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Lecture 17: Convergence of Probability Measures

Define M1(RN ) to be the set of Borel probability measures on RN . Clearly
M1(RN ) is a convex subset of S (RN ;C)∗, but it is a subset that possesses prop-

erties that are not shared by most other elements of S (RN ;C)∗, and the topology

of S (RN ;C)∗ does not take full advantage of those properties. There are three
stronger topologies that recommend themselves. Namely: the uniform topology,
which is the one for which7

∥µ− ν∥var ≡ sup
{
|⟨φ, µ− ν⟩| : φ a Borel measurable function with ∥φ∥u = 1

}
is the metric; the strong for which sets of the form

S(µ, r;φ1, . . . , φn) =
{
ν : |⟨φm, ν − µ⟩| < r for 1 ≤ m ≤ n

}
,

where φm’s are bounded Borel measurable R-valued functions on RN , are a neigh-
borhood basis for µ; and the weak for which sets of the S(µ, r;φ1, . . . , φn) are a
neighborhood basis for µ, only now with the restriction that φm’s must be contin-
uous as well as bounded.

Obviously, the strength of the uniform topology is greater than that of the strong
topology, which is stronger than the weak topology, which, at first sight, looks
stronger than the one which M1(RN ) inherits as a subset of S (RN ;C)∗. Each of
them has its virtues and flaws. The uniform topology admits a metric and is the
strong topology on the dual space of the Banach space C0(RN ;R) with the uniform
topology; the strong topology is not separable and points don’t have countable
neighborhood bases; as we will show below, the weak topology is both separable
and admits a metric, and it is the one which is most useful in practice.

In what follows, we will study some of the properties and applications of the
weak topology.

Lemma 17.1. The sets S(µ, r;φ1, . . . , φn) with φ1, . . . , φn ∈ C∞
c (RN ;R) are a

neighborhood basis at µ for the weak topology.

Proof. We begin by showing if that φ ∈ C∞
b (R;C) with ∥φ∥u = 1 and r > 0, then

there exist φ1, φ2 ∈ C∞
c (RN ;C) such that{

ν : |⟨φ1, ν − µ⟩| ∨ |⟨φ2, ν − µ⟩| < r
4

}
⊆ {ν : |⟨φ, ν − µ⟩| < r}.

To this end, choose R > 0 so that µ
(
B(0, R)

)
> 1 − r

4 , and take η ∈ C∞(RN ;R)
so that η = 1 on B(0, R) and ν = 0 off B(0, R+ 1). Then

|⟨φ, ν − µ⟩| ≤ |⟨ηφ, ν − µ⟩|+ |⟨(1− η)φ, ν − µ⟩|
and

|⟨(1− η)φ, ν − µ⟩| ≤ ⟨1− η, µ⟩+ ⟨1− η, ν⟩
≤ 2⟨1− η, µ⟩+ |⟨1− η, ν − µ⟩| = 2⟨1− η, µ⟩+ |⟨η, ν − µ⟩|.

Thus

|⟨(1− η)φ, ν − µ⟩| ≤ |⟨ηφ, ν − µ⟩|+ 2µ
(
B(0, R)∁

)
+ |⟨η, ν − µ⟩|,

and so {
ν : |⟨ηφ, ν − µ⟩| ∨ |⟨η, ν − µ⟩| < r

4

}
⊆ {ν : |⟨φ, ν − µ⟩| < r}.

7We will continue to use ⟨φ, µ⟩ to denote the integral with respect to µ of a function φ, even
if φ /∈ S (RN ;C). Also, ⟨φ, ν − µ⟩ ≡ ⟨φ, ν⟩ − ⟨φ, µ⟩.
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In view of the preceding, it suffices to show that if φ ∈ Cc(RN ;C) with ∥φ∥u = 1
and r > 0, then there exists a ψ ∈ C∞

c (RN ;C) such
|⟨ψ, ν − µ⟩| < r

3 =⇒ |⟨φ, ν − µ⟩| < r.

