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Lecture 19: Infinitely Divisible Probability Measures

The convolution product turns M1(RN ) into a commutative ring in which δ0 is
the identity. A µ ∈ M1(RN ) is said to be infinitely divisible in this ring if, for each
n ≥ 1, there exists a µ 1

n
∈ M1(RN ) such that

µ = µ∗n
1
n

≡ µ 1
n
∗ · · · ∗ µ 1

n︸ ︷︷ ︸
n times

,

and the set I(RN ) of infinitely divisible measures is an important source of building
blocks for constructions in probability theory.

For probabililists, an element of I(RN ) is the distribution of a random variable
which, for each n ≥ 1, can be written as the sum of n identically distributed random
variables. Using commutativity, it is easy to check that set I(RN ) of infinitely
divisible measures is a subring of M1(RN ).

A famous theorem of Lévy and A. Khinchine describes the characteristic function
of any element of I(RN ). Namely, µ ∈ I(RN ) if and only if

(19.1)

µ̂(ξ) = exp

Å
i(b, ξ)RN − 1

2

(
ξ, Aξ

)
RN

+

∫ (
ei(ξ,y)RN − 1− i1B(0,1)(y)(ξ, y)RN

)
M(dy)

ã
,

for some b ∈ RN , non-negative definite, symmetric A ∈ Hom(RN ;RN ), and Borel

measureM on RN such thatM({0}) = 0 and
∫ |y|2

1+|y|2 M(dy) <∞. The expression

in (19.1) is called the Lévy–Khinchine formula, a measure M satisfying the stated
conditions is called a Lévy measure, and the triple (b, A,M) is called a Lévy system.
It is clear that if the right hand side of (19.1) is a characteristic function for every
Lévy system, then these are characteristic functions of infinitely divisible laws.
Indeed, if µ corresponds to (b, A,M) and µ 1

n
corresponds to

(
b
n ,

A
n ,

M
n

)
, then µ̂ =

(”µ 1
n
)n.

Proving that the function f(b,A,M) on the right hand side of (19.1) is a charac-
teristic function is a relatively easy. To wit, f(0,I,0) = γ̂, where γ is the standard

Gaussian measure on RN , and so it is easy to check that fb,A,0 is the characteristic

function of the distribution of x⇝ b+A
1
2x under γ. Also, if the Lévy measure M

is finite and πM is the Poisson measure given by

(19.2) πM = e−M(RN )
∞∑
n=0

M∗n

n!
,

then

π̂M (ξ) = e−M(RN )
∞∑
n=0

M̂(ξ)n

n!
= e−M(RN )+M̂(ξ) = exp

Å∫ (
eı(ξ,y)RN − 1

ã
M(dy),

and so π̂M = f(bM ,0,M), where bM =
∫
B(0,1)

yM(dy). Hence, when M is finite,

f(b,A,M) is the characteristic function of γb−bM ,A ∗ πM . Finally, for general Lévy
measures M , set Mk(dy) = 1[ 1k ,∞)(|y|)M(dy). Then Mk is finite, and so f(b,A,Mk)

is a characteristic function. Therefore, since f(b,A,Mk) −→ f(b,A,M) uniformly on
compact subsets, Theorem 18.2 says that f(b,A,M) is a characteristic function.
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There are no easy proofs that the characteristic function of any µ ∈ I(RN ) is
given by (19.1). The first step is to show that if µ ∈ I(RN ), then there is a unique

ℓ ∈ C(RN ;C) such that ℓ(0) = 0, |ℓ(ξ)|
1+|ξ|2 is bounded, and µ̂(ξ) = eℓ(ξ). Showing

that ℓ exists and is unique comes down to showing that µ̂ never vanishes. To do
that, choose r > 0 so that |1− µ̂(ξ)| ≤ 1

2 when |ξ| ≤ r. Then there is an ℓ for which

ℓ(0) = 0, |ℓ(ξ)| ≤ 2, and µ̂(ξ) = eℓ(ξ) if |ξ| ≤ r. Using log z = −
∑∞
n=1

(1−z)n
n when

|1− z| < 1, one sees that |ℓ(ξ)| ≤ 2 for |ξ| < r.
Since ”µ 1

n
(ξ)n = µ̂(ξ), ”µ 1

n
(ξ) ̸= 0 when |ξ| ≤ r, and so, by uniqueness, it must be

that ÷µ 1
n
(ξ) = e

ℓ(ξ)
n for |ξ| ≤ r, and therefore |1−”µ 1

n
(ξ)| ≤ 2

n when |ξ| ≤ r. Hence,

by (18.2), for any R > 0,

µ 1
n

(
{y : |y| ≥ R}

)
≤ 2N

ns(rN− 1
2R)

,

and so

|1−÷µ 1
n
(ξ)| ≤

∫ ∣∣1−eı(ξ,y)∣∣µ 1
n
(dy) ≤ |ξ|R+2µ 1

n

(
{y : |y| ≥ R}

)
≤ |ξ|R+ 2N

ns(rN− 1
2R)

.

