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LECTURE 14: TEMPERED DISTRIBUTIONS

Schwartz developed the theory of distribution in order to provide a mathemati-
cally rigorous way to describe the sort of generalized functions that appear in the
work by Boole and Heaviside in connection with applications of the Laplace trans-
form to ordinary differential equations, and those that were somewhat later intro-
duced by Sobolev for applications to partial differential equations. What Schwartz
realized is that generalized functions should be thought of in terms of their action
(i.e., their L?(\g;C) inner product with) on smooth functions rather than their
value (which won’t exist in general) at points.

To make that idea mathematically precise, he said a generalized function, which
he called a distribution, should be a continuous linear functional on a topologi-
cal vector space of smooth functions. One of the spaces Schwartz considered is
C*(R;C), but the appropriate topology on that space is rather cumbersome (for
instance, elements don’t have countable neighborhood bases). A second, and much
more tractable, choice is #(R; C). Because elements of . (R; C) need not have com-
pact support, an element of its dual space must satisfy restricted growth conditions
and is therefore called a tempered distribution.

Recall that the dual space X* of a topological vector space X over C is the
space of continuous, C-valued linear functions on X. When, like .7 (R; C), all the
elements of X have a countable neighborhood basis, a linear function A on X is an
element of X* if Az, — Az whenever z,, — = in X. Because we want to think
of elements of .(R;C)" as generalized functions which act via their inner product
with elements of .%(R; C), we will use letters like u to denote elements of .7 (R; C)"
and write their action on ¢ € Z(R;C) as (p, u).

Lemma 14.1. For each u € /(R;C)" there is an m > 0 and a C € (0,00) such
that

(o, u)| < Clloll oom mscy for all ¢ € F(R; C).

Proof. Because sets of the form {||¢|| s ®,c) < 7} form a neighborhood basis
for 0 in .Z(R;C), there is an m > 0 and r > 0 such that |(p,u)| < 1 when
[l 0m (ricy < 7. Hence [{p,u)| < 77 [@l] soom) iy - U

Simple as it is, Lemma 14.1 has many consequences. For example, it allows us
to say that

(14.1) (p,u) = Z(% hie) 12 (i) (B, ),
k=0

where the series is absolutely convergent. Indeed, if [{¢, u)| < C|l¢]| 5 0m) r;c), then
|(hi,u)| < Cuj, and so, since |(<P7hk)~L2()\R;(C)| = p"[(H" @, hie) 12 (ag;0)| for all
n > 0, the series > 22 (¢, hi) 2 (i) (P, ) is absolutely convergent. Hence, if
on =Y 1ol ilk)L2()\]R;(C)7 then ¢, — ¢ in (R;C) and therefore

n

{pyu) = lim (pp,u) = lim kZ(% hi) 12 (i) (P, W)
=0

= (@) L2 (s (Pt ).
k=0
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Obviously, given a measurable function f : R — C with at most polynomial
growth, one can think of it as the element of fAg € .7 (R;C)" given by (¢, fAr) =
[ of d\g, and in this way #(R;C) can be thought of as a subset of .7 (R;C)".
Although the distribution corresponding to f is fAg, it is conventional to denote
it by f instead, and we will adopt this convention.

We will need to know that .(R;C) is dense in .#(R;C)". To see that it is, let
u € S (R;C)", and set

Un = Z<hk7u>hk~
k=0
Clearly ¢,, € Z(R;C), and, for each ¢ € #(R;C),
n ~ —_— =
(‘Pa ¢7L)L2(>\R;<C) = Z(‘Pv hk)LQ()\R;C) (¢n7 hk)LQ(AR;(C)
k=0

Z @, hi) 12 i) (e ) — Z(% i) 2 (wic) (e w) = (0, ).
k=0 k=0

The importance of this density result is that it tells us how to extend contin-
uous operators like H* as continuous operators on .#(R;C)". Namely, because
(o Ho V)2 ase) = (HP0,0) 12 (aei0) for 0, ¢ € Z(R;C) and . (R; C) is dense in
Z(R;C)", the one and only continuous extension of #* to .#(R;C)* is given by
(14.2) (o, Hou) = (Mo, u).