To this end, simply choose ψ ∈ C∞
c (RN ;C) so that ∥φ− ψ∥u < r

3 , and check that
this ψ will serve. □

As Lemma 17.1 makes clear, what we are calling the weak topology on M1(RN )
is what a functional analyst would call the weak* topology on the dual space
C0(RN ;R)∗ of the Banach space C0(RN ;R) with the uniform norm. Indeed, the
Riesz representation theorem allows one to identify C0(RN ;R) with the space of
finite signed Borel measures on RN , and so M1(RN ) can be thought of as a convex
subset of the unit ball in C0(RN ;R)∗, in which case Lemma 17.1 shows that the
weak topology on M1(RN ) is the topology M1(RN ) inherits as a subset from the
weak* topology on C0(RN ;R)∗.

Theorem 17.2. The weak topology on M1(RN ) is a separable, metric topology.

Proof. Let {φk : k ≥ 1} be a dense subset of Cc(RN ;R), and define

ρ(µ, ν) =
∞∑
k=1

|⟨φk, ν − µ⟩|
2k(1 + |⟨φk, ν − µ⟩|)

.

Using Lemma 17.1, it is easy to check that φ is a metric for the weak topology on
M1(RN ).

To prove separability, define D to be the set of measures
∑n
m=1 amδxm , where

n ≥ 1, the am’s are non-negative rational numbers whose sum is 1, and the xm’s
are elements of RN with rational coordinates. Clearly D is countable. Therefore
it suffices to show that, for each µ ∈ M1(RN ), each cellection {φ1, . . . , φℓ} ⊆
Cb(RN ;R), and ϵ > 0, there is a ν ∈ D such that max1≤k≤ℓ |⟨φk, ν − µ⟩| < ϵ.
Further, we need do so only for φk’s and a µ which are supported on a ball B(0, R).
Given such a φk’s and µ, choose r > 0 so that max1≤k≤ℓ |φk(y) − φk(x)| < ϵ

2

if |y − x| < r. Next, cover B(0, R) with balls B(xm, r), where 1 ≤ m ≤ n,
each xm ∈ B(0, R) and has rational coordinates, and define A1 = B(x1, r) and

Am = B(xm, r) \
⋃m−1
k=1 Ak for 2 ≤ m ≤ n. Finally, choose non-negative, rational

numbers a1, . . . , an so that

max
1≤k≤ℓ

∥φk∥u
n∑

m=1

|am − µ(Am)| < ϵ

2

and
∑n
m=1 am = 1, and take ν =

∑n
m=1 amδxm

. Then, for 1 ≤ k ≤ ℓ,

|⟨φk, µ− ν⟩| ≤
n∑

m=1

∫
Am

|φk(x)− φ(xm)| dµ+ ∥φk∥u
∑
m=1

|µ(Am)− am| < ϵ.

□

We will use the notation µn
w−→µ to mean that µn −→ in the weak topology on

M1(RN ).

Theorem 17.3. Given {µn : n ≥ 1}∪{µ} ⊆ M1(RN ), the following are equivalent:

(i) µn
w−→µ.

(ii) |⟨φ, µn − µ⟩| −→ 0 for all φ ∈ C∞
c (RN ;R).
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(iii) For all closed sets F ⊆ RN , limn→∞ µn(F ) ≤ µ(F ).

(iv) For all open sets G ⊆ RN , limn→∞ µn(G) ≥ µ(G).

(v) For all upper continuous functions f : RN −→ R that are bounded above,
limn→∞⟨f, µn⟩ ≤ ⟨f, µ⟩.

(vi) For all lower continuous functions f : RN −→ R that are bounded below,
limn→∞⟨f, µn⟩ ≥ ⟨f, µ⟩.

Finally, if Γ ∈ B and the boundary ∂Γ has µ-measure 0, then µn
w−→µ =⇒

µ(Γ) = limn→∞ µn(Γ).