Given ξ ̸= 0, take R = 1
4r|ξ| , choose n so that 2N

ns(rN− 1
2R)

≤ 1
4 , and conclude that

|1 − ”µ 1
n
(ξ)| ≤ 1

2 and therefore |µ̂(ξ)| ≥ 2−n. This proves that µ̂ never vanishes

and therefore that µ̂ = eℓ. In addition, by using the fact that limt↘
s(t)
t2 = 1

6 , the

preceding line of reasoning shows that there is a C < ∞ such that
∣∣1 − e

ℓ(ξ)
n

∣∣ ≤ 1
2

when n ≥ C|ξ|2, and therefore |ℓ(ξ)|
1+|ξ|2 is bounded.

Knowing that ”µ 1
n

= e
ℓ
n and that ℓ has at most quadratic growth, one knows

that

ℓ(ξ) = lim
n→∞

n
(”µ 1

n
(ξ)− 1

)
.

Thinking of ℓ as a tempered distribution, the challenge is to describe the distribution
of which it is the Fourier transform. Thus, set u = ℓ̌. Then

(2π)N ⟨φ, u⟩ = ⟨φ̂, ℓ⟩ = lim
n→∞

n

∫
φ̂(ξ)

Å∫ (
e−ı(ξ,x)RN − 1

)
µ 1

n
(dx)

ã
dξ

= lim
n→∞

n

∫ Å∫ (
e−ı(ξ,x)RN − 1

)
φ̂(ξ)

)
dξ

ã
µ 1

n
(dx)

= (2π)N lim
n→∞

n

∫ (
φ(x)− φ(0)

)
µ 1

n
(dx),

and so

⟨φ, u⟩ = lim
n→∞

n

∫ (
φ(x)− φ(0)

)
µ 1

n
(dx).

In particular, u satisfies the obvious RN analog of the minimum principle in (14.4).
Thus, by the RN -analog of Theorem 14.7, we know that

⟨φ, u⟩ = 1

2

N∑
i,j=1

Ai,j∂xi
∂xj

φ(0) +
∑
i=1

bi∂xi
φ(0)

+

∫ (
φ(y)− φ(0)− 1B(0,1)(y)

(
y,∇φ(0)

)
RN

)
M(dy),

where (b, A,M) is a Lévy system.
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To compute the Fourier transform of u, introduce the operator

L(b,A,M)φ(x) =
1

2

N∑
i,j=1

Ai,j∂xi
∂xj

φ(x) +
N∑
i=1

bi∂xi
φ(x)

+

∫ (
φ(x+ y)− φ(x)−

(
b,∇φ(x)

)
RN

)
M(dy).

What we have shown is that ⟨φ, u⟩ = L(b,A,M)φ(0). Using ‘∂xjφ(ξ) = −ıξjφ̂(ξ) and
Fubini’s theorem, one sees that⁄L(b,A,M)φ(ξ) = φ̂(ξ)ℓ(b,A,M)(−ξ),

where

ℓ(b,A,M)(ξ) = log f(b,A,M)

= − 1
2

(
ξ, Aξ) + ı(b, ξ)RN +

∫ (
eı(ξ,y) − 1− ı1B(0,1)(y)

(
ξ,y)

)
M(dy).

Hence, by Parseval’s indentity,

⟨φ̂, ℓ⟩ = (2π)N ⟨φ, u⟩ = (2π)NL(b,A,M)(0) = ⟨φ̂, ℓ(b,A,M)(ξ)⟩,

and so ℓ = ℓ(b,A,M).
We will now use (19.1) to prove some properties of the associated measures

based on properties of the Lévy system. Use µ(b,A,M) ∈ S (RN ;C)∗ to denote
the probability measure of which f(b,A,M) is the Fourier transform, and set µt =
µ(tb,tA,tM) for t > 0. Then

(2π)N∂t⟨φ, µt⟩ = ⟨φ̂, ℓ(b,A,M)f(tb,tA,tM)⟩ = (2π)N ⟨L(b,A,M)φ, µt⟩.

That is, we have shown that

(19.3) ∂t⟨φ, µ(tb,tA,tM)⟩ = ⟨L(b,A,M)φ, µ(tb,tA,tM)⟩.

Theorem 19.1. If either A is non-degenerate or M(G) > 0 for all non-empty open
sets G ⊆ RN \ {0}, then µ(b,A,M)(G) > 0 for all non-empty open sets G ⊆ RN .

