Lecture 19: Infinitely Divisible Probability Measures
The convolution product turns $\mathbf{M}_{1}\left(\mathbb{R}^{N}\right)$ into a commutative ring in which $\delta_{\mathbf{0}}$ is the identity. A $\mu \in \mathbf{M}_{1}\left(\mathbb{R}^{N}\right)$ is said to be infinitely divisible in this ring if, for each $n \geq 1$, there exists a $\mu_{\frac{1}{n}} \in \mathbf{M}_{1}\left(\mathbb{R}^{N}\right)$ such that

$$
\mu=\mu_{\frac{1}{n}}^{* n} \equiv \underbrace{\mu_{\frac{1}{n}} * \cdots * \mu_{\frac{1}{n}}}_{n \text { times }},
$$

and the set $\mathcal{I}\left(\mathbb{R}^{N}\right)$ of infinitely divisible measures is an important source of building blocks for constructions in probability theory.

For probabililists, an element of $\mathcal{I}\left(\mathbb{R}^{N}\right)$ is the distribution of a random variable which, for each $n \geq 1$, can be written as the sum of n identically distributed random variables. Using commutativity, it is easy to check that set $\mathcal{I}\left(\mathbb{R}^{N}\right)$ of infinitely divisible measures is a subring of $\mathbf{M}_{1}\left(\mathbb{R}^{N}\right)$.

A famous theorem of Lévy and A. Khinchine describes the characteristic function of any element of $\mathcal{I}\left(\mathbb{R}^{N}\right)$. Namely, $\mu \in \mathcal{I}\left(\mathbb{R}^{N}\right)$ if and only if

$$
\begin{align*}
\hat{\mu}(\boldsymbol{\xi})=\exp (& i(\mathbf{b}, \boldsymbol{\xi})_{\mathbb{R}^{N}}-\frac{1}{2}(\boldsymbol{\xi}, A \boldsymbol{\xi})_{\mathbb{R}^{N}} \tag{19.1}\\
& \left.+\int\left(e^{i(\boldsymbol{\xi}, y)_{\mathbb{R}^{N}}}-1-i \mathbf{1}_{B(0,1)}(y)(\boldsymbol{\xi}, y)_{\mathbb{R}^{N}}\right) M(d y)\right)
\end{align*}
$$

for some $\mathbf{b} \in \mathbb{R}^{N}$, non-negative definite, symmetric $A \in \operatorname{Hom}\left(\mathbb{R}^{N} ; \mathbb{R}^{N}\right)$, and Borel measure M on \mathbb{R}^{N} such that $M(\{0\})=0$ and $\int \frac{|\mathbf{y}|^{2}}{1+|\mathbf{y}|^{2}} M(d \mathbf{y})<\infty$. The expression in (19.1) is called the Lévy-Khinchine formula, a measure M satisfying the stated conditions is called a Lévy measure, and the triple (\mathbf{b}, A, M) is called a Lévy system. It is clear that if the right hand side of (19.1) is a characteristic function for every Lévy system, then these are characteristic functions of infinitely divisible laws. Indeed, if μ corresponds to (b, A, M) and $\mu_{\frac{1}{n}}$ corresponds to $\left(\frac{\mathbf{b}}{n}, \frac{A}{n}, \frac{M}{n}\right)$, then $\hat{\mu}=$ $\left(\widehat{\mu_{\frac{1}{n}}}\right)^{n}$.

Proving that the function $f_{(\mathbf{b}, A, M)}$ on the right hand side of (19.1) is a characteristic function is a relatively easy. To wit, $f_{(0, \mathbf{I}, \mathbf{0})}=\hat{\gamma}$, where γ is the standard Gaussian measure on \mathbb{R}^{N}, and so it is easy to check that $f_{\mathbf{b}, A, 0}$ is the characteristic function of the distribution of $\mathbf{x} \rightsquigarrow \mathbf{b}+A^{\frac{1}{2}} \mathbf{x}$ under γ. Also, if the Lévy measure M is finite and π_{M} is the Poisson measure given by