Since .7 (R;C) can be written as the intersection of the spaces .7 (™) (R;C),
Z(R;C)* must be able to be written as the union of the spaces .&(™ (R;C)". Of
course, because . (m)(R; C) is a Hilbert space, Riesz’s theorem provides an isomor-
phism between .(™ (R;C)" and .(™ (R;C). However, in order to be consistent
with the idea that (@, u) is a generalization of the L? inner product, this is not the

way we will think about .#(™ (R;C)". Instead, we want to identify .#(™(R;C)"
as the Hilbert space

y(m)(R;C):{ueYR(C Z“k (A, u) <oo}

with inner product

(U, V) o (—m) (RiC) = Z“k (g, u) (R, v).
Recall that if X is a Banach space and A € X*, then ||A||x» = sup{|A(z)] :
lz|lx = 1}. Thus
[u]| 5 em mscy* = sup{[{p, u)| & [l som ric) = 1}-
Theorem 14.2. For each m >0, .7~ (R,; C) is a separable Hilbert space and
ue STMRC) = H Fue PO C) & [0 Fullr2pno) = lullsem@e
= ue S R;C) .
Moreover, if u € "™ (R;C), then ]l em (mscy* = llull so—m) micy and therefore

(14.3) (o, u)| < ||§0||y(7")(R;C)HUH(E’(*"L)(R;C)‘
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Proof. If u € .#(="™)(R;C), then

7n

(e, H™ Zﬂk (0 1) 12 gy (s )| < el 22 (s 1wl o =m sy

and so H™2u € L*(Xjo,1); C) and |[H™ 2 ul|p2(rg,0) = [Jull so—m) (m,cy- Conversely, if
H~%u € L2(\g; C), then

el % iy = Zuk (i w)> = [, H™ 2 w)* = (|1 % ul| L2 (i)

To prove the second equivalence, first suppose that u € .7(™)(R; (C)*. Then,
since [|[H ™2 ¢ wom @) = 1€ll2200p:0)

(o, H™ B u)| = [(H™ 5 )|

<|HF ol om0y 1l o om micyr = Nl rom) (ricy

(Ar;C)>»

and so H™%u € L*(\g;C) and ull o—m)yricy < Null oom)mycy=-  Conversely, if
u € S "M(R;C), set f =H 3 u, then

|<<P7U>| = |(H%<ﬂ f)L2 (Ar;C )|

m

<M=z ollLzoeio) | flliLzopic) = Ul -m @oy 1@l 20m iy
and so u € (™) (R;C)" and 1wl oem micy* < Mull.so—m) sy O

By combining Lemma 14.1 and Theorem 14.2, we know that
S(R;C) = | sM(R;0).
m=0
Theorem 14.3. If u € .#(~™)(R;C) is non-negative in the sense that {p,u) > 0

whenever p € Z(R;C) is non-negative, then there exists a Borel measure p on R
such that

/(1 +a2) 75 p(de) < 0o and (p, ) = /Sﬁdﬂ-

Conwversely, if u is a Borel measure on R satisfying
/(1 +2%)7% p(dr) < oo

and u € S (R;C)" is defined by (p,u) = [ @du, then u € ™3 (R;C).

Proof. Assume that u € .#(~")(R;C) is non-negative. Choose n € C> (R; [0,1])
so that n = 1 on [-1,1] and n = 0 off [-2,2], set nr(z) = n(%) for R >
1, and define ugr € S (R;C)" by (p,ur) = (nre,u). Given an R-valued ¢ €
L (R;C), |l¢llunr £ ¢nr > 0, and therefore |(p, ur)| < ||¢|lu(nr,w). Thus there is
a unique extension of ¢ ~» (p, ur) as a continuous, non-negative linear functional on
C ([—QR; 2R], R), which, by the Riesz representation theorem, means that there is a
finite Borel measure 1z on R such that (¢, ur) = [ ¢ dug. In particular, pr(R) =

(MR, u) < ||77R||y<m>(R;<C)||u||y<=m>(R;«:)' Since ||nR||2y(”L)(R;C) = (nR,HmnR)LQ(AR;C)
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and H™ng is a linear combinations of terms of the form Lin(z)(%), where 0 <

R
k + ¢ < 2m, there exists a C' < oo such that

ol

(/ nr(x)H"nr(x) dx) < CR™3,

and 50 1g(R) < Cllul so-m (ric) R™2.

