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Lecture 18: The Fourier Transform for M1(RN )

In many applications, it is important to know the relationship between the weak
convergence of measures and convergence of their Fourier transforms, which are
often called characteristic functions in the probability literature.

Theorem 18.1. Given {µn : n ≥ 1} ∪ {µ} ⊆ M1(RN ), µn
w−→µ if and only if

µ̂n(ξ) −→ µ̂(ξ) for each ξ ∈ RN . In fact, if µn
w−→µ, then µ̂n −→ µ̂ uniformly on

compact subsets.

Proof. Suppose that µ̂n −→ µ̂ pointwise. Then, by Parseval’s identity and Lebesgue’s
dominated convergence theorem, for each φ ∈ S (RN ;C),

(2π)N ⟨φ, µn⟩ =
∫
φ̂(ξ)µ̂n(−ξ) dξ −→

∫
φ̂(ξ)µ̂(−ξ) dξ = (2π)N ⟨φ, µ⟩,

and so, by Theorem 17.3, µn
w−→µ.

Now suppose that µn
w−→µ and that ξn −→ ξ in RN . Then the functions φn(x) =

eı(ξn,x)RN converge uniformly on compact subsets to the function φ(x) = eı(ξ,x),
and therefore, by Theorem 17.4, µ̂n(ξn) −→ µ̂(ξ). Hence µ̂n −→ µ uniformly on
compact subsets. □

Undoubtedly the most famous application of Theorem 18.1 is to the derivation
of the Central Limit Theorem in probability theory. The C.L.T. states that if
{Xn : n ≥ 1} is a sequence of mutually independent, uniformly square integrable
random variables on some probability space (Ω,F ,P) have the properties that their
expected value is 0 and

lim
n→∞

1

n

n∑
m=1

E
[
(ξ,Xm)2RN

]
= |ξ|2

for all ξ ∈ RN , then the distribution σn of∑n
m=1 Xm

n
1
2

converges weakly to γN , where γ(dx) = (2π)−
1
2 e−

x2

2 dx is the standard Gaussian
measure on R. To phrase this in analytic terms, let µm be the distribution of Xm.
Then the distribution of

∑n
m=1 Xm is the measure µ1 ∗ · · · ∗ µn, and so

σ̂n(ξ) =
n∏

m=1

µ̂m
(

ξ

n
1
2

)
is the Fourier transform of the distribution of 1

n
1
2

∑n
m=1 Xm. Next note that, by

Taylor’s theorem,

µ̂m
(

ξ

n
1
2

)
) = 1 + ı

n
1
2

∫
(ξ,x)RN µm(dx)− 1

2n

∫
(ξ,x)2 µm(dx) + om( 1n ),

where, because the Xm’s are uniformly square integrable,

lim
n→∞

n sup
m≥1

om
(
1
n

)
= 0.
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Hence, because the Xm have expected value 0 and

lim
n→∞

1

n

n∑
m=1

∫
(ξ,x)2RN µm(dx) = |ξ|2,

one has that

σ̂n(ξ) =
n∏

m=1

Å
1− 1

2n

∫
(ξ,x)2RN µm(dx) + om

(
1
n

)ã
−→ e−

|ξ|2
2 = ”γN (ξ).

In spite of Theorem 18.1, it is not true that a sequence of probability measures
converges weakly just because their Fourier transform converge pointwise. The
reason why is that if the sequence converges weakly, then it is relatively compact
and therefore must be tight. The following theorem of P. Lévy shows how one can
use Fourier transforms to test for tightness.

Theorem 18.2. (Lévy’s Continuity Theorem) If A ⊆ M1(RN ), then A is tight
if and only if for each ϵ > 0 there exists an r > 0 such that

(18.1) sup
µ∈A
|ξ|≤r

∣∣1− µ̂(ξ)
∣∣ ≤ ϵ.

Hence, {µn : n ≥ 1} ⊆ M1(RN ) is weakly convergent in M1(RN ) if and only if µ̂n
converges uniformly in a neighborhood of 0, in which case there is a µ ∈ M1(RN )
to which {µn : n ≥ 1} is converging weakly.

Proof. Assume that A is tight and therefore relatively compact. To see that (18.1)
hold, suppose it did not. Then there would be an ϵ > 0 such that, for each
n ≥ 1,

∣∣1 − µn(ξn)
∣∣ ≥ ϵ for some µn ∈ A and ξ ∈ B

(
0, 1

n

)
, and, because A is

relatively compact, we can choose these µn so that they converge weakly to some
µ ∈ M1(RN ). But then there would exist an m ≥ 1 for which

|1− µ̂(ξ)| ∨
∣∣µ̂n(ξ)− µ̂(ξ)

∣∣ < ϵ

2

when n ≥ m and when |ξ| ≤ 1
n , which would lead to the contradiction that

∣∣1 −
µ̂n(ξn)| ≥ ϵ.

