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Lecture 14: Tempered Distributions

Schwartz developed the theory of distribution in order to provide a mathemati-
cally rigorous way to describe the sort of generalized functions that appear in the
work by Boole and Heaviside in connection with applications of the Laplace trans-
form to ordinary differential equations, and those that were somewhat later intro-
duced by Sobolev for applications to partial differential equations. What Schwartz
realized is that generalized functions should be thought of in terms of their action
(i.e., their L2(λR;C) inner product with) on smooth functions rather than their
value (which won’t exist in general) at points.

To make that idea mathematically precise, he said a generalized function, which
he called a distribution, should be a continuous linear functional on a topologi-
cal vector space of smooth functions. One of the spaces Schwartz considered is
C∞

c (R;C), but the appropriate topology on that space is rather cumbersome (for
instance, elements don’t have countable neighborhood bases). A second, and much
more tractable, choice is S (R;C). Because elements of S (R;C) need not have com-
pact support, an element of its dual space must satisfy restricted growth conditions
and is therefore called a tempered distribution.

Recall that the dual space X∗ of a topological vector space X over C is the
space of continuous, C-valued linear functions on X. When, like S (R;C), all the
elements of X have a countable neighborhood basis, a linear function Λ on X is an
element of X∗ if Λxn −→ Λx whenever xn −→ x in X. Because we want to think
of elements of S (R;C)∗ as generalized functions which act via their inner product
with elements of S (R;C), we will use letters like u to denote elements of S (R;C)∗

and write their action on φ ∈ S (R;C) as ⟨φ, u⟩.

Lemma 14.1. For each u ∈ S (R;C)∗ there is an m ≥ 0 and a C ∈ (0,∞) such
that

|⟨φ, u⟩| ≤ C∥φ∥S (m)(R;C) for all φ ∈ S (R;C).

Proof. Because sets of the form
{
∥φ∥S (m)(R;C) ≤ r

}
form a neighborhood basis

for 0 in S (R;C), there is an m ≥ 0 and r > 0 such that |⟨φ, u⟩| ≤ 1 when
∥φ∥S (m)(R;C) ≤ r. Hence |⟨φ, u⟩| ≤ r−1∥φ∥S (m)(R;C). □

Simple as it is, Lemma 14.1 has many consequences. For example, it allows us
to say that

(14.1) ⟨φ, u⟩ =
∞∑
k=0

(φ, h̃k)L2(λR;C)⟨h̃k, u⟩,

where the series is absolutely convergent. Indeed, if |⟨φ, u⟩| ≤ C∥φ∥S (m)(R;C), then

|⟨h̃k, u⟩| ≤ Cµmk , and so, since |(φ, h̃k)L2(λR;C)| = µ−n
k |(Hnφ, h̃k)L2(λR;C)| for all

n ≥ 0, the series
∑∞
k=0(φ, h̃k)L2(λR;C)⟨h̃k, u⟩ is absolutely convergent. Hence, if

φn =
∑n
k=0(φ, h̃k)L2(λR;C), then φn −→ φ in S (R;C) and therefore

⟨φ, u⟩ = lim
n→∞

⟨φn, u⟩ = lim
n→∞

n∑
k=0

(φ, h̃k)L2(λR;C)⟨h̃k, u⟩

=
∞∑
k=0

(φ, h̃k)L2(λR;C)⟨h̃k, u⟩.
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Obviously, given a measurable function f : R −→ C with at most polynomial
growth, one can think of it as the element of fλR ∈ S (R;C)∗ given by ⟨φ, fλR⟩ =∫
φf̄ dλR, and in this way S (R;C) can be thought of as a subset of S (R;C)∗.

Although the distribution corresponding to f is fλR, it is conventional to denote
it by f instead, and we will adopt this convention.

We will need to know that S (R;C) is dense in S (R;C)∗. To see that it is, let
u ∈ S (R;C)∗, and set

ψn =
n∑
k=0

⟨h̃k, u⟩h̃k.