Note that R < R = pupr | [-R,R] = ur | [-R, R], and therefore there
is a Borel measure p on R such that u [ [-R,R] = pugr | [-R, R] for all R > 1.
Furthermore

Jara) ) =Y [ (1 o) (o)
n—0 [—n,n]
- (n+1)m+% 2m+1 >
< Cllu —m) (TR —— =21 (Cllu —m) (R — <
< Clull s« >(R,C)n:0 (L) o [[ull 5« >(R,@)T;1+n2

Finally,
(p,u) = lim (nrp,u) = lim /m—wdu: /wdu-
R—o0 R—o0
Conversely, suppose that p is a Borel measure on R and that
C= /(1 + 22)” % du(dx) < oco.
Clearly ¢ ~~ [ ¢ du determines a distribution u. In fact, by (13.3),
(. w)] < CIA+2*) Fpllu < O+ |2)™ el < CEmlloll s @0y
and therefore u € .7(~"=3)(R; C). O

As a consequence of Theorem 14.3, we know that for any measurable f : R — C
for which there exists an m € Z such that

/(1 + 22)7 % | f(x)| dx < oo,
there is a distribution f € .#(="=3)(R; C) such that
(w.) = [ ola)f(o)do

The following generalizes the preceding observation.

Theorem 14.4. Let pu be a Borel measure on R, and assume that
M, = /(1 +2%)7 % p(dr) < oc.

If f € LP(u; C), then there is a distribution fu given by
v e S(R;C) r—>/gpfd,u€(c.

Moreover, if mp, = min{n : m < 2p'n}, where p' is the Holder conjugate of p, then
fue M =3)(R;C) and

1
||fﬂ‘|y(*vnr3>(m;c) < K, M7 ||fHLP(p;(C)~
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Proof. By Hélder’s inequality,

] / of du' < o Il -

At the same time,

1
7

m m ’ P
Il ey < ([ 14372 W0 Flota) i)

1
(1 + zz)W@Hu < Kmlef ”‘P”;ﬁ(mp%)(]ﬁ;c)-

Hence,

1
0 F)] < Koy ME [ £l 20 ) 101 im0 -
O

Loosely related to the preceding is the following theorem of Schwartz. Given
au € . (R;C)", its support is the smallest closed set F such that (p,u) = 0 for
all ¢ that are 0 on FC. Equivalently, (p1,u) = {pa,u) if p1 = @2 on an open set
containing F'.

Theorem 14.5. If u € #""TV(R;C), then u is supported on {0} if and only if

n

u = Z am0™do
m=0

for some {ag,...,a,} CC.

Proof. The sufficiency statement is trivial. To prove the necessity assertion, first
note that, by Theorem 13.2, there is a C' € [0,00) such that |{p,u)| < C’||<p||1(4").
Next, choose 7 € C*(R; [0, 1]) so that n = 1 on [—1,1] and n = 0 off of [-2,2], and
define 1, (z) = n(2) for r € (0,1]. Because 0 is the support of u, (p,u) = (¢, u)
for all » € (0,1]. In particular, this means that

e u)] < C Y lIme el
£=0

for some other C < oo.

We will now show that (p,u) = 0 if p(z) = 2" n(x)y(x) for some ¢ €
C>(R;C). To this end, set ¢.(z) = 2", (z)(z), and note (p,u) = (p,,u)
for all r € (0,1]. Next observe that 9y, is a linear combination of terms of the
form

=iy =i () (2} () () = grt1=i=3 (T} ) () k)
20 (2)y®) (@) = (%) ()0 @)
where i + j + k = £. Since

=i (E)] 79 () ()

e [ MY T
r

lim,~ o ||<,07(«Z)Hu =0 for £ <n, and so

(o, u) {or,u) = 0.

