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LECTURE 16: MovING TO RN

With essentially no new ideas and the introduction of only slightly uglier nota-
tion, we will transfer most of the contents of §§7-15 to R™.
If f € LY(RY;C), its Fourier transform is the function

fle) = [ e i x,
and, using exactly the same arguments as we did when N = 1, one can easily show
that || fllu < [[fll1(a,n:c)s [ 18 continuous and that if f € CHRN;C)Nn LY (\gn; C)
and f" € L'(A\gn; C), then (ij\f(ﬁ) = —&; f(€) for 1 < j < N, from which it follows

that f(£) — 0 as |£] — oco.
To develop an inversion formula, one introduces the functions

g:(x) = (27t)~

uses Fubini’s theorem to check that g;(§) = e~
first that

N [x]
2 2t
€ )

tle|?
2, and proceeds as before to see

/ gi(x = y)f(y) dy = (2m) N / e e fg) dg,
and then that, as t \, 0,

f in Ll ()\RN; C)
f(x) if f is continuous at x.

t|g|? o
(27T)7N/67 5 e~ &X)aN f(¢) dx converges to {

The normalized Hermite functions on RV are indexed by m = (mq,...,my) €
N and defined by

ilm(x) = ilm (z1) - iLTLN (zn).
By standard results about products of Hilbert spaces, one knows that they form an
orthonormal basis in L?(Ag~;C). In addition, if

N
H=|x?-A=) (23-02),
j=1

then
N

Hhpm = Mmfzm where iy = Z P,
j=1
and

N
(hxn)" = l™I1(27) 5 oy where [m]l; = > m;.
j=1
Finally, the estimates in (11.2) can be used to show that

1
2

N N
iz gnsey < | TTE@70ms +1) | 5 Il < | [](m;+1) | and
(16.1) 7=1 7=1

N

N
”xjhm”u \ ||a:rjhm||u <2V H(mJ +1).
j=1
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Therefore, exactly the same reasoning as we used in §12 shows that the Fourier
transform can be extended to L?(\g~;C) as a continuous operator that satisfies

(‘3/:,;].\]” = —zéjf if f € C'(RY;C) and f and 9,, f are in L' (Agn; C) U L*(R";C).
and the Parseval equality
(fv Q)LQO\RN ) (QW)N(fa g)LQ(ARN;(C) for f,g € LQ()‘R; (C)

The Schwartz test function space .%(RY;C) for RY is defined as the space of
¢ € C®(RM;C) with the property that ||acf8£jcp|\u <ooforall<ij<N and
k,¢ € N. Again one introduces the operators

Hip = Z 1(0, Pac) L2 (3, 50 e

keNN
and defines the norms
lelli™ = > [l2:0x, ¢l
1<4,5<N
k+0<m

and
||90||y(R;c)<m>(RN;c) = Z MLnK‘thk)L?(/\RN;C)Pa
keNN
and the spaces

LM RY;C) = {p € L*(Aan; C) ¢ [[@ll g (gycyom < 00}

m

Clearly, if ¢ € C™(RY;C), then ol s @cyom = IR =2 @llL2(ans50)-
Using the estimates in (16.1) and the reasoning in Lemma 13.1 and Theorem
13.2, one sees that, for each m there is a K, € (0,00) such that

el rem gy < Kmllll ™)

and

lell&™ < Knllol| soimsam @v.c)-
Hence, .7 (RV;C) = N>_, 7™ (RN;C) and . (RY;C)" can be identified as the
union (Joo_, . ™(RN;C) where (™) (RY;C) is the analog for N > 2 of
Z=m)(R;C) for N = 1. Further, the obvious analogs of Theorems 14.3 and 14.5

hold. In proving the analogs of Theorems 14.5 and 14.7, one needs to use the R
version of Taylor’s theorem which says that

n k n 1
= Y Fe L ( f)xk /0 (1 - )" (tx) dt,

m=0 [lk[[=m Ikl =n+1
N N kj N k; 1\ - . .
| — . k _ J k __ J n+ .
where k! = Hj:|1 kj, x* =[[;=, ;7 0% =[];; 9], and (") is the multinomial
coeflicient %

Once one has the preceding, it should be clear how to extend continuous opera-
tors on .%(RN; C) to continuous operators on .%(RN;C)". In particular, both the
Fourier transform and convolution have such extensions.

To demonstrate its use, consider again the example discussed at the end of §15,
only now its analog au — Au = p in RV, where A\ > 0 and p is a finite Borel
measure on RY. Just as before, the Fourier transform of this equation lead to the
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conclusion that 4 = To find the function G of which (A + [£]?)~! is the

A
A€
Fourier transform, note that

! 7 tatle? /OO N
— = w+HED? gt — dt,
e, , ¢ )

from which it follows that
<y N oy lx?
G (x) :/ e Mgoy(x) dt = (471')_5/ tTze M dt
0 0

The function G is a Bessel function, and a more explicit expression for it is easy
to obtain only when N is odd. For example, when N = 1, we already knew that

1
Gi(z) = 2)\1,; e=*?12l and when N = 3, after differentiating (7.6) with respect to
2
x, one sees that

-

1
e—)\§ |x|

In any case, it is clear that G\ € L'(Agn; (C) and therefore that

0= fots-yo

The Poisson problem Au = —pu is a closely related to the preceding. The Fourier
equivalent equation is |¢|?4 = fi, which means that @ = ﬁ, and so one has to
figure out for which u’s # € S (RY; (C)*. A further complication is that, even if
a solution exists, it will not be unique. Indeed, given any solution u, u + v will also
be a solution for any v € . (RN;C)" which is harmonic (i.e., Av = 0). Notice that
if v is harmonic, then |£[?0 = 0, and therefore {0} is the support of 9, which, by
Theorem 14.5 means that ¢ is a linear combination of derivatives of dg and therefore
that v is a polynomial. Thus, v € .%(R;C)* is harmonic harmonic if and only if
v = ax + b, but when N > 2 there are harmonic polynomials of all orders. For
example, the real part of any complex polynomial will be a harmonic element of
S (R?%;C).

As for the question of existence of solutions, when N = 1 one can check that if
J(1+ |z|) pu(z) < oo, then & ~ [(z —y)~ p(dx) is a solution. When N = 2, one
can use Green’s formula and the divergence theorem to show that

/A@(X) log [x — y|dx = 2m¢(y)
foor ¢ € .7(R; C), and therefore, if Go(y) = —5= log |y| and

/ |Go(x — y)| dxp(dy) < oo, (%)

then Go*p is a solution. When N > 3, one should look for the tempered distribution
of which |¢|72 is the Fourier transform. To that end, observe that

1 © 2 ©__
@:/ e MIel dt:/ 92¢(€) dt,
0 0

and so |€|72 is the Fourier transform of

oo x|2 1 S T N=2
Go(x) = (47r)*%/ ¥ e dt = 7/ gt — LOF)
0 0

4T |x|N-2 4% |x|N-2
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where I' is Euler’s gamma function. Because F(%) = %F(%) and QF(%) i

the area wx_1 of the unit sphere SV=1 in R¥, we have that
1
(N = 2wy [x[V=2

Thus, Go*p is a solution if (x) holds. The function Gy is called the Green’s function
for the Laplacian in RY.

Go(x) =

Exercise 16.1. Show that if f is an entire function on C (i.e., an analytic function
there), then, as a function on R? it is tempered distribution if and only if it is a
polynomial. Conclude that if an entire function is not a polynomial, then it grows
at infinity faster that any power of z.
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