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Lecture 21: The Hilbert Transform

A key fact about G
(N)
i,j is that it is a homogeneous function of order N whose

integral over SN−1 is 0. That is, it is a function of the form

k(x) =
Ω(x)

|x|N

where Ω(rx) = Ω(x) for all r > 0 and
∫
SN−1 Ω(ω)λSN−1(dω) = 0. Such functions

are called Calderòn–Zygmund kernels because Calderòn and Zygmund were able to
prove a large number of deep results about convolution with respect to them. In
particular (cf. (23.2) below), they showed that, in great generality, for each p ∈
(1,∞) there is a constant Cp, depending on N and Ω, such that ∥φ ∗ k∥Lp(λRN ;C) ≤
Cp∥φ∥Lp(λRN ;C).

WhenN = 1 there is, up to a multiple constant, only one C-K kernel, namely, the
function h(x) = 1

πx . Convolution with respect to h was studied originally by Hilbert
and has been known as the Hilbert transform ever since. A seminal observation of
Hilbert is that, even though h /∈ L1(λR;C), this transform is a bounded mapping of
L2(λR;C) into itself. Indeed, thinking of h as a tempered distribution, we showed

in (6.2) that ĥ(ξ) = ısgn(ξ). Thus, we know that ∥φ ∗ h∥L2(λR;C) ≤ ∥φ∥L2(λR;C).
In order to prove the estimate for p ̸= 2, I will use an beautiful approach that

I think was introduced by M. Riesz and is closely related to the ideas we used

to compute ĥ. Recall the functions py(x) = 1
π

y
x2+y2 and qy = 1

π
x

x2+y2 which

are, respectively, the real and imaginary parts of ı
z when z = x + ıy. Next, set

hy(x) = 1[y,∞)(x)h(x), and observe that ∥hy − qy∥L1(λR;C) = ∥h1 − q1∥L1(λR;C) ≤
2
π , and therefore ∥φ ∗ hy − φ ∗ qy∥Lp(λR;C) ≤ 2

π∥φ∥Lp(λR;C). Thus, showing that
supy>0 ∥φ ∗ qy∥Lp(λR;C) ≤ Cp∥φ∥Lp(λR;C) for some Cp <∞ will show that

sup
y>0

∥φ ∗ hy∥Lp(λR;C) ≤ Cp∥φ∥Lp(λR;C) for some other Cp <∞.

The advantage that qy has over hy is its connection to analytic functions. Namely,
since ı

z = py(x) + ıqy(x)

f(z) = φ ∗ py(x) + ıφ ∗ qy(x) =
ı

π

∫
φ(ξ)

x+ ıy − ξ
dξ.

Further, because ∥py∥Lp(λR;C) = 1, ∥φ ∗ py∥Lp(λR;C) ≤ ∥φ∥Lp(λR;C), and Riesz’s idea
is to use these observations to control ∥φ ∗ qy∥Lp(λR;C) in terms of ∥φ ∗ py∥Lp(λR;C).
To do so he needed the fact that, for each n ≥ 1 there exist finite constants An and
Bn such that

(Imζ)2n ≤ AnReζn +Bn(Reζ)2n for ζ ∈ C. (∗)
Proving (∗) comes down to showing that cos2n θ ≤ An cos 2nθ + Bn sin

2n θ for
θ ∈ [−π, π]. Clearly, if θ ∈

[
− π

8n ,
π
8n

]
∪
[
7π
8 ,

9π
8

]
, An can be chosen so the An cos 2nθ

dominates cos2n θ; and for θ not in those intervals, Bn can be chosen so that
Bn sin

2n θ dominates cos2n θ −An cos 2nθ.
With the preceding at hand, we know that∫ (

φ ∗ qy(x)
)2n

dx ≤ AnRe

Å∫
f(x+ ıy)2n dx

ã
dx+Bn

∫ (
φ ∗ py(x)

)2n
dx.

What Riesz saw is that he could use Cauchy’s theorem to prove that the integral
of x ⇝ f(x + ıy)2n is independent of y > 0. Indeed, consider the rectangle {z =
x+ ıy : |x| ≤ R & y1 ≤ y ≤ y2}. Cauchy’s theorem says that the contour integral



74

of f2n around the boundary is 0. In addition, as R → ∞, since φ ∈ S (R2;C),
the contribution to the integral from the vertical parts of the boundary tends to
0, and so the integrals over the horizontal parts are equal. Finally, as y ↗ ∞,∫
f(x+ ıy)2n dx −→ 0, and so we now know that

∥φ ∗ qy∥L2n(λR;C) ≤ B
1
2n
n ∥φ∥L2n(λR;C).

Hence, we have proved that, for each n ≥ 1 there is a C2n <∞ such that

(21.1) sup
y>0

∥φ ∗ hy∥L2n(λR;C) ≤ C2n∥φ∥Lp(λR;C).
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