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LECTURE 15: EXTENDING CONTINUOUS OPERATORS ON . (R; C) TO
Z(R;C)*

The extension that we made of the operators H* to .(R;C)” is a special case
of the fact that many continuous linear operator on #(R;C) determine a unique
continuous operator from .#(R; C)" itself. To explain how this done, suppose that
A is a continuous operator on .%(R;C) and let A* be its formal adjoint. That is,
for ¢ € .Z(R;C) define A*) € .7 (R;C)" so that

(o, A%) = (Ap,¥) L2 (xzs0) -
Of course, when, like H*, A on . (R; C) is symmetric with respect to the L2-inner
product, A* = A.

Theorem 15.1. Let A be a continuous operator on & (R; C), assume that A* maps
S (R;C) continuously into itself, and define Au for u € .#(R;C)" so that

(o, Au) = (A%p, u).
Then A is the unique extention of A as a continuous operator on .#(R;C)* into

itself.

Proof. Because A* maps . (R;C) continuously into itself, for each m > 0 there
exists an n > 0 and C' < oo such that [[A*¢[| g @ec) < Clloll o), and
therefore, if u € .#(~")(R; C), then

. Au)] = (A%, 0)] < A%l sl oy < Cllpll i gy Il e

Hence [|Aull 5 r,c) < Cllull so-m (mic), and so A maps .’(R;C)" continuously
into itself. Furthermore, since .7 (R;C) is dense in .(R;C)* and (p, AY)) =
(A*cp,w)m()\mc) for v € Z(R;C), A is the one and only continuous extension

to S (R;C)" of A | .7 (R;C). O

Given a continuous operator A on .(R;C)* and m,n € Z

[ All o) (R:C) .5 ;) (m) = SUP{I AUl om0y * |Ull oomy iy = 1}

The argument given in the proof of Theorem 15.1 shows that, for m,n € N,
(15.1) Al —m @sc) = 2 -m mie) = 14" 200 50y = 520 (RsC) -

The Fourier transform is a particularly important operator on . (R; C)*, and its
adjoint is given by ¢ € Z(R;C) — ¢ € .Z(R;C). Hence

<(p7 u> = <¢7 u>7
and, since [|@| 5o @)y = (27) 2 [l 7m) sy for all m > 0, (15.1) says that
[l - (e = (27) 2 [[ul] ooy oy for all m > 0. In addition,
<907 u) = (27T)_1<(¢7)/\7 u> = (27T)_1<@, 'EL>>
which gives an extension of Parseval’s identity to the Fourier transform on . (R; C)".
Further, because ¢ that adjoint of ¢ € Z(R;C) — ¢ € Z(R;C), (p,4) = (p,u)
and therefore
(0, (@)") = (@, ) = 27 (¢, u),

similarly, (¢, (2)) = 27(p, u). Hence we have proved the Fourier inversion formula

(@) = 2mu = ().
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Computing Fourier transforms can be hard! Among those that are easy are those
of 9°6, and, for f € L'(\g;C), f. Indeed,

(¢,0q) = @la) = /e_“”:go(a:) dr = (p,eq), where e,(x) = e"*".

Hence, 06, = (—1&)’e,. To compute f when f is thought of as the distribution
fAR, note that

.0y = [F© ([ o) de= [ o)) de = (o)

and therefore fAr equals the distribution is f)\R. When f € L?(\g;C), one uses
the fact that, as R — oo, 1j_g gjf — f in &(R;C)" and therefore f = f where

f =limp 00 J/“}; is the L2-Fourier transform of f. Similarly, when y is a finite Borel
measure on R, [i as a distribution is equal to the function ji given by

(15.2) (e = [ e uda).

Trickier is the computation of the Fourier transform of distributions like log |z|.

One way to do so is to observe that dlog|z| = 1 and first compute 2. For that
purpose, set f,(r) = w{”TyQ for y > 0, and observe that, as y \, 0, f, — z~! and

therefore j/"; —zlin < (R;C)". Next observe that observe that, by (7.11),

~ B pete B rsinz

o o _ —ylé|
fy(g)—Rh_I)noo _Rmdl‘—lngnoo _Rmdaj—zﬂ'sgn@)e ylst,

Hence

(15.3) -1 = uTsgn.

Knowing (15.3) one might expect that one can use u = —1£40 to compute log |x|.
However to do so it is necessary to confront a technical difficulty. Namely, % =

and |£|7! is not a distribution. On the other hand,

[ 2© = p(0)e s
S e

is a distribution. Thus, to overcome the problem, set u = log |z| and write

(o, 1) = (¢ — @(0)g1, @) + ©(0)(g1, %)
and note that (g7, 4) = 27 [ g1(z)log |z| dz. At the same time,

(¢ = (0)g1,0) = <¢¢£g)62, —z§ﬁ>

_ p—p(0)e % ~ _ ¢ —p(0)e T
< v ,8u>7r< €] ,)\R>-

(ploglal) = - [ P& =0T F 4o oro0) [ or(oyogs]da.

_r
1€

Hence
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Next, consider a differential operator L = Zj:o a;®7 where {ag,...,a;} C
C>(R;C) and all the a;’s and their derivatives have at most polynomial growth.

Then
Lo = Z J 83

Since it a obvious that 8’ maps y(m) (R;C) continuously into .#("+7)(R;C), to
see that L* is continuous we need the following.

