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Lecture 15: Extending Continuous Operators on S (R;C) to
S (R;C)∗

The extension that we made of the operators Hs to S (R;C)∗ is a special case
of the fact that many continuous linear operator on S (R;C) determine a unique
continuous operator from S (R;C)∗ itself. To explain how this done, suppose that
A is a continuous operator on S (R;C) and let A∗ be its formal adjoint. That is,
for ψ ∈ S (R;C) define A∗ψ ∈ S (R;C)∗ so that

⟨φ,A∗ψ⟩ = (Aφ,ψ)L2(λR;C).

Of course, when, like Hs, A on S (R;C) is symmetric with respect to the L2-inner
product, A∗ = A.

Theorem 15.1. Let A be a continuous operator on S (R;C), assume that A∗ maps
S (R;C) continuously into itself, and define Au for u ∈ S (R;C)∗ so that

⟨φ,Au⟩ = ⟨A∗φ, u⟩.
Then A is the unique extention of A as a continuous operator on S (R;C)∗ into
itself.

Proof. Because A∗ maps S (R;C) continuously into itself, for each m ≥ 0 there
exists an n ≥ 0 and C < ∞ such that ∥A∗φ∥S (m)(R;C) ≤ C∥φ∥S (n)(R;C), and

therefore, if u ∈ S (−m)(R;C), then
|⟨φ,Au⟩| = |⟨A∗φ, u⟩| ≤ ∥A∗φ∥S (m)(R;C)∥u∥S (−m)(R;C) ≤ C∥φ∥S (n)(R;C)∥u∥S (−m)(R;C).

Hence ∥Au∥S (−n)(R;C) ≤ C∥u∥S (−m)(R;C), and so A maps S (R;C)∗ continuously

into itself. Furthermore, since S (R;C) is dense in S (R;C)∗ and ⟨φ,Aψ⟩ =(
A∗φ,ψ

)
L2(λR;C)

for ψ ∈ S (R;C), A is the one and only continuous extension

to S (R;C)∗ of A ↾ S (R;C). □

Given a continuous operator A on S (R;C)∗ and m,n ∈ Z
∥A∥S (n)(R;C)→S (R;C)(m) = sup

{
|Au∥S (m)(R;C) : ∥u∥S (n)(R;C) = 1

}
.

The argument given in the proof of Theorem 15.1 shows that, for m,n ∈ N,
(15.1) ∥A∥S (−m)(R;C)→S (−n)(R;C) = ∥A∗∥S (n)(R;C)→S (m)(R;C).

The Fourier transform is a particularly important operator on S (R;C)∗, and its
adjoint is given by φ ∈ S (R;C) 7−→ φ̌ ∈ S (R;C). Hence

⟨φ, u⟩ = ⟨φ̌, u⟩,

and, since ∥φ̌∥S (m)(R;C) = (2π)
1
2 ∥φ∥S (m)(R;C) for all m ≥ 0, (15.1) says that

∥û∥S (−m)(R;C) = (2π)
1
2 ∥u∥S (−m)(R;C) for all m ≥ 0. In addition,

⟨φ, u⟩ = (2π)−1⟨(φ̂)∧, u⟩ = (2π)−1⟨φ̂, û⟩,
which gives an extension of Parseval’s identity to the Fourier transform on S (R;C)∗.
Further, because φ̂ that adjoint of φ ∈ S (R;C) 7−→ φ̌ ∈ S (R;C), ⟨φ, û⟩ = ⟨φ̂, u⟩
and therefore

⟨φ, (û)∧⟩ = ⟨φ̂, û⟩ = 2π⟨φ, u⟩,
similarly, ⟨φ, (ǔ)∨⟩ = 2π⟨φ, u⟩. Hence we have proved the Fourier inversion formula

(û)∧ = 2πu = (ǔ)∨.
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Computing Fourier transforms can be hard! Among those that are easy are those

of ∂ℓδa and, for f ∈ L1(λR;C), f̂ . Indeed,

⟨φ, δ̂a⟩ = φ̌(a) =

∫
e−ıaxφ(x) dx = ⟨φ, ea⟩, where ea(x) = eıax.

Hence, ‘∂ℓδa = (−ıξ)ℓea. To compute f̂ when f is thought of as the distribution
fλR, note that

⟨φ̌, f⟩ =
∫
f̄(ξ)

Å∫
e−ıξxφ(x) dx

ã
dξ =

∫
φ(x)f̂(x) dx = ⟨φ, f̂⟩,

and therefore ‘fλR equals the distribution is f̂λR. When f ∈ L2(λR;C), one uses

the fact that, as R → ∞, 1[−R,R]f −→ f in S (R;C)∗ and therefore f̂ = f̂ where

f̂ = limR→∞ f̂R is the L2-Fourier transform of f . Similarly, when µ is a finite Borel
measure on R, µ̂ as a distribution is equal to the function µ̂ given by

(15.2) µ̂(ξ) =

∫
eıξx µ(dx).

