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Lecture 16: Moving to RN

With essentially no new ideas and the introduction of only slightly uglier nota-
tion, we will transfer most of the contents of §§7–15 to RN .

If f ∈ L1(RN ;C), its Fourier transform is the function

f̂(ξ) =

∫
eı(ξ,x)RN f(x) dx,

and, using exactly the same arguments as we did when N = 1, one can easily show

that ∥f̂∥u ≤ ∥f∥L1(λRN ;C), f̂ is continuous and that if f ∈ C1(RN ;C) ∩ L1(λRN ;C)
and f ′ ∈ L1(λRN ;C), then ‘∂xj

f(ξ) = −ıξj f̂(ξ) for 1 ≤ j ≤ N , from which it follows

that f̂(ξ) −→ 0 as |ξ| → ∞.
To develop an inversion formula, one introduces the functions

gt(x) = (2πt)−
N
2 e−

|x|2
2t ,

uses Fubini’s theorem to check that “gt(ξ) = e−
t|ξ|2

2 , and proceeds as before to see
first that ∫

gt(x− y)f(y) dy = (2π)−N
∫
e−

t|ξ|2
2 e−ı(ξ,x)RN f̂(ξ) dξ,

and then that, as t↘ 0,

(2π)−N
∫
e−

t|ξ|2
2 e−ı(ξ,x)RN f̂(ξ) dx converges to

®
f in L1(λRN ;C)
f(x) if f is continuous at x.

The normalized Hermite functions on RN are indexed by m = (m1, . . . ,mN ) ∈
NN and defined by

h̃m(x) = h̃n1
(x1) · · · h̃nN

(xN ).

By standard results about products of Hilbert spaces, one knows that they form an
orthonormal basis in L2(λRN ;C). In addition, if

H = |x|2 −∆ =
N∑
j=1

(
x2j − ∂2xj

)
,

then

Hh̃m = µmh̃m where µm =
N∑
j=1

µmj

and

(h̃m)∧ = ı∥m∥1(2π)
N
2 h̃m where ∥m∥1 =

N∑
j=1

mj .

Finally, the estimates in (11.2) can be used to show that

(16.1)

∥h̃m∥L1(λRN ;C) ≤

Ñ
N∏
j=1

(
2π(mj + 1)

)é 1
2

, ∥h̃m∥u ≤

Ñ
N∏
j=1

(mj + 1)

é 1
2

and

∥xj h̃m∥u ∨ ∥∂xj
h̃m∥u ≤ 2N

N∏
j=1

(mj + 1).
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Therefore, exactly the same reasoning as we used in §12 shows that the Fourier
transform can be extended to L2(λRN ;C) as a continuous operator that satisfies‘∂xjf = −ıξj f̂ if f ∈ C1(RN ;C) and f and ∂xjf are in L1(λRN ;C) ∪ L2(RN ;C).

and the Parseval equality(
f̂ , ĝ
)
L2(λRN ;C) = (2π)N (f, g)L2(λRN ;C) for f, g ∈ L2(λR;C).

The Schwartz test function space S (RN ;C) for RN is defined as the space of
φ ∈ C∞(RN ;C) with the property that ∥xki ∂ℓxj

φ∥u < ∞ for all 1 ≤ i, j ≤ N and
k, ℓ ∈ N. Again one introduces the operators

Hsφ =
∑

k∈NN

µsk(φ, h̃k)L2(λRN ;C)h̃k

and defines the norms

∥φ∥(m)
u =

∑
1≤i,j≤N
k+ℓ≤m

∥xi∂xj
φ∥u

and

∥φ∥S (R;C)(m)(RN ;C) =
∑

k∈NN

µmk |(φ, h̃k)L2(λRN ;C)|2,

and the spaces

S (m)(RN ;C) = {φ ∈ L2(λRN ;C) : ∥φ∥S (R;C)(m) <∞}.

Clearly, if φ ∈ Cm(RN ;C), then ∥φ∥S (R;C)(m) = ∥Hm
2 φ∥L2(λRN ;C).

Using the estimates in (16.1) and the reasoning in Lemma 13.1 and Theorem
13.2, one sees that, for each m there is a Km ∈ (0,∞) such that

∥φ∥S (m)(RN ;C) ≤ Km∥φ∥(m+N)
u

and

∥φ∥(m)
u ≤ Km∥φ∥S (m+3N)(RN ;C).

Hence, S (RN ;C) =
⋂∞
m=0 S (m)(RN ;C) and S (RN ;C)∗ can be identified as the

union
⋃∞
m=0 S (−m)(RN ;C) where S (−m)(RN ;C) is the analog for N ≥ 2 of

S (−m)(R;C) for N = 1. Further, the obvious analogs of Theorems 14.3 and 14.5
hold. In proving the analogs of Theorems 14.5 and 14.7, one needs to use the RN
version of Taylor’s theorem which says that

φ(x) =
n∑

m=0

∑
∥k∥1=m

∂kφ(0)

k!
xk +

1

n!