$$
\begin{equation*}
\pi_{M}=e^{-M\left(\mathbb{R}^{N}\right)} \sum_{n=0}^{\infty} \frac{M^{* n}}{n!} \tag{19.2}
\end{equation*}
$$

then

$$
\widehat{\pi_{M}}(\boldsymbol{\xi})=e^{-M\left(\mathbb{R}^{N}\right)} \sum_{n=0}^{\infty} \frac{\hat{M}(\boldsymbol{\xi})^{n}}{n!}=e^{-M\left(\mathbb{R}^{N}\right)+\hat{M}(\boldsymbol{\xi})}=\exp \left(\int\left(e^{\imath(\boldsymbol{\xi}, \mathbf{y})_{\mathbb{R}^{N}}}-1\right) M(d \mathbf{y}),\right.
$$

and so $\widehat{\pi_{M}}=f_{\left(\mathbf{b}_{M}, 0, M\right)}$, where $b_{M}=\int_{B(0,1)} \mathbf{y} M(d \mathbf{y})$. Hence, when M is finite, $f_{(\mathbf{b}, A, M)}$ is the characteristic function of $\gamma_{\mathbf{b}-\mathbf{b}_{M}, A} * \pi_{M}$. Finally, for general Lévy measures M, set $M_{k}(d \mathbf{y})=\mathbf{1}_{\left[\frac{1}{k}, \infty\right)}(|\mathbf{y}|) M(d y)$. Then M_{k} is finite, and so $f_{\left(\mathbf{b}, A, M_{k}\right)}$ is a characteristic function. Therefore, since $f_{\left(\mathbf{b}, A, M_{k}\right)} \longrightarrow f_{(\mathbf{b}, A, M)}$ uniformly on compact subsets, Theorem 18.2 says that $f_{(\mathbf{b}, A, M)}$ is a characteristic function.

There are no easy proofs that the characteristic function of any $\mu \in \mathcal{I}\left(\mathbb{R}^{N}\right)$ is given by (19.1). The first step is to show that if $\mu \in \mathcal{I}\left(\mathbb{R}^{N}\right)$, then there is a unique $\ell \in C\left(\mathbb{R}^{N} ; \mathbb{C}\right)$ such that $\ell(\mathbf{0})=0, \frac{|\ell(\boldsymbol{\xi})|}{1+|\boldsymbol{\xi}|^{2}}$ is bounded, and $\hat{\mu}(\boldsymbol{\xi})=e^{\ell(\boldsymbol{\xi})}$. Showing that ℓ exists and is unique comes down to showing that $\hat{\mu}$ never vanishes. To do that, choose $r>0$ so that $|1-\hat{\mu}(\boldsymbol{\xi})| \leq \frac{1}{2}$ when $|\boldsymbol{\xi}| \leq r$. Then there is an ℓ for which $\ell(0)=0,|\ell(\xi)| \leq 2$, and $\hat{\mu}(\boldsymbol{\xi})=e^{\ell(\boldsymbol{\xi})}$ if $|\boldsymbol{\xi}| \leq r$. Using $\log z=-\sum_{n=1}^{\infty} \frac{(1-z)^{n}}{n}$ when $|1-z|<1$, one sees that $|\ell(\boldsymbol{\xi})| \leq 2$ for $|\boldsymbol{\xi}|<r$.

Since $\widehat{\mu_{\frac{1}{n}}}(\xi)^{n}=\hat{\mu}(\boldsymbol{\xi}), \widehat{\mu_{\frac{1}{n}}}(\boldsymbol{\xi}) \neq 0$ when $|\boldsymbol{\xi}| \leq r$, and so, by uniqueness, it must be that $\widehat{\mu_{\frac{1}{n}}(\boldsymbol{\xi})}=e^{\frac{\ell(\boldsymbol{\xi})}{n}}$ for $|\boldsymbol{\xi}| \leq r$, and therefore $\left|1-\widehat{\mu_{\frac{1}{n}}}(\boldsymbol{\xi})\right| \leq \frac{2}{n}$ when $|\boldsymbol{\xi}| \leq r$. Hence, by (18.2), for any $R>0$,