Proof. We already proved in Lemma 17.1 the equivalence of (i) and (ii), and the
equivalence of (iii) and (iv) as well as that of (v) and (vi) is obvious. In addition,
it is clear that (v) together with (vi) implies (i). Thus, we need only check that (i)
implies (iii) and that (iv) implies (vi).

Assume that µn
w−→µ. Given a closed set F , define φk(x) = 1 −

Ä
|x−F |

1+|x−F |

ä 1
k
.

Then φk ∈ C
(
RN ; [0, 1]

)
and φk ↘ 1F as k → ∞. Hence, for all k,

⟨φk, µ⟩ = lim
n→∞

⟨φk, µn⟩ ≥ lim
n→∞

µn(F ),

and so µ(F ) = limk→∞⟨φk, µ⟩ ≥ limn→∞ µn(F ). Thus (i) =⇒ (iii).
In proving that (iv) implies (vi), it suffices to handle f ’s which are positive as

well as lower semicontinuous. Given such an f , define

fk =
∞∑
j=1

j ∧ 4k

2k
1Ij,k ◦ f =

1

2k

4k∑
j=1

1Jj,k ◦ f,

where

Ij,k =

Å
j

2k
,
j + 1

2k

ò
and Jj,k =

Å
j

2k
,∞
ã
.

Then 0 ≤ fk ↗ f as k → ∞. In addition, because f is lower semicontinuous, the
sets Gj,k = {x : f(x) ∈ Jj,k} are open. Hence, if (iv) holds, then, for all k,

⟨fk, µ⟩ ≤ lim
n→∞

⟨fk, µn⟩ ≤ lim
n→∞

⟨f, µn⟩,

and so
⟨f, µ⟩ = lim

k→∞
⟨fk, µ⟩ ≤ lim

n→∞
⟨f, µn⟩.

To prove the concluding assertion, assume µn
w−→µ and that µ(∂Γ) = 0. Set

G =
◦
Γ and F = Γ̄. Then

µ(Γ) = µ(G) ≤ lim
n→∞

µn(G) ≤ lim
n→∞

µn(Γ)

and
µ(Γ) = µ(F ) ≥ lim

n→∞
µn(F ) ≥ lim

n→∞
µn(Γ),

and so µ(Γ) = limn→∞ µn(Γ). □

Another useful fact about weak convergence is the following.

Theorem 17.4. Assume that µn
w−→µ, let ψ ∈ C

(
RN ; [0,∞)

)
be an element of

L1(µ;R) as well as of
⋂∞
n=1 L

1(µn;R). Then ⟨ψ, µ⟩ ≤ limn→∞⟨ψ, µn⟩. In addition,
if {φn : n ≥ 1} ⊆ C(RN ;R), |φn| ≤ ψ for all n ≥ 1, and ⟨ψ, µn⟩ −→ ⟨ψ, µ⟩, then
⟨φn, µ⟩ −→ ⟨φ, µ⟩ if φn −→ φ uniformly on compact subsets.
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Proof. Clearly,

⟨ψ ∧R,µ⟩ = lim
n→∞

⟨ψ ∧R,µn⟩ ≤ lim
n→∞

⟨ψ, µn⟩

for all R > 0, and so ⟨ψ, µ⟩ ≤ limn→∞⟨ψ, µn⟩.
Now suppose that ⟨ψ, µn⟩ −→ ⟨ψ, µ⟩, that |φn| ≤ ψ, and that φn −→ φ uni-

formly on compact subsets. Clearly

|⟨φn, µn⟩ − ⟨φ, µ⟩| ≤ |⟨φn − φ, µn⟩|+ |⟨φ, µ− µn⟩|.