Now assume that (18.1) holds. To show that A must be tight, begin by observing
that

|1− µ̂(ξ)| ≥
∫ (

1− cos(ξ,y)RN

)
µ(dy).

Therefore, if 8 e ∈ SN−1, for all r > 0,

1

r

∫ r

0

∣∣1− µ̂(te)
∣∣ dt ≥ ∫

RN\{0}

Ç
1−

sin
(
r(e,y)RN

)
r(e,y)RN

å
µ(dy).

Now set

s(t) = inf

ß
sin τ

τ
: τ ≥ t

™
for t > 0.

Then s(t) > 0 for all t > 0 and, for all R > 0,

sup
|ξ|≤r

∣∣1− µ̂(ξ)
∣∣ ≥ 1

r

∫ r

0

∣∣1− µ̂(te)
∣∣ dt ≥ s(rR)µ

(
{y : |(e,y)RN | ≥ R}

)
.

8SN−1 is the unit sphere in RN .
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Since

µ
(
{y : |y| ≥ R}

)
≤ N sup

e∈SN−1

µ
({

y :
∣∣(e,y)RN

∣∣ ≥ N− 1
2R
})
,

we have the estimate

(18.2) µ
(
{y : |y| ≥ R}

)
≤ N

s(rN− 1
2R)

sup
|ξ|≤r

∣∣1− µ̂(ξ)|.

In particular, (18.1) implies that, for each ϵ > 0, there is an R > 0 such that

sup
µ∈A

µ
(
{y : |y| ≥ R}

)
≤ ϵ.

□

Bochner found an interesting characterization of characteristic functions, one
which is intimately related to Lévy’s Continuity Theorem. To describe his result,
say that a function f : RN −→ C is non-negative definite if the matrix((

f(ξj − ξk)
))

1≤j,k≤n

is non-negative definite for all n ≥ 2 and ξ1, . . . , ξn ∈ RN , which is equivalent to
saying

n∑
j,k=1

f(ξj − ξk)αjαk ≥ 0

for all α1, . . . , αn ∈ C.

Theorem 18.3. A function f : RN −→ C is a characteristic function if and only
if f is continuous, f(0) = 1, and f is non-negative definite.

Proof. Assume that f = µ̂ for some µ ∈ M1(RN ). Then it is obvious that f is
continuous and that f(0) = 1. To see that it is non-negative definite, observe that

n∑
j,k=1

f(ξj − ξk)αjαk =

∫ Ñ n∑
j,k=1

ei(ξj−ξk,x)RN αjαk

é
µ(dx)

=

∫ ∣∣∣∣∣∣
n∑

j,k=1

eiξjxαj

∣∣∣∣∣∣
2

µ(dx) ≥ 0.

Now assume that f is a continuous, non-negative definite function with f(0) = 1.
Because

A ≡
Å

1 f(ξ)
f(−ξ) 1

ã
is non-negative definite, Im

(
f(ξ) + f(−ξ)

)
and Im

(
if(ξ) − if(−ξ)

)
are both 0,

and therefore f(ξ) = f(−ξ). Thus A is Hermitian, and because it is non-negative
definite, 1 − |f(ξ)|2 ≥ 0. Therefore |f(ξ)| ≤ 1. Next, let ψ ∈ S (RN ;R), and use
Riemann approximations to see that∫∫

f(ξ − η)ψ̂(ξ)ψ̂(η) dξdη ≥ 0.

Assume for the moment that f ∈ L1(λRN ;C), and set

g(x) = (2π)−N
∫
e−i(ξ,x)RN f(ξ) dξ.
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By Parseval’s identity, Fubini’s Theorem and the fact that ψ̂(ξ) = ψ̂(−ξ),

(2π)N
∫
g(x)ψ(x)2 dx =

∫
f(ξ)ψ̂2(−ξ) dξ =

∫
f(ξ)

(
ψ̂ ∗ ψ̂

)
(−ξ) dξ

=

∫∫
f(ξ)ψ̂(ξ + η)ψ̂(η) dξdη =

∫∫
f(ξ − η)ψ̂(ξ)ψ̂(η) dξdη ≥ 0.

Hence, since g is continuous, it follows that g ≥ 0. In addition, f = ĝ and so∫
g(x) dx = f(0) = 1 and f is the Fourier transform of the probability measure

dµ = g dλRN .

