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Lecture 12: The Fourier Transform for L2(λR;C)

The basic goal here is to extend the Fourier transform on L1(R;C) ∩ L2(λR;C)
as a bounded operation on L2(λR;C) into L2(λR;C). We will then examine some
of the fundamental properties of this extension.

Lemma 12.1. If f ∈ L1(R;C), then
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for (t, ξ) ∈ (0,∞)× R.

Proof. Since both sides of (12.1) are continuous functions of f ∈ L1(R;C), we may
and will assume that f ∈ Cc(R;C).
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for ζ ∈ D.

Next, for fixed ξ ∈ R and all ζ ∈ D, define
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and observe that both Φ and Ψ are analytic functions on D. Furthermore, since
α+(e

−t) = sinh t and α−(e
−t) = cosh t, Lemma 11.3 says that Φ = Ψ on (0, 1), and

therefore, by analytic continuation, Φ = Ψ on D. In particular, Φ
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.

Finally, because α+

(
ıe−t

)
= cosh t

ı and α−
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ı , one sees that the left
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. □

Theorem 12.2. If f ∈ L1(R;C) ∩ L2(R;C), then
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almost everywhere.

Proof. Because f ∈ L1(R;C), the left hand side of (12.1) tends pointwise to

(2π)−
1
2 f̂ as t ↘ 0, and because f ∈ L2(λR;C), the right hand side tends in

L2(λR;C) to the series on the right hand side of (12.2). □

As a consequence of Theorem 12.2, we know that ∥f̂∥L2(λR;C) = (2π)
1
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for f ∈ L1(λR;C)∩L2(λR;C). Hence the map f ∈ L1(λR;C)∩L2(λR;C)⇝ f̂ admits

a unique continuous extension as a linear map with norm (2π)
1
2 from L2(λR;C) into

L2(λR;C), and (12.2) continuous to hold for this extension.

Define f̆(x) = f(−x), and observe that h̆m = (−1)mhm, (f̆ , g)L2(λR;C) = (f, ğ)L2(λR;C),

and
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f . In addition, by Fubini’s theorem,(
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and so, for f, g ∈ L2(λR;C),(
f̂ , ĝ
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which means that Parseval’s identity
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holds. Finally, set f̌ =
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f , and check that(
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Similarly,
(
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, and so we have proved the Fourier

inversion formula

(12.4)
(
f̂
)∨

= 2πf = (f̌)∧.

It is important to keep in mind that f̂ is not given by a Lebesgue integral
for f ∈ L2(λR;C) unless f ∈ L1(λR;C) as well. On the other hand, because
fR ≡ 1[−R,R]f ∈ L1(λR;C) ∩ L2(λR;C) and fR −→ f in L2(λR;C),

f̂(ξ) = lim
R→∞

∫ R

−R
eıξxf(x) dx,

where the convergence is in L2(λR;C).

Exercise 12.3. Define Ff(ξ) = f̂(2πξ), and show that F is an orthogonal operator
on L2(λR;C). Further, show that if F∗ is the adjoint of F , then equals F−1f =

F∗f = F f̆ = (Ff)∪.
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