Clearly ψn ∈ S (R;C), and, for each φ ∈ S (R;C),

(φ,ψn)L2(λR;C) =
n∑
k=0

(φ, h̃k)L2(λR;C)(ψn, h̃k)L2(λR;C)

=
n∑
k=0

(φ, h̃k)L2(λR;C)⟨h̃k, u⟩ −→
∞∑
k=0

(φ, h̃k)L2(λR;C)⟨h̃k, u⟩ = ⟨φ, u⟩.

The importance of this density result is that it tells us how to extend contin-
uous operators like Hs as continuous operators on S (R;C)∗. Namely, because
(φ,Hsψ)L2(λR;C) = (Hsφ,ψ)L2(λR;C) for φ,ψ ∈ S (R;C) and S (R;C) is dense in

S (R;C)∗, the one and only continuous extension of Hs to S (R;C)∗ is given by

(14.2) ⟨φ,Hsu⟩ ≡ ⟨Hsφ, u⟩.

Since S (R;C) can be written as the intersection of the spaces S (m)(R;C),
S (R;C)∗ must be able to be written as the union of the spaces S (m)(R;C)∗. Of
course, because S (m)(R;C) is a Hilbert space, Riesz’s theorem provides an isomor-

phism between S (m)(R;C)∗ and S (m)(R;C). However, in order to be consistent
with the idea that ⟨φ, u⟩ is a generalization of the L2 inner product, this is not the

way we will think about S (m)(R;C)∗. Instead, we want to identify S (m)(R;C)∗

as the Hilbert space

S (−m)(R;C) =

{
u ∈ S (R;C)∗ :

∞∑
k=0

µ−m
k |⟨h̃k, u⟩|2 <∞

}
with inner product

(u, v)S (−m)(R;C) =
∞∑
k=0

µ−m
k ⟨h̃k, u⟩⟨h̃k, v⟩.

Recall that if X is a Banach space and Λ ∈ X∗, then ∥Λ∥X∗ = sup{|Λ(x)| :
∥x∥X = 1}. Thus

∥u∥S (m)(R;C)∗ = sup{|⟨φ, u⟩| : ∥φ∥S (m)(R;C) = 1}.

Theorem 14.2. For each m ≥ 0, S (−m)(R;C) is a separable Hilbert space and

u ∈ S (−m)(R;C) ⇐⇒ H−m
2 u ∈ L2(λR;C) & |H−m

2 u∥L2(λR;C) = ∥u∥S (−m)(R;C)

⇐⇒ u ∈ S (m)(R;C)
∗
.

Moreover, if u ∈ S (−m)(R;C), then ∥u∥S (m)(R;C)∗ = ∥u∥S (−m)(R;C) and therefore

(14.3) |⟨φ, u⟩| ≤ ∥φ∥S (m)(R;C)∥u∥S (−m)(R;C).
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Proof. If u ∈ S (−m)(R;C), then

|⟨φ,H−m
2 u⟩| =

∣∣∣∣∣
∞∑
k=0

µ
−m

2

k (φ, h̃k)L2(λR;C)⟨h̃k, u⟩
∣∣∣∣∣ ≤ ∥φ∥L2(λR;C)∥u∥S (−m)(R;C),

and so H−m
2 u ∈ L2(λ[0,1);C) and ∥H−m

2 u∥L2(λR;C) = ∥u∥S (−m)(R;C). Conversely, if

H−m
2 u ∈ L2(λR;C), then

∥u∥2S (−m)(R;C) =
∞∑
k=0

µ−m
k |⟨h̃k, u⟩|2 =

∞∑
k=0

|⟨h̃k,H−m
2 u⟩|2 = ∥H−m

2 u∥L2(λR;C).