$$
\mu_{\frac{1}{n}}(\{\mathbf{y}:|\mathbf{y}| \geq R\}) \leq \frac{2 N}{n s\left(r N^{-\frac{1}{2}} R\right)}
$$

and so
$\left|1-\widehat{\mu_{\frac{1}{n}}(\boldsymbol{\xi})}\right| \leq \int\left|1-e^{\imath \boldsymbol{\xi}, \mathbf{y})}\right| \mu_{\frac{1}{n}}(d \mathbf{y}) \leq|\boldsymbol{\xi}| R+2 \mu_{\frac{1}{n}}(\{\mathbf{y}:|\mathbf{y}| \geq R\}) \leq|\boldsymbol{\xi}| R+\frac{2 N}{n s\left(r N^{-\frac{1}{2}} R\right)}$.
Given $\boldsymbol{\xi} \neq \mathbf{0}$, take $R=\frac{1}{4 r|\boldsymbol{\xi}|}$, choose n so that $\frac{2 N}{n s\left(r N^{-\frac{1}{2}} R\right)} \leq \frac{1}{4}$, and conclude that $\left|1-\widehat{\mu_{\frac{1}{n}}}(\boldsymbol{\xi})\right| \leq \frac{1}{2}$ and therefore $|\hat{\mu}(\boldsymbol{\xi})| \geq 2^{-n}$. This proves that $\hat{\mu}$ never vanishes and therefore that $\hat{\mu}=e^{\ell}$. In addition, by using the fact that $\lim _{t \searrow} \frac{s(t)}{t^{2}}=\frac{1}{6}$, the preceding line of reasoning shows that there is a $C<\infty$ such that $\left|1-e^{\frac{\ell(\xi)}{n}}\right| \leq \frac{1}{2}$ when $n \geq C|\boldsymbol{\xi}|^{2}$, and therefore $\frac{|\ell(\boldsymbol{\xi})|}{1+|\boldsymbol{\xi}|^{2}}$ is bounded.

Knowing that $\widehat{\mu_{\frac{1}{n}}}=e^{\frac{\ell}{n}}$ and that ℓ has at most quadratic growth, one knows that

$$
\ell(\xi)=\lim _{n \rightarrow \infty} n\left(\widehat{\mu_{\frac{1}{n}}}(\xi)-1\right) .
$$

Thinking of ℓ as a tempered distribution, the challenge is to describe the distribution of which it is the Fourier transform. Thus, set $u=\check{\ell}$. Then

$$
\begin{aligned}
(2 \pi)^{N}\langle\varphi, u\rangle & =\langle\hat{\varphi}, \ell\rangle=\lim _{n \rightarrow \infty} n \int \hat{\varphi}(\boldsymbol{\xi})\left(\int\left(e^{-\imath(\boldsymbol{\xi}, \mathbf{x})_{\mathbb{R}^{N}}}-1\right) \mu_{\frac{1}{n}}(d \mathbf{x})\right) d \boldsymbol{\xi} \\
& \left.=\lim _{n \rightarrow \infty} n \int\left(\int\left(e^{-\imath(\boldsymbol{\xi}, \mathbf{x})_{\mathbb{R}^{N}}}-1\right) \hat{\varphi}(\boldsymbol{\xi})\right) d \boldsymbol{\xi}\right) \mu_{\frac{1}{n}}(d \mathbf{x}) \\
& =(2 \pi)^{N} \lim _{n \rightarrow \infty} n \int(\varphi(\mathbf{x})-\varphi(\mathbf{0})) \mu_{\frac{1}{n}}(d \mathbf{x}),
\end{aligned}
$$

and so

$$
\langle\varphi, u\rangle=\lim _{n \rightarrow \infty} n \int(\varphi(\mathbf{x})-\varphi(\mathbf{0})) \mu_{\frac{1}{n}}(d \mathbf{x})
$$

