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Lecture 13: Schwartz Test Functions

In this section we will study a space of functions introduced by Laurent Schwartz6

and used by him to construct the class of distributions discussed in the next section.
The function space alluded to above is denoted by S (R;C) and consists of

functions φ ∈ C∞(R;C) with the property that x ⇝ xk∂ℓφ(x) is bounded for all
k, ℓ ∈ N. Obviously, S (R;C) is a vector space. In addition, it is closed under
differentiation as well as products with smooth functions which, together with all
their derivatives, have at most polynomial growth (i.e., grow no faster than some
power of (1 + x2)). Thus the Hermite functions are all in S (R;C). Finally, since,
for φ ∈ S (R;C), ∫

|φ(x)|p dx ≤ ∥(1 + x2)φ∥pu
∫
(1 + x2)−p dx,

S (R;C) ⊆
⋂
p∈[1,∞] L

p(λR;C).
There is an obvious notion of convergence for sequences in S (R;C). Namely,

define the norms

∥φ∥(k,ℓ)u = ∥xk∂ℓφ∥u
for k, ℓ ∈ N, and say that φj −→ φ in S (R;C) if limn→∞ ∥φj − φ∥(k,ℓ)u = 0 for all
k, ℓ ∈ N. The corresponding topology is the one for which G is open if and only if
for each φ ∈ G there an m ∈ N and r > 0 such that{

ψ : ∥ψ − φ∥(m)
u < r

}
⊆ G,

where

∥ · ∥(m)
u ≡

∑
k,ℓ∈N
k+ℓ≤m

∥ · ∥(j,ℓ)u .

We will now develop a more convenient description of the topology on S (R;C),
one that shows that S (R;C) shares many properties with Hilbert spaces. Define
the operator H on S (R;C) into itself by

Hφ = x2φ− ∂2φ.

Since (cf. (11.1)) H = (2a+a− + 1),

(13.1) Hh̃k = µkh̃k where µk = 2k + 1,

and so we can define operators Hs for any s ∈ R by

Hsφ =
∞∑
m=0

µsm(φ, h̃m)L2(λR;C)h̃m.

For each m ≥ 0, set

S (m)(R;C) =

{
φ ∈ L2(λR;C) :

∞∑
k=1

µmk
∣∣(φ, h̃k)L2(λR;C)

∣∣2 <∞

}
,

6There are many books in which Schwartz’s theory is presented, but his own original treatment
in Théorie des distributions, I published in 1950 by Hermann, Paris remains one of the best

accounts.
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and define

(φ,ψ)S (m)(R;C) =
∞∑
k=0

µmk (φ, h̃k)L2(λR;C)(h̃k, ψ)L2(λR;C) =
(
φ,Hmψ

)
L2(λR;C)

∥φ∥S (m)(R;C) = (φ,φ)
1
2

S (m)(R;C) =
(
φ,Hmφ

) 1
2 .

Clearly S (m)(R;C) is a vector space for which (φ,ψ)S (m)(R;C) is an inner prod-
uct. Below we will show below that it is a separable Hilbert space.

Lemma 13.1. For each m ≥ 0,

∥xφ∥S (m)(R;C) ∨ ∥∂φ∥S (m)(R;C) ≤ ∥φ∥S (m+1)(R;C).

Proof. By the first part of (11.3),

∥xφ∥2S (m)(R;C) =
∞∑
k=0

µmk |(xφ, h̃k)L2(λR;C)|
2

≤
∞∑
k=0

kµmk |(φ, h̃k−1)L2(λR;C)|
2 +

∞∑
k=1

(k + 1)µmk |(φ, h̃k+1)L2(λR;C)|
2

= |(φ, h̃0)L2(λR;C)|
2 +

∞∑
k=1

µm+1
k |(φ, h̃m)L2(λR;C)|

2 = ∥φ∥2S (m+1)(R;C).