Lemma 15.2. Let f € C*(R;R), and assume that for each m > 0 there exists an
kp, > 0 such that 4
|07 f ()|

F,, = max sup ———— < o0
1<j<m zer 1 + |z|fm

Then, for each m > 0,
e flloom @ic)y < 2KmFumlloll soomtrm) (mic)-
Proof. By Exercise 3.5 with n = 0, it is sufficient for us to show that for each
k,¢ € N with k£ + ¢ < m, there is a cj ¢ such that
1250 ()| L2 sy < Cie V]| ey 0]l ooy ey -
To this end, remember that
¢

=3 (§)oreor

7=0
and

1270700 fll 12 (0gsc) < Fin||(1 + [2]F) 2% 0| L2 (0

S (m+km) (R;C) B
[

Knowing the result in Lemma , it is clear that L* maps ("™ (R; C) continuously
into .7 (m+)(R; C) for each m > 0. Using this fact, it is easy to check that u = 1&a.
Indeed, both sides of the equation are continuous functions of v € .(R;C)*, and
the equation holds when u € .7 (R; C).

Another important operation is convolution. That is, given w SR (R C), con-
sider the operator Cy, on . (R; C) given by Cyn = n*1). Because n * w mp, Lemma
15 guarantees that Cy maps . (™) (R;C) continuously into itself for all m > 0. In
addition,

(o, xm) = // o) (x — y)i(y) dedy = // o(x +y)¢(x)n(y) dedy = (Cj e, n)

where
Ciply) = / oz +y)ip(z) de.

Since C/;ZTD(@ = $(¢))V, Lemma 15 again guarantees that, for all m > 0, C,, maps

#(M)(R; C) continuously into itself, and so Cy, has a unique extention to .7 (R; C)”,
and this extention is a continuous map of .7(™)(R; C) into itself for all m € Z.

In order to gain a better understanding of Cy;, we need to use the translation maps
Tz 1 L (R;C) — Z(R; C) defined in Exercise 13.10, and define ¢xu(z) = (74, u)
for u € S (R;C)" and z € R.
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Theorem 15.3. For ¢ € Z(R;C) and v € S (R;C), ¢ xu = Cyu, m = 9,
and 1 x u = (27) 1 (a)v

Proof. Since Cyn = 91 and 1/)/*\77 = i) when 5 € .(R; C) and Cy is a continuous
operator on .7 (R;C)", it suffices to to show that u ~» ¢ % u is a continuous of
Z(R;C)* into itself. To this end, note that, by Exercise 13.10, x ~ 7_,% is a
continuous map of .#(R;C) into itself and therefore that ¢ * u is a continuous
function. In addition, by Theorem 13.2 and that exercise,

[ % u(@)] < 7| oo sy el - gy < Kol 18Dl - iy
< K2 (] v )™ T full o em iy

and so ¥ * u € Z(R;C)". Finally, if u,, — u in .Z™)(R;C), then ¢ * u,(z) —
¥ % u(x) for each = and

sup sup T x un(@)]|,

n>1zer (1 + [2])mH!

Hence, by Lebesgue’s dominated convergence theorem, for each ¢ € #(R;C),

<¢,w*un>=/ <>w*un<>daz—/ (@)P *u@) de = (i, % ).
[l

A simple, but typical, application of these results is to the ordinary differential
equation Au — u” = u, where A > 0 and p is a finite Borel measure on R. The
solution u to this equation describes the electric potential along a wire produced by
a charge distribution p when the wire has resistance that is a linear function of the
potential. To solve this equation, assume that u € .%(R;C)*, and take the Fourier
transform of both sides. Then A + €24 = fi, and so @ = Afﬁz' Next observe (cf.

(7.5)) that

M_EQ = GA, where

Gi(z) = Le—/\%lr\
Mo '
Even though G ¢ . (R;C), the function z ~ G * u(z) = [ Gr(z —y) p(dy) is an
element of L!'(\g;C) and therefore of . (R;C)". In add1t10n by Fubini’s theorem,
Gy * p = G i, and therefore
LI e
= 7Y u(dy).
u(w) = o [ uay)
It is an instructive exercise to check that this u is a solution. To this end, first
use Exercise 3.6 below to see that v’ is the function

o' (r) = /\g /sgn(y —x)e Myl gy,

Thus
o) = ~eu) = [ @) (5 [swnle— e ) ulay) ) do

:/(%/sgn(x—y) Ao v/ (2 )dx) w(dy).
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Next note that

1 1 Y 1
/sgn(x—y)e_mlw_y‘w'(m) dmz/ WD (z) d:c—/ e VY (2) da

Yy —0o0

1 o0 1 1 Y 3
= o(y) + A / A=) 4p () + A2 / A0 dp = 20(y) + 2huly),
Yy

— 00

and therefore (o, u”) = — (¢, ) + A{p, u), which means that Au — u” = p.

Exercise 15.4. This exercise deals with the special case when an element of
Z(R;C)" is given by a Borel measure p.
(i) Show that ¢ * u equals the function

x€R+—>/1/J(xfy)u(dy) eC.
(ii) If p is finite, show that fi equals the function
EeRiie)= [ pldn e
and that 4 € C,(R; C) with norm i, = pu(R).
(iii) If [(1+2%)% p(dz) < oo for some m > 0, show that i € CJ"(R;C) and that
0% i)l < /|x\ku(d$) for 0 <k <m.

(iv) Assume that [ |z|¥ u(dz) < oo for all k € N, and show that ¢ x u is an element
of Z(R;C) for all ¥ € .Z(R;C).

Hint: Show that ¢ # 1 is an element of . (R; C).
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