In particular, u satisfies the obvious \mathbb{R}^{N} analog of the minimum principle in (14.4). Thus, by the \mathbb{R}^{N}-analog of Theorem 14.7 , we know that

$$
\begin{aligned}
\langle\varphi, u\rangle=\frac{1}{2} & \sum_{i, j=1}^{N} A_{i, j} \partial_{x_{i}} \partial_{x_{j}} \varphi(\mathbf{0})+\sum_{i=1} b_{i} \partial_{x_{i}} \varphi(0) \\
& +\int\left(\varphi(y)-\varphi(\mathbf{0})-\mathbf{1}_{B(0,1)}(y)(y, \nabla \varphi(\mathbf{0}))_{\mathbb{R}^{N}}\right) M(d y),
\end{aligned}
$$

where (\mathbf{b}, A, M) is a Lévy system.

To compute the Fourier transform of u, introduce the operator

$$
\begin{aligned}
\mathcal{L}_{(\mathbf{b}, A, M)} \varphi(\mathbf{x})=\frac{1}{2} & \sum_{i, j=1}^{N} A_{i, j} \partial_{x_{i}} \partial_{x_{j}} \varphi(\mathbf{x})+\sum_{i=1}^{N} b_{i} \partial_{x_{i}} \varphi(\mathbf{x}) \\
& +\int\left(\varphi(\mathbf{x}+\mathbf{y})-\varphi(\mathbf{x})-(\mathbf{b}, \nabla \varphi(\mathbf{x}))_{\mathbb{R}^{N}}\right) M(d \mathbf{y})
\end{aligned}
$$

What we have shown is that $\langle\varphi, u\rangle=\mathcal{L}_{(\mathbf{b}, A, M)} \varphi(\mathbf{0})$. Using $\widehat{\partial_{x_{j}} \varphi}(\boldsymbol{\xi})=-\imath \xi_{j} \hat{\varphi}(\boldsymbol{\xi})$ and Fubini's theorem, one sees that

$$
\overline{\mathcal{L}_{(\mathbf{b}, A, M)} \varphi}(\boldsymbol{\xi})=\hat{\varphi}(\boldsymbol{\xi}) \ell_{(\mathbf{b}, A, M)}(-\boldsymbol{\xi})
$$

where

$$
\begin{aligned}
\ell_{(\mathbf{b}, A, M)}(\boldsymbol{\xi}) & =\log f_{(\mathbf{b}, A, M)} \\
& =-\frac{1}{2}(\boldsymbol{\xi}, A \boldsymbol{\xi})+\imath(\mathbf{b}, \boldsymbol{\xi})_{\mathbb{R}^{N}}+\int\left(e^{\imath \boldsymbol{\xi}, \mathbf{y})}-1-\imath \mathbf{1}_{B(\mathbf{0}, 1)}(\mathbf{y})(\boldsymbol{\xi}, \mathbf{y})\right) M(d \mathbf{y}) .
\end{aligned}
$$

Hence, by Parseval's indentity,

$$
\langle\hat{\varphi}, \ell\rangle=(2 \pi)^{N}\langle\varphi, u\rangle=(2 \pi)^{N} \mathcal{L}_{(\mathbf{b}, A, M)}(\mathbf{0})=\left\langle\hat{\varphi}, \ell_{(\mathbf{b}, A, M)}(\boldsymbol{\xi})\right\rangle
$$

and so $\ell=\ell_{(\mathbf{b}, A, M)}$.
We will now use (19.1) to prove some properties of the associated measures based on properties of the Lévy system. Use $\mu_{(\mathbf{b}, A, M)} \in \mathscr{S}\left(\mathbb{R}^{N} ; \mathbb{C}\right)^{*}$ to denote the probability measure of which $f_{(\mathbf{b}, A, M)}$ is the Fourier transform, and set $\mu_{t}=$ $\mu_{(t \mathbf{b}, t A, t M)}$ for $t>0$. Then

$$
(2 \pi)^{N} \partial_{t}\left\langle\varphi, \mu_{t}\right\rangle=\left\langle\hat{\varphi}, \ell_{(\mathbf{b}, A, M)} f_{(t \mathbf{b}, t A, t M)}\right\rangle=(2 \pi)^{N}\left\langle\mathcal{L}_{(\mathbf{b}, A, M)} \varphi, \mu_{t}\right\rangle
$$