Using the second part of (11.3) and the same argument, one can show that ∥∂φ∥S (m)(R;C)
≤ ∥φ∥S (m+1)(R;C). □

Theorem 13.2. For each m ∈ N, S (R;C) is a dense subset of S (m)(R;C). In
addition, for each m ≥ 0, there exists a Km ∈ (0,∞) such that

(13.2) ∥φ∥S (m)(R;C) ≤ Km∥φ∥(m+1)
u

and

(13.3) ∥φ∥(m)
u ≤ Km∥φ∥S (m+3)(R;C).

for all φ ∈ S (R;C). Thus φn −→ φ in S (R;C) if and only if

lim
n→∞

∥φn − φ∥S (m)(R;C) = 0

for all m ∈ N. In particular, for each φ ∈ S (R;C),
n∑
k=0

(φ, h̃k)L2(λR;C)h̃k −→ φ in S (R;C) as n→ ∞.

Proof. Since H ↾ S (R;C) is a symmetric operator, (13.1) implies that

µmk (φ, h̃k)L2(λR;C) = (φ,Hmh̃k)L2(λR;C) = (Hmφ, h̃k)L2(λR;C),

for all φ ∈ S (R;C) and m ≥ 0, from which it is clear that S (R;C) ⊆ S (m)(R;C)
for all m ≥ 0. Moreover, since, for each φ ∈ S (m)(R;C),

S (R;C) ∋
n∑
k=0

(φ, h̃k)L2(λR;C)h̃k −→ φ in S (m)(R;C) as n→ ∞,

S (R;C) is dense in S (m)(R;C).
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Next observe that there exist constants c
(m)
j,ℓ ∈ R such that(

x2 − ∂2
)m
φ =

∑
k,ℓ∈N

k+ℓ≤2m

c
(m)
j.ℓ x

k∂ℓφ,

and use integration by parts to see that(
φ, xk∂ℓφ

)
L2(λR;C)

= (−1)ℓ
′(
∂ℓ

′
(xk

′
φ), xk−k

′
∂ℓ−ℓ

′
φ
)
L2(λR;C)

,

where

k′ =

®
k
2 if k is even
k−1
2 if k is odd

and ℓ′ =

®
ℓ
2 if ℓ is even
ℓ+1
2 if ℓ is odd.

Hence there exist constants b
(m)
(k1,ℓ1),(k2,ℓ2)

∈ R such that(
φ,Hmφ

)
L2(λR;C)

≤
∑

(k1,ℓ1),(j2,ℓ2)∈N2

(k1+ℓ1)∨(j2+ℓ2)≤m

∣∣b(m)
(k1,ℓ1),(k2,ℓ2)

(
xk1∂ℓ1φ, xk2∂ℓ2φ

)
L2(λR;C)

∣∣
≤

∑
(k1,ℓ1),(k2,ℓ2)∈N2

(k1+ℓ1)∨(k2+ℓ2)≤m

|b(m)
(k1,ℓ1),(k2,ℓ2)

|
∥∥xk1∂ℓ1φ∥∥

L2(λR;C)

∥∥xk2∂ℓ2φ∥∥
L2(λR;C)

.

Finally, observe that

∥xk∂ℓφ∥2L2(λR;C) =

∫
(1 + x2)−1

∣∣(1 + x2)
1
2xk∂ℓφ(x)

∣∣2 dx
≤ π

(
∥xk∂ℓφ∥2u + ∥xk+1∂ℓφ∥2u

)
,

and combine this with the preceding to arrive at (13.2).
To prove (13.3), begin by making repeated application of Lemma 13.1 to show

that

∥xk∂ℓφ∥S (3)(R;C) ≤ ∥φ∥S (k+ℓ+3)(R;C).

