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LECTURE 19: INFINITELY DIVISIBLE PROBABILITY MEASURES

The convolution product turns M; (RY) into a commutative ring in which Jg is
the identity. A p € M;(RY) is said to be infinitely divisible in this ring if, for each
n > 1, there exists a p1 € My (R”) such that

and the set Z(RY) of infinitely divisible measures is an important source of building
blocks for constructions in probability theory.

For probabililists, an element of Z(R™) is the distribution of a random variable
which, for each n > 1, can be written as the sum of n identically distributed random
variables. Using commutativity, it is easy to check that set Z(RY) of infinitely
divisible measures is a subring of M;(RY).

A famous theorem of Lévy and A. Khinchine describes the characteristic function
of any element of Z(RY). Namely, u € Z(R"Y) if and only if

() = expi(b, e — 5 (€. 4€)...
(19.1)

+ /(ei(‘i’y)RN —-1- ilB(O,l)(y)(£7y)RN) M(dy)),

for some b € RY, non-negative definite, symmetric A € Hom(R";R"), and Borel

measure M on RY such that M ({0}) = 0 and [ 1J‘ry‘EIQ M (dy) < oo. The expression

in (19.1) is called the Lévy—Khinchine formula, a measure M satisfying the stated
conditions is called a Lévy measure, and the triple (b, A, M) is called a Lévy system.
It is clear that if the right hand side of (19.1) is a characteristic function for every
Lévy system, then these are characteristic functions of infinitely divisible laws.
Indeed, if p corresponds to (b, A, M) and I3 corresponds to (%7 %, %), then f =
()"

Proving that the function f 4 a7y on the right hand side of (19.1) is a charac-
teristic function is a relatively easy. To wit, f(o1,0) = 9, where « is the standard

Gaussian measure on RY | and so it is easy to check that fy 4,0 is the characteristic

function of the distribution of x ~» b+ A2x under ~. Also, if the Lévy measure M
is finite and 7 is the Poisson measure given by

0 M
e—M(]RN)

)

(19.2) T = D

then

() = e MEY) 3 M = e MEDHIE) _ oxp (/(ez@,y)w _ 1) M{(dy),
ne0 n.

and 80 Tar = f(by,,0,0m), Where by = fB(0,1)yM(dY)' Hence, when M is finite,
fb,4,0) is the characteristic function of yp_1,,,4 * mas. Finally, for general Lévy
measures M, set My (dy) = 111 oy (ly[)M(dy). Then My, is finite, and so fip,a,n1,)
is a characteristic function. Therefore, since f, 4,a1,) — f(b,a,n) uniformly on
compact subsets, Theorem 18.2 says that f, 4 ) is a characteristic function.
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There are no easy proofs that the characteristic function of any p € Z(RY) is
given by (19.1). The first step is to show that if u € Z(RYV), then there is a unique
¢ € C(RY;C) such that £(0) = 0, 1‘5‘?“2 is bounded, and ji(€) = ¢‘(¢). Showing
that ¢ exists and is unique comes down to showing that (i never vanishes. To do
that, choose r > 0 so that |1 — /1(€)| < % when |¢| < r. Then there is an ¢ for which
0(0) =0, [£(¢)] < 2, and ji(€) = €@ if |¢| < r. Using logz = — 300 | 1=2° when
|1 — z| < 1, one sees that [£(€)] < 2 for |€] < 7.

Since fi1 (€)™ = ju(€), pr(§) # 0 when [§] < r, and so, by uniqueness, it must be

that ,u/—\(@ =% for |€| < r, and therefore |1 — 11 (€)| < 2 when [€| < r. Hence,
by (18.2), for any R > 0,

1
n

2N
1 : >R} < T ,
pi({y: lyl>R}) < N IR
and so
A P 2N
[1—p1(&)] < /!1—6 €3 s (dy) < |€[R+2u1 ({y : |y| > R}) < [§|R+————F—
n " " ns(rN—zR)

2N 1

Given £ # 0, take R = ﬁl&\’ choose n so that on-1m < 7, and conclude that
1 — ﬁ%({)\ < % and therefore |fi(€)| > 27". This proves that { never vanishes
and therefore that i = e. In addition, by using the fact that limg % = %, the
preceding line of reasoning shows that there is a C' < oo such that |1 — et < %
when n > C|€|?, and therefore 1‘-?(\55)”2 is bounded.

Knowing that i = ew and that ¢ has at most quadratic growth, one knows
that

(&) = Tim n(@() —1).
Thinking of £ as a tempered distribution, the challenge is to describe the distribution
of which it is the Fourier transform. Thus, set v = ¢. Then

(20" (g = (206) =t n [ 0() ([ (@0 — 1)y () g

- nhﬁrrgon/ (/(e_l(s’x)“w - 1)@(5))‘%) M%(dx)
= (2m)" nlLH;o"/(W(X) - <P(0))u%(dx),

and so
(o) = T n [ (p(x) = 0(0)) 1 (a0

In particular, u satisfies the obvious RY analog of the minimum principle in (14.4).
Thus, by the R¥-analog of Theorem 14.7, we know that

N
1
(o) = 5 D AiDrie,0(0) + 3 b0, 9(0)
=1

+ [ (60 = (0 = a0 )5 Vo(0)) g ) M),

where (b, A, M) is a Lévy system.
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To compute the Fourier transform of u, introduce the operator

N N
1
Lb,arnp(x) = ) Z A; j0x, 0z (%) + Zbiam(p(x)
i=1

+ /(w(x +¥) = @) = (b, V() 5 ) M(dy).