= lim
N0
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Now let ¢ € Z(R;C) and use Taylor’s theorem to write
o) =

(m) 0 n+1 1
it )xm + 2z / (1 — )"V (tz) dt.
m=0 0

m/! n!
Set (z) = L fol(l—t)"go(”“)(tm) dt, and apply the preceding to see that (x""1n, u) =
0 and therefore that
@(m)

(p,u) = (np,u (x™n,u).

Hence

O

The next result characterizes distributions u € .%(R; C)" which satisfy the min-
imum principle
(14.4) (p,u) > 0if p € Z(R;R) and p(0) = min{p(z) : z € R}.

In preparation for the proof of the characterization, I have to introduce the
following partition of unity for R\ {0}. Choose ¢ € C>(R;[0,1]) so that t has

compact support in (0,2) \ (0, 4) and ¥(y) = 1 when % <ly| <1, and set ¥, (y) =
(2™y) for m € Z. Then, ify € Rand 271 < |y| < 27™ 4, (y) = 1 and ¥, (y) =
0 unless —m —2 < n < —m + 1. Hence, if U(y) = > ., ¥m(y) for y € R\ {0},
then ¥ is a smooth function with values in [1,4]; and therefore, for each m € Z, the

function x., given by x,(0) = 0 and X, (y) = w\;((yy) for y € R\ {0} is a smooth,

[0, 1]-valued function that vanishes off of (0,27™%1)\ (0,2-™=2). In addition, for
cach y e R\ {0}, 3=, cz xm(y) =1 and xpm(y) = 0 unless 27™72 < |y < 27m+L

Lemma 14.6. If u € (R;R) satisfies (14.4), then there exists a unique Borel
measure M on R such that M({0}) =0, [ % M(dy) < oo, and

(p,u) :/so(y)M(dy)
if o, ¢, and ©"” vanish at 0.

Proof. Referring to the partition of unity described above, define A, = (xm¢, u)
for o € C>((0,2=m+1)\ (0,27 2); R), where

Xm(y)e(y) if 2772 < Jy| <27
Xm@(y) = .
0 otherwise.

Clearly A,, is linear. In addition, if ¢ > 0, then y,,¢ > 0 = xme(0), and so, by
(14.4), A > 0. Similarly, for any ¢ € C>((0,2=7+1)\ (0,27 72); R), [||luxm =
Xm® > 0 = ([[¢lluxm £ Xme)(0), and therefore [Ayp| < Ko ll@ll, where Ky, =
(Xm,u). Hence, A,, admits a unique extension as a continuous linear functional
on C((0,2=™m+1) \ (0,27™2);R) that is non-negativity preserving and has norm
K,,; and so, by the Riesz representation theorem, we know that there is a unique

non-negative Borel measure M, on R such that M,, is supported on (0,2=™+1)\
(0,27m72), K = My (R), and (xm@,u) = [ o(y) M (dy) for all ¢ € .7 (R;R).
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Now define the Borel measure M on Rby M =3, M,,. Clearly, M({0}) = 0.
In addition, if ¢ € Cg°(R\ {0};R), then there is an n € Z such that xme = 0
unless |m| < n. Thus,

(pou)y =Y Almp) = Y Aw(y)Mm(dy)

m=—n m=—n

n

/. ( 3 xm<y>go<y>> Mdg) = [ o) by,

m=—n

and therefore

(14.5) () = [ ol My
for p € C° (R \ {0}; R).

Before taking the next step, observe that, as an application of (14.4), if p1, @2 €
Z(R;R), then

p1 < 2 and 1(0) = p2(0) = (p1,u) < (p2,u). (*)

Indeed, by linearity, this reduces to the observation that, by (14.4), if ¢ € D is
non-negative and ¢(0) = 0, then (p,u) > 0.
With these preparations, we can show that, for any ¢ € D,

o> 0=p(0) = / o(y) M(dy) < {p,u). (+)

To check this, apply (*) to ¢, = > __ xm¢ and ¢, and use (14.5) together with
the monotone convergence theorem to conclude that

n— oo

/R wly) Mdy) = lim_ | on(y) M{dy) = lim (pn,u) < {p,u).