Thus, if we show that there is a K ∈ (0,∞) such that

∥φ∥u ≤ K∥φ∥S (3)(R;C), (∗)
then

∥xk∂ℓφ∥u ≤ K∥xk∂ℓφ∥S (3)(R;C) ≤ K∥φ∥S (k+ℓ+3)(R;C),

in which case we would know that ∥φ∥(m)
u ≤ Km(m−1)

2 ∥φ∥S (m+3)(R;C). To prove

(∗), use the estimate in (11.2) to see that

∥φ∥u ≤
∞∑
k=0

|(φ, h̃k)L2(λR;C)|∥h̃k∥u

≤
∞∑
k=0

(k + 1)
1
2 |(φ, h̃k)L2(λR;C)| =

∞∑
k=0

Å
k + 1

µ3
k

ã 1
2

µ
3
2

k |(φ, h̃k)L2(λR;C)|

≤

( ∞∑
k=0

k + 1

µ3
k

) 1
2
( ∞∑
k=0

µ3
k|(φ, h̃k)L2(λR;C)|

2

) 1
2

= K∥φ∥S (3)(R;C).

where K =
(∑∞

k=0
k+1
µ3
k

) 1
2

. □
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As a consequence of Theorem 13.2, we know that

ρS (φ,ψ) ≡
∞∑
m=0

1

2k+1

∥φ− ψ∥S (m)(R;C)

1 + ∥φ− ψ∥S (m)(R;C)

is a metric for the topology on S (R;C). In addition, S (R;C) =
⋂∞
m=0 S (m)(R;C),

and so we can learn about properties of S (R;C) by understanding those of the
S (m)(R;C)’s.

For each m ≥ 0, let s(m)(N;C) be the space of functions s : N −→ C such that

∥s∥s(m)(N;C) ≡

( ∞∑
k=0

µmk |s(k)|2
) 1

2

<∞,

and define

(s, t)s(m)(N;C) =

∞∑
k=0

µmk s(k)t(k) for s, t ∈ s(m)(N;C),

Clearly each s(m)(N;C) is a vector space with inner product (s, t)s(m)(N;C). Finally,

set s(N;C) =
⋂∞
m=0 s

(m)(N;C), and turn s(N;C) into a metric space with metric

ρs(s, t) ≡
∞∑
m=0

1

2m+1

∥t− s∥s(m)(N;C)

1 + ∥t− s∥s(m)(N;C)
.

The following corollary is essentially a reformulation of the results in Theorem
13.2. It is the analogue for S (R;C) of the fact that every separable Hilbert space
is isomorphic to ℓ2(N;C).

Corollary 13.3. Define the map S : L2(λR;C) −→ ℓ2(N;C) by

[S(φ)](k) = (φ, h̃k)L2(λR;C).

Then, for each m ≥ 0, S ↾ S (m)(R;C) is an isometric isomorphism from S (m)(R;C)
onto s(m)(N;C), and so S ↾ S (R;C) is isometric homeomorphism from S (R;C)
onto s(N;C).

Corollary 13.3 means that any topological property of s(m)(N;C) or s(N;C) is a
property of S (m)(R;C) or S (R;C), and the following lemma facilitates the study
of such properties.

Lemma 13.4. Let {αk : k ≥ 0} ⊆ (0,∞), and define the measure ν on N by
ν({k}) = αk. Then L2(ν;C) is a separable Hilbert space. In addition, a set B ⊆
L2(ν;C) is relatively compact if and only if B is bounded and tight in the sense that

lim
K→∞

sup
s∈B

∑
k>K

αk|s(k)|2 = 0.

Proof. Since the L2-space for any measure on a countably generated σ-algebra is a
separable Hilbert space, L2(ν;C) is a separable Hilbert space.

Since L2(ν;C) is complete, to prove that a bounded, tight subset B is relatively
compact it suffices to show that B is totally bounded (i.e., for every r > 0 there is
a finite cover of B by balls of radius r with centers in B). To that end, let r > 0
be given, and choose K so that

sup
s∈B

∑
k>K

αk|s(k)|2 <
r2

4
.
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Next, note that
{(
s(0), . . . , s(K)

)
: s ∈ B

}
is a bounded subset of CK+1 and

therefore totally bounded there. Hence there exists a finite set {sj : 1 ≤ j ≤ J} ⊆ B
such that, for each s ∈ B,

min
1≤j≤J

K∑
k=0

αk|s(k)− sj(k)|2 <
r2

2
,

which means that, for each s ∈ B there exists a 1 ≤ j ≤ J such that

∥s− sj∥2L2(ν;C) =
K∑
k=0

αk|s(k)− sj(k)|2 +
∑
k>K

αk|s(k)− sj(k)|2 ≤ r2.