Proof. First observe that µ(b,A,M) = δb ∗ µ(0,A,M), and therefore we can assume
that b = 0. Next note that µ(0,A,M) = γA ∗ µ(0,0,M) where γA is the distribution

of x⇝ A
1
2x under γ, and so, if A is non-degenerate and therefore γA has a strictly

positive density, µ(0,A,M) does also.

Now assume that b = 0, A = 0, and M(G) > 0 for all open ∅ ̸= G ⊆ RN \ {0}.
Given an open G ̸= ∅, choose an η ∈ C∞(RN ; [0, 1]

)
which is strictly positive on G

and vanishes off of G. Then

L(0,0,M)η(x) =

∫ (
η(x+ y)− η(x)− 1B(0,1)(y)

(
∇η(x),y

)
RN

)
M(dy)

=

∫
η(x+ y)M(dy) > 0

if x /∈ G. Hence, if f(t) = ⟨η, µ(0,0,tM)⟩, then f ≥ 0 and, by (19.3), µ(0,0,tM)(G) =
0 =⇒ f ′(t) > 0. But µ(0,0,tM)(G) = 0 also implies that f(t) = 0, which, by the
first derivative test, is possible only if f ′(t) = 0. Hence f(t) > 0 for all t > 0, and
so µ(0,0,M)(G) > 0. □
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Theorem 19.2. If N = 1, then µ(b,A,M)

(
(−∞, 0)

)
= 0 if and only if

(19.4) A = 0, M
(
(−∞, 0)

)
= 0, and

∫
|y|<1

yM(dy) ≤ b.

Proof. Observe that,

{x ∈ Rn : xj < 0 for 1 ≤ j ≤ n|} ⊆

x ∈ Rn :
n∑
j=1

x < 0

 ,

and therefore µ 1
n

(
(−∞, 0)

)n ≤ µ∗n((−∞, 0)
)
for any µ ∈ M1(R).

Now assume that µ(b,A,M)

(
(−∞, 0)

)
= 0. Since µ(b,A,M) = γA ∗ µ(b,0,M) and

γA(G) > 0 for all open G ̸= ∅ unless A = 0, it follows that A = 0. Next observe
that f(b,0,M) has a bounded analytic extension to {ζ ∈ C : Reζ < 0}, and there-

fore M
(
(−∞, 0)

)
must be 0. Finally, to prove the inequality in (19.4), set µ 1

n
=

µ( b
n ,0,

M
n ). Since µ1 = µ∗n

1
n

, the observation above shows that µ 1
n

(
(−∞, 0)

)
= 0, and

therefore, if φ ≥ 0 on [0,∞) and φ(0) = 0, then, by (19.3),

L(b,0,M)φ(0) = lim
n→∞

n
(
⟨φ, µ 1

n
⟩ − φ(0)

)
≥ 0,

and so

bφ′(0) +

∫ (
φ(y)− 1(−1,1)(y)yφ

′(0)
)
M(dy) ≥ 0.

Now choose η ∈ C∞(R; [0, 1]) so that η = 1 on
[
− 1

2 ,
1
2

]
and η = 0 off (−1, 1), and,

for r ∈ (0, 1), set φr(x) = yηr(y) where ηr(y) = η
(
y
r

)
. By the preceding applied to

φr,

b−
∫ (

1(−1,1)(y)− ηr(y)
)
yM(dy) ≥ 0,

and so ∫
(r,1)

yM(dy) ≤ b for all r ∈ (0, 1).

Finally, assume that (19.4) holds, and set Mr(dy) = 1[r,∞)(y)M(dy) and br =

b−
∫
yMr(dy) for r > 0. Then (19.4) holds for (b, 0,Mr) and (cf. (19.2)) µ(b,0,Mr) =

δbr ∗ πMr
, from which it is clear that µ(b,0,Mr)

(
(−∞, 0)

)
= 0. Therefore, since

µ(b,0,Mr)
w−→µ(b,0,M), µ(b,0,M)

(
(−∞, 0)

)
= 0. □

Exercise 19.3. IfM is symmetric, show that the integral in (19.1) can be replaced
by ∫ (

cos(ξ,y)RN − 1
)
M(dy).

IfM is invariant under orthogonal transformations, show that the integral in (19.1)
is equal to ∫

SN−1

(
cos(e, ω)RN − 1

)
λSN−1(dω)|ξ|α,

where e ∈ SN−1 and α ∈ (0, 2). In particular, by combining this with part (iii) of
Exercise 4.3, conclude that e−|ξ|α is a characteristic function if and only if α ∈ [0, 2].
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