Trickier is the computation of the Fourier transform of distributions like log |x|.
One way to do so is to observe that ∂ log |x| = 1

x and first compute x̂−1. For that

purpose, set fy(x) =
x

x2+y2 for y > 0, and observe that, as y ↘ 0, fy −→ x−1 and

therefore “fy −→ x̂−1 in S (R;C)∗. Next observe that observe that, by (7.11),“fy(ξ) = lim
R→∞

∫ R

−R

xeıξx

x2 + y2
dx = ı lim

R→∞

∫ R

−R

x sinx

x2 + y2
dx = ıπsgn(ξ)e−y|ξ|.

Hence

(15.3) x̂−1 = ıπsgn.

Knowing (15.3) one might expect that one can use ∂̂u = −ıξû to compute ÷log |x|.
However to do so it is necessary to confront a technical difficulty. Namely, ıπsgn(ξ)−ıξ =

− π
|ξ| , and |ξ|−1 is not a distribution. On the other hand,

φ⇝
∫
φ(ξ)− φ(0)e−

ξ2

2

|ξ|
dξ

is a distribution. Thus, to overcome the problem, set u = log |x| and write

⟨φ, û⟩ = ⟨φ− φ(0)“g1, û⟩+ φ(0)⟨“g1, û⟩.
and note that ⟨“g1, û⟩ = 2π

∫
g1(x) log |x| dx. At the same time,

⟨φ− φ(0)“g1, û⟩ = 〈φ− φ(0)e−
ξ2

2

ıξ
,−ıξû

〉

=

〈
φ− φ(0)e−

ξ2

2

ıξ
, ∂̂u

〉
= −π

〈
φ− φ(0)e−

ξ2

2

|ξ|
, λR

〉
.

Hence

⟨φ,÷log |x|⟩ = −π
∫
φ(ξ)− φ(0)e−

ξ2

2

|ξ|
dξ + 2πφ(0)

∫
g1(x) log |x| dx.
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Next, consider a differential operator L =
∑J
j=0 aj∂

j where {a0, . . . , aJ} ⊆
C∞(R;C) and all the aj ’s and their derivatives have at most polynomial growth.
Then

L∗φ =
J∑
j=0

(−1)j∂j(ajφ).

Since it a obvious that ∂j maps S (m)(R;C) continuously into S (m+j)(R;C), to
see that L∗ is continuous we need the following.

Lemma 15.2. Let f ∈ C∞(R;R), and assume that for each m ≥ 0 there exists an
km ≥ 0 such that

Fm ≡ max
1≤j≤m

sup
x∈R

|∂jf(x)|
1 + |x|km

<∞.

Then, for each m ≥ 0,

∥φf∥S (m)(R;C) ≤ 2KmFm∥φ∥S (m+km)(R;C).

Proof. By Exercise 3.5 with n = 0, it is sufficient for us to show that for each
k, ℓ ∈ N with k + ℓ ≤ m, there is a ck,ℓ such that

∥xk∂ℓ(φψ)∥L2(λR;C) ≤ ck,ℓ∥ψ∥S (m+3)(R;C)∥φ∥S (m)(R;C).

To this end, remember that

∂ℓ(φψ) =

ℓ∑
j=0

Ç
ℓ

j

å
∂jφ∂ℓ−jψ,

and

∥xk∂jφ∂ℓ−jf∥L2(λR;C) ≤ Fm
∥∥(1 + |x|km)xk∂jφ∥L2(λR;C) ≤ 2Fm∥φ∥S (m+km)(R;C)∥.

□

Knowing the result in Lemma , it is clear that L∗ maps S (m)(R;C) continuously
into S (m+J)(R;C) for eachm ≥ 0. Using this fact, it is easy to check that ∂̂u = ıξû.
Indeed, both sides of the equation are continuous functions of u ∈ S (R;C)∗, and
the equation holds when u ∈ S (R;C).

Another important operation is convolution. That is, given ψ ∈ S (R;C), con-
sider the operator Cψ on S (R;C) given by Cψη = η∗ψ. Because’η ∗ ψ = η̂ψ̂, Lemma

15 guarantees that Cψ maps S (m)(R;C) continuously into itself for all m ≥ 0. In
addition,

⟨φ,ψ ∗ η⟩ =
∫∫

φ(x)ψ̄(x− y)η̄(y) dxdy =

∫∫
φ(x+ y)ψ̄(x)η̄(y) dxdy = ⟨C∗

ψφ, η⟩

where

C∗
ψφ(y) =

∫
φ(x+ y)ψ̄(x) dx.

Since ‘C∗
ψφ(ξ) = φ̂(ψ̄)∨, Lemma 15 again guarantees that, for all m ≥ 0, C∗

ψ maps

S (m)(R;C) continuously into itself, and so Cψ has a unique extention to S (R;C)∗,
and this extention is a continuous map of S (m)(R;C) into itself for all m ∈ Z.

In order to gain a better understanding of Cψ, we need to use the translation maps
τx : S (R;C) −→ S (R;C) defined in Exercise 13.10, and define ψ∗u(x) = ⟨τ−xψ, u⟩
for u ∈ S (R;C)∗ and x ∈ R.
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Theorem 15.3. For ψ ∈ S (R;C) and u ∈ S (R;C), ψ ∗ u = Cψu, ’ψ ∗ u = ψ̂û,

and ψ ∗ u = (2π)−1(ψ̂û)∨ .