Finally, suppose that B is relatively compact. Certainly it is bounded. To see
that it must be tight, suppose it were not. Then there would exist an ϵ > 0 such
that, for each K ∈ N,

sup
s∈B

∑
k>K

αk|s(k)|2 > ϵ.

Thus we could find a sequence {sK : K ≥ 0} ⊆ B with the property that∑
k>K αk|sK(k)|2 ≥ ϵ, and, because B is relatively compact, we could choose it

to be a sequence which converges to some t ∈ L2(ν;C). But this would mean that∑
k>K

αk|t(k)|2 ≥
∑
k>K

αk|sK(k)|2 − ∥t− sK∥2L2(ν;C) ≥
ϵ

2

for sufficient large K, and that would mean the t can’t be in L2(ν;C). □

Say that B ⊆ S (R;C) is bounded in S (R;C) if
sup
φ∈B

∥φ∥S (m)(R;C) <∞ for each m ≥ 0.

Theorem 13.5. S (m)(R;C) is a separable Hilbert space for each m ≥ 0, and
S (R;C) is a complete separable metric space. Moreover, a subset B ⊆ S (R;C) is
relatively compact if and only if it is bounded in S (R;C).

Proof. By Lemma 13.4 applied with αk = µmk , we know that each of the spaces

s(m)(N;C) is a separable Hilbert space, and therefore, by Corollary 13.3, so is each
S (m)(R;C). Thus, since S (R;C) is dense in every S (m)(R;C), we can find a
sequence {φn : n ≥ 1} ⊆ S (R;C) which is dense in S (m)(R;C) for all m ≥ 0.
Since this means that

inf
n≥1

∥φ− φn∥S (m)(R;C) = 0 for all φ ∈ S (R;C) and m ≥ 0,

it follows that
inf
n≥1

ρS (R;C)(φ,φn) = 0 for all φ ∈ S (R;C).

That is, {φn : n ≥ 1} is dense in S (R;C), and so S (R;C) is separable.
To see that S (R;C) is complete, first use Lemma 13.4 and Corollary 13.3 to see

that each S (m)(R;C) is complete. Now suppose that {φn : n ≥ 1} ⊆ S (R;C)
is ρS (R;C)-Cauchy convergent. Then it is ∥ · ∥S (m)(R;C)-Cauchy convergent for each

m ≥ 0, and therefore it is convergent in each S (m)(R;C) to some element of
S (m)(R;C). But if φn −→ φ in S (m+1)(R;C), then φn −→ φ in S (m)(R;C), and
so there is a unique φ ∈

⋂∞
m=0 S (m)(R;C) to which {φn : n ≥ 1} converges in

S (m)(R;C) for all m ≥ 0. Therefore φ ∈ S (R;C) and limn→∞ ρS (φ,φn) = 0.
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Finally, suppose that B ⊆ S (R;C) is relatively compact in S (R;C). Because
B is then relatively compact in each S (m)(R;C) and therefore bounded there, it is
a bounded subset of S (R;C). Conversely, if B is bounded in S (R;C), in order to
show that it is relatively compact in S (R;C) we need only show that it is totally
bounded there. To that end, first observe it is bounded in each S (m)(R;C). Thus,
by Lemma 13.4 and Corollary 13.3, we will know that it is relatively compact in
S (m)(R;C) if

lim
K→∞

sup
φ∈B

∑
k>K

µmk |(φ, h̃k)L2(λR;C)|
2 = 0. (∗)