∑
∥k∥1=n+1

Ç
n+ 1

k

å
xk

∫ 1

0

(1− t)n∂kφ(tx) dt,

where k! =
∏N
j=1 kj , x

k =
∏N
j=1 x

kj
j , ∂k =

∏N
j=1 ∂

kj
xj , and

(
n+1
k

)
is the multinomial

coefficient (n+1)!
k! .

Once one has the preceding, it should be clear how to extend continuous opera-
tors on S (RN ;C) to continuous operators on S (RN ;C)∗. In particular, both the
Fourier transform and convolution have such extensions.

To demonstrate its use, consider again the example discussed at the end of §15,
only now its analog au − ∆u = µ in RN , where λ > 0 and µ is a finite Borel
measure on RN . Just as before, the Fourier transform of this equation lead to the
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conclusion that û = µ̂
λ+|ξ|2 . To find the function Gλ of which (λ + |ξ|2)−1 is the

Fourier transform, note that

1

λ+ |ξ|2
=

∫ ∞

0

e−t(a+|ξ|)2 dt =

∫ ∞

0

e−λt”g2t(ξ) dt,
from which it follows that

Gλ(x) =

∫ ∞

0

e−λtg2t(x) dt = (4π)−
1
2

∫ ∞

0

t−
N
2 e−λt−

|x|2
4 dt.

The function Gλ is a Bessel function, and a more explicit expression for it is easy
to obtain only when N is odd. For example, when N = 1, we already knew that

Gλ(x) =
1

2λ− 1
2
e−λ

1
2 |x|, and when N = 3, after differentiating (7.6) with respect to

x, one sees that

Gλ(x) =
e−λ

1
2 |x|

2π|x|
.

In any case, it is clear that Gλ ∈ L1(λRN ;C) and therefore that

u(x) =

∫
Gλ(x− y)µ(dy).

The Poisson problem ∆u = −µ is a closely related to the preceding. The Fourier
equivalent equation is |ξ|2û = µ̂, which means that û = µ̂

|ξ|2 , and so one has to

figure out for which µ’s µ̂
|ξ|2 ∈ S (RN ;C)∗. A further complication is that, even if

a solution exists, it will not be unique. Indeed, given any solution u, u+ v will also
be a solution for any v ∈ S (RN ;C)∗ which is harmonic (i.e., ∆v = 0). Notice that
if v is harmonic, then |ξ|2v̂ = 0, and therefore {0} is the support of v̂, which, by
Theorem 14.5 means that v̂ is a linear combination of derivatives of δ0 and therefore
that v is a polynomial. Thus, v ∈ S (R;C)∗ is harmonic harmonic if and only if
v = ax + b, but when N ≥ 2 there are harmonic polynomials of all orders. For
example, the real part of any complex polynomial will be a harmonic element of
S (R2;C).

As for the question of existence of solutions, when N = 1 one can check that if∫
(1 + |x|)µ(x) < ∞, then x ⇝

∫
(x − y)− µ(dx) is a solution. When N = 2, one

can use Green’s formula and the divergence theorem to show that∫
∆φ(x) log |x− y| dx = 2πφ(y)

foor φ ∈ S (R;C), and therefore, if G0(y) ≡ − 1
2π log |y| and∫∫ ∣∣G0(x− y)

∣∣ dxµ(dy) <∞, (∗)

thenG0∗µ is a solution. WhenN ≥ 3, one should look for the tempered distribution
of which |ξ|−2 is the Fourier transform. To that end, observe that

1

|ξ|2
=

∫ ∞

0

e−t|ξ|
2

dt =

∫ ∞

0

”g2t(ξ) dt,
and so |ξ|−2 is the Fourier transform of

G0(x) = (4π)−
N
2

∫ ∞

0

t−
N
2 e−

|x|2
4t dt =

1

4π
N
2 |x|N−2

∫ ∞

0

t
N
2 −2e−t dt =

Γ
(
N−2
2

)
4π

N
2 |x|N−2

,
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where Γ is Euler’s gamma function. Because Γ
(
N
2

)
= N−2

2 Γ
(
N−2
2

)
and

2Γ
(

N
2

)
π

N
2

is

the area ωN−1 of the unit sphere SN−1 in RN , we have that

G0(x) =
1

(N − 2)ωN−1|x|N−2
.

Thus, G0∗µ is a solution if (∗) holds. The function G0 is called the Green’s function
for the Laplacian in RN .

Exercise 16.1. Show that if f is an entire function on C (i.e., an analytic function
there), then, as a function on R2 it is tempered distribution if and only if it is a
polynomial. Conclude that if an entire function is not a polynomial, then it grows
at infinity faster that any power of z.
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