What we have shown is that (p,u) = L, a,a)9(0). Using 8:]\@(5) = —1&;¢(€) and
Fubini’s theorem, one sees that

L, an)P(&) = (&) b,a,00)(—E),

where
f(b,A,M)(ﬁ) = log f(b,A,M)

= —3(& A8) +o(b, E)pn + /(e’@vy) —1—11p001(y) (g,y))M(dy),
Hence, by Parseval’s indentity,

(@,0) = 2m) Mg, u) = 1) Lib,a,0)(0) = (B, £ip,a,01)(6)),

and so £ = A, )

We will now use (19.1) to prove some properties of the associated measures
based on properties of the Lévy system. Use pp a,n) € Y(RN;(C)* to denote
the probability measure of which fy, 4 ar) is the Fourier transform, and set u; =
H(b,tA,enr) for £ > 0. Then

2m)N O, 1) = (B, Loy v eann) = )N (Lo a vy, 1it)-

That is, we have shown that

(19~3) 6t<§0a ,U(tb,tA,tM)> = <£(b,A,M)<P7M(tb,tA,tM)>-

Theorem 19.1. If either A is non-degenerate or M(G) > 0 for all non-empty open
sets G C RN \ {0}, then b, a,01)(G) > 0 for all non-empty open sets G C RV,

Proof. First observe that pm a,a) = Ob * f(0,4,0), and therefore we can assume
that b = 0. Next note that H(0,A,M) = YA * [(0,0,M) where 74 is the distribution
of z ~ A%z under v, and so, if A is non-degenerate and therefore v4 has a strictly
positive density, f1(0,4,1) does also.

Now assume that b =0, A =0, and M(G) > 0 for all open ) # G C RN \ {0}.
Given an open G # (), choose an n € C* (RN; [0, 1]) which is strictly positive on G
and vanishes off of G. Then

Looann() = [ (n6x+3) = 16x) = L. () (T1060). ) ) M)

- /n(X+Y) M(dy) > 0

if x ¢ G. Hence, if f(t) = (1, (0,0,e0r)), then f > 0 and, by (19.3), 11(0,0,6a1)(G) =
0 = f'(t) > 0. But po,0nr)(G) = 0 also implies that f(t) = 0, which, by the
first derivative test, is possible only if f'(¢) = 0. Hence f(¢) > 0 for all ¢ > 0, and
S0 /L(0707M)(G) > 0. [
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Theorem 19.2. If N =1, then iy a,0)((—00,0)) = 0 if and only if
(19.4) A=0, M((-00,0)) =0, and / y M(dy) <b.

lyl<1
Proof. Observe that,

n
{xeR":z;<0for1<j<n|}C{xeR": Zw<0 ,
j=1
and therefore p1 ((—oo,O))n < p*™((—00,0)) for any p € My (R).

Now assume that u(byA,M)((foo,O)) = 0. Since fib,a,01) = YA * fiv,0,0) and
v4(G) > 0 for all open G # 0 unless A = 0, it follows that A = 0. Next observe
that f(,0,a) has a bounded analytic extension to {¢ € C : fRe¢ < 0}, and there-
fore M ((—00,0)) must be 0. Finally, to prove the inequality in (19.4), set p1 =
H(b 0, My Since p; = ul , the observation above shows that fh1 ((—oo, 0)) =0, and
therefore, if ¢ > 0 on [0 o0) and (0) = 0, then, by (19.3),

L.o0ane(0) = lim n({p, p1) —¢(0)) =0,

and so

be'(0) + / (0(y) — 11wy (0)) M(dy) > 0

Now choose 7 € COO(R, ) so that n = 1 on [—%, %] and n = 0 off (—1,1), and,
for r € (0,1), set ¢, () = yn,(y) where n,(y) = n(%). By the preceding applied to
807'7

b— /(1<—1,1>(y) —n(y))y M(dy) >0,
and so

yM (dy) < b for all 7 € (0,1).
(r,1)
Finally, assume that (19.4) holds, and set M, (dy) = 1. «)(y) M(dy) and b, =
b— [y M,(dy) for v > 0. Then (19.4) holds for (b,0, M,) and (cf. (19.2)) p,0,01,) =
Op, * mar,., from which it is clear that M(b,o,MT)((—OO»O)) = 0. Therefore, since

[4(6,0,M,) ——H(b,0,0) » 14(b,0,01) ((—00,0)) = 0. 0
Exercise 19.3. If M is symmetric, show that the integral in (19.1) can be replaced
by

[ (costéyyen — 1) atay).

If M is invariant under orthogonal transformations, show that the integral in (19.1)
is equal to

/SN?I (cos(e, w)rny — 1) Agnv—1 (dw)[€]*,

where e € S’ and a € (0,2). In particular, by combining this with part (iii) of
Exercise 4.3, conclude that e~ €1 is a characteristic function if and only if a € [0, 2].
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