To prove the second equivalence, first suppose that u ∈ S (m)(R;C)∗. Then,
since ∥H−m

2 φ∥S (m)(R;C) = ∥φ∥L2(λR;C),

|⟨φ,H−m
2 u⟩| = |⟨H−m

2 φ, u⟩|
≤ ∥H−m

2 φ∥S (m)(R;C)∥u∥S (m)(R;C)∗ = ∥u∥S (m)(R;C)∗∥φ∥L2(λR;C),

and so H−m
2 u ∈ L2(λR;C) and ∥u∥S (−m)(R;C) ≤ ∥u∥S (m)(R;C)∗ . Conversely, if

u ∈ S (−m)(R;C), set f = H−m
2 u, then

|⟨φ, u⟩| = |(Hm
2 φ, f)L2(λR;C)|

≤ ∥Hm
2 φ∥L2(λR;C)∥f∥L2(λR;C) = ∥u∥S (−m)(R;C)∥φ∥S (m)(R;C),

and so u ∈ S (m)(R;C)∗ and ∥u∥S (m)(R;C)∗ ≤ ∥u∥S (−m)(R;C). □

By combining Lemma 14.1 and Theorem 14.2, we know that

S (R;C)∗ =

∞⋃
m=0

S (−m)(R;C).

Theorem 14.3. If u ∈ S (−m)(R;C) is non-negative in the sense that ⟨φ, u⟩ ≥ 0
whenever φ ∈ S (R;C) is non-negative, then there exists a Borel measure µ on R
such that ∫

(1 + x2)−
m+3

2 µ(dx) <∞ and ⟨φ, µ⟩ =
∫
φdµ.

Conversely, if µ is a Borel measure on R satisfying∫
(1 + x2)−

m
2 µ(dx) <∞

and u ∈ S (R;C)∗ is defined by ⟨φ, u⟩ =
∫
φdµ, then u ∈ S (−m−3)(R;C).

Proof. Assume that u ∈ S (−m)(R;C) is non-negative. Choose η ∈ C∞(R; [0, 1])
so that η = 1 on [−1, 1] and η = 0 off [−2, 2], set ηR(x) = η

(
x
R

)
for R ≥

1, and define uR ∈ S (R;C)∗ by ⟨φ, uR⟩ = ⟨ηRφ, u⟩. Given an R-valued φ ∈
S (R;C), ∥φ∥uηR ± φηR ≥ 0, and therefore |⟨φ, uR⟩| ≤ ∥φ∥u⟨ηR, u⟩. Thus there is
a unique extension of φ⇝ ⟨φ, uR⟩ as a continuous, non-negative linear functional on
C
(
[−2R; 2R],R

)
, which, by the Riesz representation theorem, means that there is a

finite Borel measure µR on R such that ⟨φ, uR⟩ =
∫
φdµR. In particular, µR(R) =

⟨ηR, u⟩ ≤ ∥ηR∥S (m)(R;C)∥u∥S (−m)(R;C). Since ∥ηR∥2S (m)(R;C) =
(
ηR,HmηR

)
L2(λR;C)
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and HmηR is a linear combinations of terms of the form xk

Rℓ η
(ℓ)
(
x
R

)
, where 0 ≤

k + ℓ ≤ 2m, there exists a C <∞ such thatÅ∫
ηR(x)HmηR(x) dx

ã 1
2

≤ CRm+ 1
2 ,

and so µR(R) ≤ C∥u∥S (−m)(R;C)R
m+ 1

2 .

Note that R ≤ R′ =⇒ µR′ ↾ [−R,R] = µR ↾ [−R,R], and therefore there
is a Borel measure µ on R such that µ ↾ [−R,R] = µR ↾ [−R,R] for all R ≥ 1.
Furthermore∫

(1 + x2)−
m+3

2 µ(dx) =
∞∑
n=0

∫
[−n,n]

(1 + |x|2)−
m+3

2 µn(dx)

≤ C∥u∥S (−m)(R;C)

∞∑
n=0

(n+ 1)m+ 1
2

(1 + n2)
m+3

2

= 2
2m+1

4 C∥u∥S (−m)(R;C)

∞∑
n=0

1

1 + n2
<∞.