But ∑
k>K

µmk |(φ, h̃k)L2(λR;C)|
2 ≤ 1

µK+1
∥φ∥2S (m+1)(R;C),

and so, since B is bounded in S (m+1)(R;C), (∗) holds. To complete the proof that
B ρS -totally bounded, let r > 0 be given, and choose m so that 2−m < r

2 . Next,

using the fact that B is relatively compact in S (m)(R;C), choose {φj : 1 ≤ j ≤
J} ⊆ B so that

sup
φ∈B

min
1≤j≤J

∥φ− φj∥S (m)(R;C) <
r

2
,

and conclude that

B ⊆
J⋃
j=1

{
φ : ρS (R;C)(φ,φj) < r

}
.

□

The assertion in the following is one of the many virtues possessed by S (R;C).

Theorem 13.6. The map φ ⇝ φ̂ is an isomorphism from S (R;C) onto itself,

and, for each m ≥ 0, ∥φ̂∥S (m)(R;C) = (2π)
1
2 ∥φ∥S (m)(R;C).

Proof. We already know that the Fourier transform is an isomorphism of L2(λR;C)
onto L2(λR;C). In addition, by Theorem 12.2, (φ̂, h̃k)L2(λR;C) = (2π)

1
2 ık(φ, h̃k)L2(λR;C),

and so

∥φ̂∥2S (m)(R;C) = 2π
∞∑
k=0

µmk |(φ, h̃k)L2(λR;C)|
2 = 2π∥φ∥2S (m)(R;C).

□

Exercise 13.7. Show that for each (m,n) ∈ N2 there is a Cn,m ∈ (0,∞) such that

1

Cn,m
max
k,ℓ∈N
k+ℓ≤m

∥xk∂ℓφ∥S (n)(R;C) ≤ ∥φ∥S (n+m)(R;C) ≤ Cn,m max
k,ℓ∈N
k+ℓ≤m

∥xk∂ℓφ∥S (n)(R;C).

Hint: In proving the upper bound, consider using the equation(
an+φ, h̃k+n

)
L2(λR;C)

=
(k + n)!

n!

(
φ, h̃k

)
L2(λR;C)

.

.
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Exercise 13.8. Let {φn : n ≥ 1} be a bounded sequence in S (R;C) such that
limn→∞ φn(x) exists for each x ∈ R. Show that there is a φ ∈ S (R;C) such that
φn −→ φ in S (R;C).
Hint: Use Theorem 13.5.

Exercise 13.9. This exercise deals with the relationship between various function
spaces.

(i) Show that C∞
c (R;C) is a dense subset of S (R;C)

(ii) Set

C0(R;C) =
ß
f ∈ C(R;C) : lim

|x|→∞
f(x) = 0

™
.

Show that C0(R;C) with the uniform norm is a Banach space in which both C∞
c

and S (R;C) are dense subsets.

Exercise 13.10. For x ∈ R and φ ∈ S (R;C), define τxφ(y) = φ(x + y). Show

that τxφ ∈ S (R;C) and that ∥τxφ∥(m)
u ≤ 2m(|x| ∨ 1)m∥φ∥(m)

u for all m ≥ 0. In
addition, show that

∥τx2
φ− τx1

φ∥(m)
u ≤ 2m

(
|x1| ∨ |x2| ∨ 1)m∥φ∥(m+1)

u |x2 − x1|.
Hint: To prove the first estimate, check that

|yk∂ℓτxφ(y)| ≤
®
(2|x|)m

∣∣(∂ℓφ)(x+ y)
∣∣ if |y| ≤ 2|x|

2m
∣∣(x+ y)k(∂ℓφ)(x+ y)

∣∣ if |y| ≥ 2|x|.
To prove the second estimate, assume that x1 ≤ x2, note that

τx2
φ− τx1

φ =

∫ x2

x1

τtφ
′ dt,

and therefore that

∥τx2
φ− τx1

φ∥(m)
u ≤

∫ x2

x1

∥τtφ′∥(m)
u dt.

Finally, apply the first estimate.
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