To remove the assumption that f is integrable, set gt(x) = (2πt)−
N
2 e−

|x|2
2t and

define γt(dx) = gt(x) dx. Then “γt(ξ) = e−
t|ξ|2

2 and therefore ft ≡ “γtf is a continu-
ous, λRN -integrable function that is 1 at 0. To see that ft is non-negative definite,
note that
n∑

j,k=1

ft(ξj − ξk)αjαk =
n∑

j,k=1

f(ξj − ξk)αjαk

∫
ei(ξj−ξk,x)RN γt(dx)

=

∫ Ñ n∑
j,k=1

f(ξj − ξk)
(
αje

i(ξj ,x)RN
)(
αke

i(ξk,x)RN
)é

γt(dx) ≥ 0.

Thus ft = “µt for some µt ∈M1(RN ), and so, since ft −→ f uniformly on compact
subsets, Lévy’s Continuity Theorem implies that µt tends weakly to a µ ∈M1(RN )
for which f = µ̂. □

Because it is difficult to check whether a function is non-negative definite, it
is the more or less trivial necessity part of Bochner’s Theorem that turns out in
practice to be more useful than the sufficiency conditions.

Exercise 18.4. Given f ∈ Cb(RN ;C) with f(0) = 1, define the quadratic form

(φ,ψ)f =

∫∫
RN×RN

φ(ξ)f(ξ − η)ψ(η) dξdη

for φ,ψ ∈ S (RN ;C). Show that this quadratic form is an inner product (i.e.,
(φ,φ)f ≥ 0) if and only if f is a characteristic function. Further, if f = µ̂, show

that (φ,ψ)f = (φ̂, ψ̂)L2(µ;C) and therefore that ( · , · )f is a Hilbert inner product
(i.e., (φ,φ)f = 0 =⇒ φ = 0) if and only if µ(G) > 0 for all non-empty open sets
G.

Exercise 18.5. Here are some interesting facts about characteristic functions.

(i) It is easy to check that if µ ∈ M1(RN ), then

|µ̂(η)− µ̂(ξ)|2 ≤ 2Re
(
1− µ̂(η − ξ)

)
,

and so, by Theorem 18.3, one sees that if f is a continuous, non-negative definite
function for which f(0) = 1, then |f(ξ)| ≤ 1 and |f(η)−f(ξ)|2 ≤ 2

(
1−Ref(η−ξ)

)
.

Show that these inequalities hold even if one drops the continuity assumption.

Hint: Use the non-negative definiteness of the matricesÅ
1 f(−ξ)

f(ξ) 1

ã
and

Ñ
1 f(−ξ) f(−η)

f(ξ) 1 f(ξ − η)
f(η) f(η − ξ) 1

é
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to see that f(−ξ) = f(ξ) and that

1 + 2α
(
1−Ref(η − ξ)

)
+ 2α2

∣∣f(η)− f(ξ)
∣∣ ≥ 0 for all α ∈ R.

(ii) Without using Bochner’s theorem, show that if f1 and f2 are non-negative
definite functions, then so are f1f2 and, for any a, b ≥ 0, af1 + bf2 is also.

Hint: Show that if A and B are non-negative definite, Hermitian N ×N matrices,
then

((
Ak,ℓBk,ℓ

))
1≤k,ℓ≤N is also. One way to see this is to use the fact that B

admits a square root.

(iii) Suppose that f : RN −→ C is a function for which f(0) = 1. Show that

if lim|x|↘0
1−f(x)
|x|2 = 0, then f cannot be a characteristic function. In particular, if

α > 2, then e−|ξ|α is not a characteristic function.

(iv) Given a finite signed Borel measure µ on RN , define

µ̂(ξ) =

∫
ei(ξ,x)RN µ(dx),

and show that µ̂ = 0 if and only if µ = 0.

Hint: Use the Hahn Decomposition Theorem to write µ as the difference of two,
mutually singular, non-negative Borel measures on RN .

(v) Suppose that f : R −→ C is a non-constant, twice continuously differentiable

characteristic function. Show that f ′′(0) < 0 and that f ′′

f ′′(0) is again a characteristic

function. In addition, show that ∥f ′∥2u ∨ ∥f ′′∥u ≤ |f ′′(0)| and that |f(η)− f(ξ)| ≤
|f ′′(0)| 12 |η − ξ|.

(vi) Suppose that {µn : n ≥ 1} ⊆ M1(R) and that f(ξ) = limn→∞ µ̂n(ξ) exists
for each ξ ∈ R. Show that f is a characteristic function if and only if it is continuous
at 0, and notice that this provides an alternative proof of Theorem 18.2.

(vii) Let µn ∈ M1(R) be the measure for which dµn

dλR
= (2n)−11[−n,n]. Show

that µ̂n −→ 1{0} pointwise, and conclude that {µn : n ≥ 1} has no weak limits.
This example demonstrates the essential role that continuity plays in Bochner’s and
Lévy’s theorems.
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