That is, we have shown that

$$
\begin{equation*}
\partial_{t}\left\langle\varphi, \mu_{(t \mathbf{b}, t A, t M)}\right\rangle=\left\langle\mathcal{L}_{(\mathbf{b}, A, M)} \varphi, \mu_{(t \mathbf{b}, t A, t M)}\right\rangle \tag{19.3}
\end{equation*}
$$

Theorem 19.1. If either A is non-degenerate or $M(G)>0$ for all non-empty open sets $G \subseteq \mathbb{R}^{N} \backslash\{\mathbf{0}\}$, then $\mu_{(\mathbf{b}, A, M)}(G)>0$ for all non-empty open sets $G \subseteq \mathbb{R}^{N}$.

Proof. First observe that $\mu_{(\mathbf{b}, A, M)}=\delta_{\mathbf{b}} * \mu_{(\mathbf{0}, A, M)}$, and therefore we can assume that $\mathbf{b}=\mathbf{0}$. Next note that $\mu_{(\mathbf{0}, A, M)}=\gamma_{A} * \mu_{(\mathbf{0}, 0, M)}$ where γ_{A} is the distribution of $x \rightsquigarrow A^{\frac{1}{2}} x$ under γ, and so, if A is non-degenerate and therefore γ_{A} has a strictly positive density, $\mu_{(\mathbf{0}, A, M)}$ does also.

Now assume that $\mathbf{b}=0, A=0$, and $M(G)>0$ for all open $\emptyset \neq G \subseteq \mathbb{R}^{N} \backslash\{0\}$. Given an open $G \neq \emptyset$, choose an $\eta \in C^{\infty}\left(\mathbb{R}^{N} ;[0,1]\right)$ which is strictly positive on G and vanishes off of G. Then

$$
\begin{aligned}
\mathcal{L}_{(0,0, M)} \eta(\mathbf{x}) & =\int\left(\eta(\mathbf{x}+\mathbf{y})-\eta(\mathbf{x})-\mathbf{1}_{B(\mathbf{0}, 1)}(\mathbf{y})(\nabla \eta(\mathbf{x}), \mathbf{y})_{\mathbb{R}^{N}}\right) M(d \mathbf{y}) \\
& =\int \eta(\mathbf{x}+\mathbf{y}) M(d \mathbf{y})>0
\end{aligned}
$$

if $\mathbf{x} \notin G$. Hence, if $f(t)=\left\langle\eta, \mu_{(\mathbf{0}, 0, t M)}\right\rangle$, then $f \geq 0$ and, by $(19.3), \mu_{(\mathbf{0}, 0, t M)}(G)=$ $0 \Longrightarrow f^{\prime}(t)>0$. But $\mu_{(\mathbf{0}, 0, t M)}(G)=0$ also implies that $f(t)=0$, which, by the first derivative test, is possible only if $f^{\prime}(t)=0$. Hence $f(t)>0$ for all $t>0$, and so $\mu_{(\mathbf{0}, 0, M)}(G)>0$.

Theorem 19.2. If $N=1$, then $\mu_{(b, A, M)}((-\infty, 0))=0$ if and only if

$$
\begin{equation*}
A=0, M((-\infty, 0))=0, \text { and } \int_{|y|<1} y M(d y) \leq b \tag{19.4}
\end{equation*}
$$