Finally,

⟨φ, u⟩ = lim
R→∞

⟨ηRφ, u⟩ = lim
R→∞

∫
ηRφdµ =

∫
φdµ.

Conversely, suppose that µ is a Borel measure on R and that

C ≡
∫

(1 + x2)−
m
2 dµ(dx) <∞.

Clearly φ⇝
∫
φdµ determines a distribution u. In fact, by (13.3),

|⟨φ, u⟩| ≤ C∥(1 + x2)
m
2 φ∥u ≤ C∥(1 + |x|)mφ∥u ≤ CKm∥φ∥S (m+3)(R;C),

and therefore u ∈ S (−m−3)(R;C). □

As a consequence of Theorem 14.3, we know that for any measurable f : R −→ C
for which there exists an m ∈ Z such that∫

(1 + x2)−
m
2 |f(x)| dx <∞,

there is a distribution f ∈ S (−m−3)(R;C) such that

⟨φ, f⟩ =
∫
φ(x)f̄(x) dx.

The following generalizes the preceding observation.

Theorem 14.4. Let µ be a Borel measure on R, and assume that

Mµ ≡
∫

(1 + x2)−
m
2 µ(dx) <∞.

If f ∈ Lp(µ;C), then there is a distribution fµ given by

φ ∈ S (R;C) 7−→
∫
φf̄ dµ ∈ C.

Moreover, if mp = min
{
n : m ≤ 2p′n}, where p′ is the Hölder conjugate of p, then

fµ ∈ S (−mp−3)(R;C) and

∥fµ∥S (−mp−3)(R;C) ≤ KmpM
1
p′
µ ∥f∥Lp(µ;C).
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Proof. By Hölder’s inequality,∣∣∣∣∫ φf̄ dµ

∣∣∣∣ ≤ ∥f∥Lp(µ;C)∥φ∥Lp′ (µ;C).

At the same time,

∥φ∥Lp′ (µ;C) ≤
Å∫

(1 + x2)−
m
2 (1 + x2)

m
2 |φ(x)|p

′
µ(dx)

ã 1
p′

≤M
1
p′
µ

∥∥(1 + x2)
m
2p′ φ

∥∥
u
≤ KmpM

1
p′
µ ∥φ∥S (mp+3)(R;C).

Hence,

|⟨φ, fµ⟩| ≤ KmpM
1
p′
µ ∥f∥Lp(µ;C)∥φ∥S (mp+3)(R;C).

□

Loosely related to the preceding is the following theorem of Schwartz. Given
a u ∈ S (R;C)∗, its support is the smallest closed set F such that ⟨φ, u⟩ = 0 for

all φ that are 0 on F ∁. Equivalently, ⟨φ1, u⟩ = ⟨φ2, u⟩ if φ1 = φ2 on an open set
containing F .

Theorem 14.5. If u ∈ S (−n+1)(R;C), then u is supported on {0} if and only if

u =
n∑

m=0

am∂
mδ0

for some {a0, . . . , an} ⊆ C.

Proof. The sufficiency statement is trivial. To prove the necessity assertion, first

note that, by Theorem 13.2, there is a C ∈ [0,∞) such that |⟨φ, u⟩| ≤ C∥φ∥(n)u .
Next, choose η ∈ C∞(R; [0, 1]) so that η = 1 on [−1, 1] and η = 0 off of [−2, 2], and

define ηr(x) = η
(
x
r

)
for r ∈ (0, 1]. Because 0 is the support of u, ⟨φ, u⟩ = ⟨ηrφ, u⟩

for all r ∈ (0, 1]. In particular, this means that

|⟨φ, u⟩| ≤ C

n∑
ℓ=0

∥ηrφ(ℓ)∥u

for some other C <∞.
We will now show that ⟨φ, u⟩ = 0 if φ(x) = xn+1η(x)ψ(x) for some ψ ∈