Now let n € C*(R; [0, 1]) satisfy = 0 on [—1,1] and 1 = 0 off (—2,2), and set
nr(y) = n(R~1y) for R > 0. By (x*) with ¢(y) = |y|?n(y) we know that

/Rlyl%(y)M(dy) < (p,u) < oo.
At the same time, by (14.5) and (x),

/RN (1 =n(y))nrly) M(dy) < (1 —n),u)

for all R > 0, and therefore, by Fatou’s Lemma,

/R<1 —n(y)) M(dy) <{(1—n),u) < occ.

Hence, I have proved that

2
Yy
(14.6) /R s M) < .

We are now in a position to show that (14.5) continues to hold for any ¢ €
Z(R;R) that vanishes along with its first and second order derivatives at 0. To
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this end, first suppose that ¢ vanishes in a neighborhood of 0. Then, for each
R >0, (14.5) applies to nrp, and so

/}R ne()e(y) M(dy) = (e, u) = (o,u) + (1 - nr)p, u).

Since (1 —nr)p — 0 in (R;R) as R — oo and ¢ is M-integrable, Lebesgue’s
dominated convergence theorem implies that,

nr(y)(y) M(dy) = / () M(dy).
R R

We still have to replace the assumption that ¢ vanishes in a neighborhood of 0
by the assumption that it vanishes to second order there. For this purpose, first
note that, by (14.6), ¢ is certainly M-integrable, and therefore

/ o(y) M(dy)
RN

By our assumptions about ¢ at 0, we can find a C' < oo such that |n.¢(y)| <
Cry?n(y) for all r € (0,1]. Hence, by () and the M-integrability of y?n(y), there
is a C" < oo such that (n,p,u) < C'r for small » > 0, and therefore (n,¢,u) — 0
as r N\ 0. (]

Theorem 14.7. Ifu € /(R;R) satisfies (14.4), then there exist ana > 0, a b € R,
and Borel measure M on R such that M({0}) =0, (14.6) holds, and

(p,u) = 5¢"(0) + b’ (0) + /(w(y) —¢(0) = 10,11 ()" (0)y) M (dy).
In fact, M is determined by
(o = [ o) M) if € C2 (R o)
and, for any n € C™ (R; [0, 1]) which is 1 on [=1,1] and 0 off (—2,2)

o= (P2, u) — / y2n(y)? M(dy)

{p,u) = lim

(X =nr)p,u) = (p,u) (-0, u).

= lim — lim
™™\0 N0

and

b= (yn,y) — /y(n(y) —1p,1(y)) M(dy).
Proof. Let 1 be as in the statement, and define

YY) = ¢(y) — (0) = &' (0)yn(y) — 3¢" )y n(y)*.
Then ¢ vanishes to second order at 0, and so, by Lemma 14.6, (¢, u) = [ ¢ (y) M (dy).
Hence,

(o, u) = " (0)(ym,u) + 39" (0)(y*n*, u)
+ / (e(y) = ©(0) — &' (0)yn(y) — 3" (0)y*n(y)*) M (dy),
and so

(g =2 O)gm. ) — 50 (0Pn) = [ Pn00)? ()

+ [ (ola) = 9(0) = ¢ Oyn(w) M(dy).
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Finally, because y( (y)—1 (y)) vanishes on [—1, 1] and is therefore M-integrable,
we can replace ¢'(0)(yn, >
(0

¢’ )<<yn7 u) — /y(n(y) — 1y (y)))M(dy)
and [ ((y) — (0) — ¢ (0)yn(y)) M (dy) by
[ (6lw) = ¢(0) = ¢ O 1) M(dy).

(]

Exercise 14.8. Let f € C}(R;C), set u = f(|z|), and show that v’ = sgn(z) f'(|z]).
Next assume that f € CZ(R;C), and show that v = f'(|z|)do + f(|z]).
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