Proof. Observe that,

$$
\left\{\mathbf{x} \in \mathbb{R}^{n}: x_{j}<0 \text { for } 1 \leq j \leq n \mid\right\} \subseteq\left\{\mathbf{x} \in \mathbb{R}^{n}: \sum_{j=1}^{n} x<0\right\}
$$

and therefore $\mu_{\frac{1}{n}}((-\infty, 0))^{n} \leq \mu^{* n}((-\infty, 0))$ for any $\mu \in \mathbf{M}_{1}(\mathbb{R})$.
Now assume that $\mu_{(\mathbf{b}, A, M)}((-\infty, 0))=0$. Since $\mu_{(\mathbf{b}, A, M)}=\gamma_{A} * \mu_{(b, 0, M)}$ and $\gamma_{A}(G)>0$ for all open $G \neq \emptyset$ unless $A=0$, it follows that $A=0$. Next observe that $f_{(b, 0, M)}$ has a bounded analytic extension to $\{\zeta \in \mathbb{C}: \mathfrak{R e} \zeta<0\}$, and therefore $M((-\infty, 0))$ must be 0 . Finally, to prove the inequality in (19.4), set $\mu_{\frac{1}{n}}=$ $\mu_{\left(\frac{b}{n}, 0, \frac{M}{n}\right)}$. Since $\mu_{1}=\mu_{\frac{1}{n}}^{* n}$, the observation above shows that $\mu_{\frac{1}{n}}((-\infty, 0))=0$, and therefore, if $\varphi \geq 0$ on $[0, \infty)$ and $\varphi(0)=0$, then, by (19.3),

$$
\mathcal{L}_{(b, 0, M)} \varphi(0)=\lim _{n \rightarrow \infty} n\left(\left\langle\varphi, \mu_{\frac{1}{n}}\right\rangle-\varphi(0)\right) \geq 0
$$

and so

$$
b \varphi^{\prime}(0)+\int\left(\varphi(y)-\mathbf{1}_{(-1,1)}(y) y \varphi^{\prime}(0)\right) M(d y) \geq 0
$$

Now choose $\eta \in C^{\infty}(\mathbb{R} ;[0,1])$ so that $\eta=1$ on $\left[-\frac{1}{2}, \frac{1}{2}\right]$ and $\eta=0$ off $(-1,1)$, and, for $r \in(0,1)$, set $\varphi_{r}(x)=y \eta_{r}(y)$ where $\eta_{r}(y)=\eta\left(\frac{y}{r}\right)$. By the preceding applied to φ_{r},

$$
b-\int\left(\mathbf{1}_{(-1,1)}(y)-\eta_{r}(y)\right) y M(d y) \geq 0
$$

and so

$$
\int_{(r, 1)} y M(d y) \leq b \text { for all } r \in(0,1)
$$

Finally, assume that (19.4) holds, and set $M_{r}(d y)=\mathbf{1}_{[r, \infty)}(y) M(d y)$ and $b_{r}=$ $b-\int y M_{r}(d y)$ for $r>0$. Then (19.4) holds for $\left(b, 0, M_{r}\right)$ and (cf. (19.2)) $\mu_{\left(b, 0, M_{r}\right)}=$ $\delta_{b_{r}} * \pi_{M_{r}}$, from which it is clear that $\mu_{\left(b, 0, M_{r}\right)}((-\infty, 0))=0$. Therefore, since $\mu_{\left(b, 0, M_{r}\right)} \xrightarrow{\mathrm{w}} \mu_{(b, 0, M)}, \mu_{(b, 0, M)}((-\infty, 0))=0$.

Exercise 19.3. If M is symmetric, show that the integral in (19.1) can be replaced by

$$
\int\left(\cos (\xi, \mathbf{y})_{\mathbb{R}^{N}}-1\right) M(d \mathbf{y})
$$

If M is invariant under orthogonal transformations, show that the integral in (19.1) is equal to

$$
\int_{\mathbb{S}^{N-1}}\left(\cos (\mathbf{e}, \omega)_{\mathbb{R}^{N}}-1\right) \lambda_{\mathbb{S}^{N-1}}(d \omega)|\xi|^{\alpha}
$$

where $\mathbf{e} \in \mathbb{S}^{N-1}$ and $\alpha \in(0,2)$. In particular, by combining this with part (iii) of Exercise 4.3, conclude that $e^{-|\xi|^{\alpha}}$ is a characteristic function if and only if $\alpha \in[0,2]$.

MIT OpenCourseWare
https://ocw.mit.edu

RES.18-015 Topics in Fourier Analysis

Spring 2024

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