C∞(R;C). To this end, set φr(x) = xn+1ηr(x)ψ(x), and note ⟨φ, u⟩ = ⟨φr, u⟩
for all r ∈ (0, 1]. Next observe that ∂ℓφr is a linear combination of terms of the
form

xn+1−ir−jη(j)
(
x
r

)
ψ(k)(x) = xn+1−i−j

(x
r

)j
η(j)
(
x
r

)
ψ(k)(x)

where i+ j + k = ℓ. Since∣∣∣∣xn+1−i−j
(x
r

)j
η(j)
(
x
r

)
ψ(k)(x)

∣∣∣∣ ≤ rn+1−i−j∥xjη(j)∥u∥ψ(k)∥u,

limr↘0 ∥φ(ℓ)
r ∥u = 0 for ℓ ≤ n, and so

⟨φ, u⟩ = lim
r↘0

⟨φr, u⟩ = 0.
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Now let φ ∈ S (R;C) and use Taylor’s theorem to write

φ(x) =
n∑

m=0

φ(m)(0)

m!
xm +

xn+1

n!

∫ 1

0

(1− t)nφ(n+1)(tx) dt.

Set ψ(x) = 1
n!

∫ 1

0
(1−t)nφ(n+1)(tx) dt, and apply the preceding to see that ⟨xn+1ηψ, u⟩ =

0 and therefore that

⟨φ, u⟩ = ⟨ηφ, u⟩ =
n∑

m=0

φ(m)(0)

m!
⟨xmη, u⟩.

Hence

u =
n∑

m=0

(−1)m⟨xmη, u⟩
m!

∂mδ0.

□

The next result characterizes distributions u ∈ S (R;C)∗ which satisfy the min-
imum principle

(14.4) ⟨φ, u⟩ ≥ 0 if φ ∈ S (R;R) and φ(0) = min{φ(x) : x ∈ R}.
In preparation for the proof of the characterization, I have to introduce the

following partition of unity for R \ {0}. Choose ψ ∈ C∞(R; [0, 1]) so that ψ has

compact support in (0, 2) \
(
0, 14

)
and ψ(y) = 1 when 1

2 ≤ |y| ≤ 1, and set ψm(y) =

ψ(2my) form ∈ Z. Then, if y ∈ R and 2−m−1 ≤ |y| ≤ 2−m, ψm(y) = 1 and ψn(y) =
0 unless −m − 2 ≤ n ≤ −m + 1. Hence, if Ψ(y) =

∑
m∈Z ψm(y) for y ∈ R \ {0},

then Ψ is a smooth function with values in [1, 4]; and therefore, for each m ∈ Z, the
function χm given by χm(0) = 0 and χm(y) = ψm(y)

Ψ(y) for y ∈ R \ {0} is a smooth,

[0, 1]-valued function that vanishes off of (0, 2−m+1) \ (0, 2−m−2). In addition, for
each y ∈ R \ {0},

∑
m∈Z χm(y) = 1 and χm(y) = 0 unless 2−m−2 ≤ |y| ≤ 2−m+1.

Lemma 14.6. If u ∈ S (R;R) satisfies (14.4), then there exists a unique Borel

measure M on R such that M({0}) = 0,
∫

y2

1+y2 M(dy) <∞, and

⟨φ, u⟩ =
∫
φ(y)M(dy)

if φ, φ′, and φ′′ vanish at 0.

Proof. Referring to the partition of unity described above, define Λmφ = ⟨χmφ, u⟩
for φ ∈ C∞((0, 2−m+1) \ (0, 2−m−2);R

)
, where

χmφ(y) =

®
χm(y)φ(y) if 2−m−2 ≤ |y| ≤ 2−m+1

0 otherwise.