For each R > 0, choose ηR ∈ C∞(RN ; [0, 1]
)
so that ηR = 1 on B(0, R) and ηR = 0

off B(0, R+ 1). Then, for each R > 0,

lim
n→∞

|⟨φn − φ, µn⟩|

≤ lim
n→∞

sup
|x|≤R+1

|φn(x)− φ(x)|⟨ηR, µn⟩+ lim
n→∞

|⟨(1− ηR)(φn − φ), µn⟩|

≤ 2 lim
n→∞

⟨(1− ηR)ψ, µn⟩ = 2⟨(1− ηR)ψ, µ⟩,

and, by Lebesgue’s dominated convergence theorem, the last expression tends to 0
as R→ ∞. Similarly,

lim
n→∞

|⟨φ, µn − µ⟩|

≤ lim
n→∞

|⟨ηRφ, µn − µ⟩|+ lim
n→∞

⟨(1− ηR)ψ, µn⟩+ ⟨(1− ηR)ψ, µ⟩ = 2⟨(1− ηR)ψ, µ⟩,

and so limn→∞ |⟨φ, µn − µ⟩| = 0. □

We will next investigate when a subset ofM1(RN ) is relatively compact. Because
the unit ball in the dual space of a Banach is compact in the weak* topology, a
careless functional analyst might think that M1(RN ) is itself compact. However,
although M1(RN ) is closed in the strong topology on C0(RN ;R)∗, it is not closed
in the weak* topology. Indeed, the sequence {δn : n ≥ 1} ⊆ M1(R) is weak*
convergent to measure whose total mass is 0, which is not an element of M1(R).
As this example indicates, in order for the weak* limit of a sequence {µn : n ≥ 1}
⊆ M1(RN ) to be in M1(RN ), one needs to know that the mass of the µn’s is not
escaping to infinity. With that in mind, we will say that a subset A of M1(RN ) is
tight if, for each ϵ ∈ (0, 1), there exists an R ∈ [0,∞) such that

inf
µ∈A

µ
(
B(0, R)

)
≥ 1− ϵ.

Theorem 17.5. A subset A ⊆ M1(RN ) is relatively compact in the weak topology
if and only if it is tight.

Proof. Assume that A is tight, and let {µn : n ≥ 1} ⊆ M1(RN ). As pointed
out above, there is a subsequence of {µn : n ≥ 1} ⊆ M1(RN ) which is weak*
convergent in C0(RN ;R)∗ to a ν ∈ C0(RN ;R)∗ which is a non-negative measure
with total mass less than or equal to 1, and so, without loss in generality, we
will assume that {µn : n ≥ 1} is weak* convergent to ν. In order to check that

ν(RN ) = 1, for any ϵ ∈ (0, 1) choose R so that infn≥1 µn
(
B(0, R)

)
≥ 1 − ϵ, and

choose η ∈ C
(
RN ; [0, 1]

)
so that η = 1 on B(0, R) and η = 0 off B(0, R+1). Then

ν(RN ) ≥ ν
(
B(0, R+ 1)

)
≥ ⟨η, ν⟩ = lim

n→∞
⟨η, µn⟩ ≥ lim

n→∞
µn
(
B(0, R)

)
≥ 1− ϵ,

and so ν(RN ) must be 1.
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Conversely, suppose that A ⊆ M1(RN ) is relatively compact in the weak topol-
ogy. If A were not tight, then there would exist a θ ∈ [0, 1) and, for each n ≥ 1, a

µn ∈ A such that µn
(
B(0, n)

)
≤ θ, and, because A is relatively compact, we could

assume that µn
w−→µ for some µ ∈ M1(RN ). But if ηm ∈ C

(
RN ; [0, 1]

)
equals 1 on

B(0,m) and 0 off of B(0,m+ 1), that would mean that, for all m ≥ 1,

µ
(
B(0,m)

)
≤ ⟨ηm, µ⟩ = lim

n→∞
⟨ηm, µn⟩ ≤ lim

n→∞
µn
(
B(0, n)

)
≤ θ,

and so µ(RN ) would have to be less than or equal to θ < 1. □

Exercise 17.6. Show that µn
w−→µ if and only if µn −→ µ in S (RN ;C)∗.
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