Proof. Since Cψη = ψ ∗η and’ψ ∗ η = ψ̂η̂ when η ∈ S (R;C) and Cψ is a continuous
operator on S (R;C)∗, it suffices to to show that u ⇝ ψ ∗ u is a continuous of
S (R;C)∗ into itself. To this end, note that, by Exercise 13.10, x ⇝ τ−xψ is a
continuous map of S (R;C) into itself and therefore that ψ ∗ u is a continuous
function. In addition, by Theorem 13.2 and that exercise,

|ψ ∗ u(x)| ≤ ∥τxψ∥S (m)(R;C)∥u∥S (−m)(R;C) ≤ Km∥τxψ∥(m+1)
u ∥u∥S (−m)(R;C)

≤ Km2(m+1)(|x| ∨ 1)m+1∥ψ∥(m+1)
u ∥u∥S (−m)(R;C),

and so ψ ∗ u ∈ S (R;C)∗. Finally, if un −→ u in S (m)(R;C), then ψ ∗ un(x) −→
ψ ∗ u(x) for each x and

sup
n≥1

sup
x∈R

|ψ ∗ un(x)|
(1 + |x|)m+1

<∞.

Hence, by Lebesgue’s dominated convergence theorem, for each φ ∈ S (R;C),

⟨φ,ψ ∗ un⟩ =
∫
φ(x)ψ ∗ un(x) dx =

∫
φ(x)ψ ∗ u(x) dx = ⟨φ,ψ ∗ u⟩.

□

A simple, but typical, application of these results is to the ordinary differential
equation λu − u′′ = µ, where λ > 0 and µ is a finite Borel measure on R. The
solution u to this equation describes the electric potential along a wire produced by
a charge distribution µ when the wire has resistance that is a linear function of the
potential. To solve this equation, assume that u ∈ S (R;C)∗, and take the Fourier

transform of both sides. Then λû + ξ2û = µ̂, and so û = µ̂
λ+ξ2 . Next observe (cf.

(7.5)) that 1
λ+ξ2 =”Gλ, where

Gλ(x) =
1

2λ
1
2

e−λ
1
2 |x|.

Even though Gλ /∈ S (R;C), the function x⇝ Gλ ∗µ(x) =
∫
Gλ(x− y)µ(dy) is an

element of L1(λR;C) and therefore of S (R;C)∗. In addition, by Fubini’s theorem,÷Gλ ∗ µ =”Gλµ̂, and therefore

u(x) =
1

2λ
1
2

∫
e−λ

1
2 |x−y| µ(dy).

It is an instructive exercise to check that this u is a solution. To this end, first
use Exercise 3.6 below to see that u′ is the function

u′(x) =
λ

1
2

2

∫
sgn(y − x)e−λ

1
2 |x−y| dy.

Thus

⟨φ, u′′⟩ = −⟨φ′, u′⟩ =
∫
φ′(x)

Å
1

2

∫
sgn(x− y)e−λ

1
2 |x−y|φ′(y)µ(dy)

ã
dx

=

∫ Å
1

2

∫
sgn(x− y)e−λ

1
2 |x−y|φ′(x) dx

ã
µ(dy).
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Next note that∫
sgn(x− y)e−λ

1
2 |x−y|φ′(x) dx =

∫ ∞

y

eλ
1
2 (y−x)φ′(x) dx−

∫ y

−∞
eλ

1
2 (x−y)φ′(x) dx

= −φ(y) + λ
1
2

∫ ∞

y

eλ
1
2 (y−x) dx− φ(y) + λ

1
2

∫ y

−∞
eλ

1
2 (x−y) dx = −2φ(y) + 2λu(y),

and therefore ⟨φ, u′′⟩ = −⟨φ, µ⟩+ λ⟨φ, u⟩, which means that λu− u′′ = µ.

Exercise 15.4. This exercise deals with the special case when an element of
S (R;C)∗ is given by a Borel measure µ.

(i) Show that ψ ∗ µ equals the function

x ∈ R 7−→
∫
ψ(x− y)µ(dy) ∈ C.

(ii) If µ is finite, show that µ̂ equals the function

ξ ∈ R 7−→ µ̂(ξ) ≡
∫
eıξx µ(dx) ∈ C

and that µ̂ ∈ Cb(R;C) with norm ∥û∥u = µ(R).
(iii) If

∫
(1 + x2)

m
2 µ(dx) <∞ for some m ≥ 0, show that µ̂ ∈ Cmb (R;C) and that

∥∂kµ̂∥u ≤
∫

|x|k µ(dx) for 0 ≤ k ≤ m.

(iv) Assume that
∫
|x|k µ(dx) <∞ for all k ∈ N, and show that ψ ∗µ is an element

of S (R;C) for all ψ ∈ S (R;C).
Hint: Show that ’ψ ∗ µ is an element of S (R;C).
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