Clearly Λm is linear. In addition, if φ ≥ 0, then χmφ ≥ 0 = χmφ(0), and so, by

(14.4), Λmφ ≥ 0. Similarly, for any φ ∈ C∞((0, 2−m+1)\(0, 2−m−2);R
)
, ∥φ∥uχm±

χmφ ≥ 0 =
(
∥φ∥uχm ± χmφ

)
(0), and therefore |Λmφ| ≤ Km∥φ∥u, where Km =

⟨χm, u⟩. Hence, Λm admits a unique extension as a continuous linear functional

on C
(
(0, 2−m+1) \ (0, 2−m−2);R

)
that is non-negativity preserving and has norm

Km; and so, by the Riesz representation theorem, we know that there is a unique
non-negative Borel measure Mm on R such that Mm is supported on (0, 2−m+1) \
(0, 2−m−2), Km =Mm(R), and ⟨χmφ, u⟩ =

∫
R φ(y)Mm(dy) for all φ ∈ S (R;R).
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Now define the Borel measureM on R byM =
∑
m∈ZMm. Clearly,M({0}) = 0.

In addition, if φ ∈ C∞
c

(
R \ {0};R

)
, then there is an n ∈ Z such that χmφ ≡ 0

unless |m| ≤ n. Thus,

⟨φ, u⟩ =
n∑

m=−n
A(χmφ) =

n∑
m=−n

∫
R
φ(y)Mm(dy)

=

∫
RN

(
n∑

m=−n
χm(y)φ(y)

)
M(dy) =

∫
RN

φ(y)M(dy),

and therefore

(14.5) ⟨φ, u⟩ =
∫
R
φ(y)M(dy)

for φ ∈ C∞
c

(
R \ {0};R

)
.

Before taking the next step, observe that, as an application of (14.4), if φ1, φ2 ∈
S (R;R), then

φ1 ≤ φ2 and φ1(0) = φ2(0) =⇒ ⟨φ1, u⟩ ≤ ⟨φ2, u⟩. (∗)

Indeed, by linearity, this reduces to the observation that, by (14.4), if φ ∈ D is
non-negative and φ(0) = 0, then ⟨φ, u⟩ ≥ 0.

With these preparations, we can show that, for any φ ∈ D,

φ ≥ 0 = φ(0) =⇒
∫
R
φ(y)M(dy) ≤ ⟨φ, u⟩. (∗∗)

To check this, apply (∗) to φn =
∑n
m=−n χmφ and φ, and use (14.5) together with

the monotone convergence theorem to conclude that∫
R
φ(y)M(dy) = lim

n→∞

∫
R
φn(y)M(dy) = lim

n→∞
⟨φn, u⟩ ≤ ⟨φ, u⟩.

Now let η ∈ C∞(R; [0, 1]) satisfy η = 0 on [−1, 1] and η = 0 off (−2, 2), and set

ηR(y) = η(R−1y) for R > 0. By (∗∗) with φ(y) = |y|2η(y) we know that∫
R
|y|2η(y)M(dy) ≤ ⟨φ, u⟩ <∞.

At the same time, by (14.5) and (∗),∫
RN

(
1− η(y)

)
ηR(y)M(dy) ≤ ⟨(1− η), u⟩

for all R > 0, and therefore, by Fatou’s Lemma,∫
R

(
1− η(y)

)
M(dy) ≤ ⟨(1− η), u⟩ <∞.

Hence, I have proved that

(14.6)

∫
R

y2

1 + y2
M(dy) <∞.

We are now in a position to show that (14.5) continues to hold for any φ ∈
S (R;R) that vanishes along with its first and second order derivatives at 0. To
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this end, first suppose that φ vanishes in a neighborhood of 0. Then, for each
R > 0, (14.5) applies to ηRφ, and so∫

R
ηR(y)φ(y)M(dy) = ⟨ηRφ, u⟩ = ⟨φ, u⟩+ ⟨(1− ηR)φ, u⟩.

