d + 16T (€)
= — 1)’ + 1€hm (€) = (2m) 30 a i (€) = (27) 50 41 (€).
O
Corollary 11.2. For allm > 0,

1A |21 ) < (27)F (4 1)3, || By lu < (m+1)% and
(11.2)

- - 3
ol ¥ 110hm ]l < 2m + 3.

Proof. Since HiLOHLI(AR;C) =273, ||holly < 73, and

O

PR —

1 i’L/ _ _
mi|(hoYl, = supae™ =73,

[N

there is nothing to do when m = 0.
Now assume that m > 1. Using the facts that @k, (z) — k), = 22hn,41 and
xhym +hl, = 2%mhm,1, one sees that

Thp(z) = 51
(113) M= g1 () — (m 4 1)2 A1 (z)
(hm),(l’) _ m—1 . m—+1
232
Hence,
/xzizm(:r)Z dz=m+ 1,
and so

/(1 + 22) i (2)? dz = m + =3

which, by Schwarz’s inequality, means that

Nl=

o | £t iy = /<1+x2>-%<1+x2>%ﬁm<x>2dx <73 (m+2)? < (2n)F(m+1)3.
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Because (A, )" = (27r)%zmi~zm,

[mlla = 27) 72 [[ () ||, < 27) 72 [Pl 23 amsy < (m+1)%.

To complete the proof, use the second part of (11.3) plus the preceding to see
that

[0, < (M m—tlla + (1 + )% By |[a)
< (m+(m+1)2(m+2)%) < 2m+ ;

The same argument, only this time using the first part of (11.3), proves the same
estimate for ||zh, ||u. O

The kernel which plays the role for the Hermite functions that the Ornstein—
Uhlenbeck kernel (cf. (9.2)) p(t, z,y) plays for the Hermite polynomial is

2
¥y

I2
q(t,z,y) = 2%6_56_7]7(%,2%3:,2%3;)6 2

x? Ty y? )

2tanht * sinht  2tanht
Observe that ¢(¢,z, -) € LP(Ag; C) for all p € [1, o0] and that

e /q(t,x,y)f(y) dy=e% /p(2t,2%x,y)e%f(2*%y) dy = (TPyT™ " f)().
Hence, the operator Q; given by
Quf(@) = [ att.z.)f(0) dy

is well defined on L?(Ag; C) and is equal to e~ 2T Py, T~". In particular, by (9.10),

e21Qefll2mic) = IPT  fllzz vy < N7 fllz2erse) = Iz
and, by (9.11)

let@ur 1]

(11.4)

= (27 sinh t)*% exp (f

L2OwiC0) HT(P%T_lf - T_lf)HLZ’()\m;(C)
= ||PuyT ' f - T71f||L2(7;c) — 0ast\,0.
Hence

1Qefllz2(nesc) < € 2| fllz2(apsc) and }g% 1Qef — fll2(apsc) = O-

In addition, by (10.3), Qihy, = e~ 5T Py H,, = e~ (m+2)th, .
Theorem 11.3. If f € L*(\g; C) U L?(Ag; C), then

/q(t7$7y) dy—e 2 Ze f7 m LQ()\R(C)h fOTt>O

where the convergence of the series is absolute uniformly for x € R.

Proof. First observe that, by the estimates in Corollary 11.2, the series is absolutely
convergent uniformly in x € R and that both sides are continuous as functions of
f € LY(R;C) or of f € L?(\g;C). In particular, it suffices to prove the equality
when f € C,(R;C).



30

Given f € Co(R;C), set f, = S0 o (fs o) £2(ag;c)him- Then

n

[atts gty = et 3 € o) 0y ().

m=0
Because q(t,z, -) € L?(A\g;C) and f,, — f in L?(Ag;C), the left hand side con-
verges to [ q(t,z,y)f(y) dy. O

Exercise 3.3: Define the Mehler kernel M(0,x,y) for (6,z,y) € (0,1) x R x R by

_1 22 -9 2,2
M(0,2,9) = (21 %) Fexp (—9 ==

and show that
m Hm (2) Hin (y)
M0, z,y) E 0 )

where the series converges unlformly for (z,y) in compact subsets. This famous
equation is known as Mehler’s formula.
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