Since (1 − ηR)φ −→ 0 in S (R;R) as R → ∞ and φ is M -integrable, Lebesgue’s
dominated convergence theorem implies that,

⟨φ, u⟩ = lim
R→∞

∫
R
ηR(y)φ(y)M(dy) =

∫
R
φ(y)M(dy).

We still have to replace the assumption that φ vanishes in a neighborhood of 0
by the assumption that it vanishes to second order there. For this purpose, first
note that, by (14.6), φ is certainly M -integrable, and therefore∫

RN

φ(y)M(dy) = lim
r↘0

⟨(1− ηr)φ, u⟩ = ⟨φ, u⟩ − lim
r↘0

⟨ηrφ, u⟩.

By our assumptions about φ at 0, we can find a C < ∞ such that |ηrφ(y)| ≤
Cry2η(y) for all r ∈ (0, 1]. Hence, by (∗) and the M -integrability of y2η(y), there
is a C ′ <∞ such that ⟨ηrφ, u⟩ ≤ C ′r for small r > 0, and therefore ⟨ηrφ, u⟩ −→ 0
as r ↘ 0. □

Theorem 14.7. If u ∈ S (R;R) satisfies (14.4), then there exist an a ≥ 0, a b ∈ R,
and Borel measure M on R such that M({0}) = 0, (14.6) holds, and

⟨φ, u⟩ = a
2φ

′′(0) + bφ′(0) +

∫ (
φ(y)− φ(0)− 1[0,1](y)φ

′(0)y
)
M(dy).

In fact, M is determined by

⟨φ, u⟩ =
∫
φ(y)M(dy) if φ ∈ C∞

c

(
R \ {0}

)
,

and, for any η ∈ C∞(R; [0, 1]) which is 1 on [−1, 1] and 0 off (−2, 2)

a = ⟨y2η2, u⟩ −
∫
y2η(y)2M(dy)

and

b = ⟨yη, y⟩ −
∫
y
(
η(y)− 1[0,1](y)

)
M(dy).

Proof. Let η be as in the statement, and define

ψ(y) = φ(y)− φ(0)− φ′(0)yη(y)− 1
2φ

′′(0)y2η(y)2.

Then ψ vanishes to second order at 0, and so, by Lemma 14.6, ⟨ψ, u⟩ =
∫
ψ(y)M(dy).

Hence,

⟨φ, u⟩ = φ′(0)⟨yη, u⟩+ 1
2φ

′′(0)⟨y2η2, u⟩

+

∫ (
φ(y)− φ(0)− φ′(0)yη(y)− 1

2φ
′′(0)y2η(y)2

)
M(dy),

and so

⟨φ, u⟩ = φ′(0)⟨yη, u⟩ − 1
2φ

′′(0)

Å
⟨y2η, u⟩ −

∫
y2η(y)2M(dy)

ã
+

∫ (
φ(y)− φ(0)− φ′(0)yη(y)

)
M(dy).



48

Finally, because y
(
η(y)−1[−1.1](y)

)
vanishes on [−1, 1] and is thereforeM -integrable,

we can replace φ′(0)⟨yη, u⟩ by

φ′(0)
(
⟨yη, u⟩ −

∫
y
(
η(y)− 1[−1,1](y)

))
M(dy)

and
∫ (
φ(y)− φ(0)− φ′(0)yη(y)

)
M(dy) by∫ (

φ(y)− φ(0)− φ′(0)y1[−1,1](y)
)
M(dy).

□

Exercise 14.8. Let f ∈ C1
b(R;C), set u = f(|x|), and show that u′ = sgn(x)f ′(|x|).

Next assume that f ∈ C2
b(R;C), and show that u′′ = f ′(|x|)δ0 + f ′′(|x|).
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