Lecture 21: The Hilbert Transform

A key fact about $G_{i, j}^{(N)}$ is that it is a homogeneous function of order N whose integral over \mathbb{S}^{N-1} is 0 . That is, it is a function of the form

$$
k(x)=\frac{\Omega(x)}{|x|^{N}}
$$

where $\Omega(r x)=\Omega(x)$ for all $r>0$ and $\int_{\mathbb{S}^{N-1}} \Omega(\omega) \lambda_{\mathbb{S}^{N-1}}(d \omega)=0$. Such functions are called Calderòn-Zygmund kernels because Calderòn and Zygmund were able to prove a large number of deep results about convolution with respect to them. In particular (cf. (23.2) below), they showed that, in great generality, for each $p \in$ $(1, \infty)$ there is a constant C_{p}, depending on N and Ω, such that $\|\varphi * k\|_{L^{p}\left(\lambda_{\mathbb{R}^{N}} ; \mathbb{C}\right)} \leq$ $C_{p}\|\varphi\|_{L^{p}\left(\lambda_{\mathbb{R}^{N}} ; \mathbb{C}\right)}$.

When $N=1$ there is, up to a multiple constant, only one C-K kernel, namely, the function $h(x)=\frac{1}{\pi x}$. Convolution with respect to h was studied originally by Hilbert and has been known as the Hilbert transform ever since. A seminal observation of Hilbert is that, even though $h \notin L^{1}\left(\lambda_{\mathbb{R}} ; \mathbb{C}\right)$, this transform is a bounded mapping of $L^{2}\left(\lambda_{\mathbb{R}} ; \mathbb{C}\right)$ into itself. Indeed, thinking of h as a tempered distribution, we showed in (6.2) that $\hat{h}(\xi)=\imath \operatorname{sgn}(\xi)$. Thus, we know that $\|\varphi * h\|_{L^{2}\left(\lambda_{\mathbb{R}} ; \mathbb{C}\right)} \leq\|\varphi\|_{L^{2}\left(\lambda_{\mathbb{R}} ; \mathbb{C}\right)}$.

In order to prove the estimate for $p \neq 2$, I will use an beautiful approach that I think was introduced by M. Riesz and is closely related to the ideas we used to compute \hat{h}. Recall the functions $p_{y}(x)=\frac{1}{\pi} \frac{y}{x^{2}+y^{2}}$ and $q_{y}=\frac{1}{\pi} \frac{x}{x^{2}+y^{2}}$ which are, respectively, the real and imaginary parts of $\frac{\imath}{z}$ when $z=x+\imath y$. Next, set $h_{y}(x)=\mathbf{1}_{[y, \infty)}(x) h(x)$, and observe that $\left\|h_{y}-q_{y}\right\|_{L^{1}\left(\lambda_{\mathbb{R}} ; \mathbb{C}\right)}=\left\|h_{1}-q_{1}\right\|_{L^{1}\left(\lambda_{\mathbb{R}} ; \mathbb{C}\right)} \leq$ $\frac{2}{\pi}$, and therefore $\left\|\varphi * h_{y}-\varphi * q_{y}\right\|_{L^{p}\left(\lambda_{\mathbb{R}} ; \mathbb{C}\right)} \leq \frac{2}{\pi}\|\varphi\|_{L^{p}\left(\lambda_{\mathbb{R}} ; \mathbb{C}\right)}$. Thus, showing that $\sup _{y>0}\left\|\varphi * q_{y}\right\|_{L^{p}\left(\lambda_{\mathbb{R}} ; \mathbb{C}\right)} \leq C_{p}\|\varphi\|_{L^{p}\left(\lambda_{\mathbb{R}} ; \mathbb{C}\right)}$ for some $C_{p}<\infty$ will show that

$$
\sup _{y>0}\left\|\varphi * h_{y}\right\|_{L^{p}\left(\lambda_{\mathbb{R}} ; \mathbb{C}\right)} \leq C_{p}\|\varphi\|_{L^{p}\left(\lambda_{\mathbb{R}} ; \mathbb{C}\right)} \text { for some other } C_{p}<\infty
$$

The advantage that q_{y} has over h_{y} is its connection to analytic functions. Namely, since $\frac{\imath}{z}=p_{y}(x)+\imath q_{y}(x)$

$$
f(z)=\varphi * p_{y}(x)+\imath \varphi * q_{y}(x)=\frac{\imath}{\pi} \int \frac{\varphi(\xi)}{x+\imath y-\xi} d \xi
$$

Further, because $\left\|p_{y}\right\|_{L^{p}\left(\lambda_{R} ; \mathbb{C}\right)}=1,\left\|\varphi * p_{y}\right\|_{L^{p}\left(\lambda_{\mathbb{R}} ; \mathbb{C}\right)} \leq\|\varphi\|_{L^{p}\left(\lambda_{R} ; \mathbb{C}\right)}$, and Riesz's idea is to use these observations to control $\left\|\varphi * q_{y}\right\|_{L^{p}\left(\lambda_{\mathbb{R}} ; \mathbb{C}\right)}$ in terms of $\left\|\varphi * p_{y}\right\|_{L^{p}\left(\lambda_{R} ; \mathbb{C}\right)}$. To do so he needed the fact that, for each $n \geq 1$ there exist finite constants A_{n} and B_{n} such that

$$
\begin{equation*}
(\mathfrak{I m} \zeta)^{2 n} \leq A_{n} \mathfrak{R e} \zeta^{n}+B_{n}(\mathfrak{\Re e} \zeta)^{2 n} \text { for } \zeta \in \mathbb{C} \tag{*}
\end{equation*}
$$

Proving (*) comes down to showing that $\cos ^{2 n} \theta \leq A_{n} \cos 2 n \theta+B_{n} \sin ^{2 n} \theta$ for $\theta \in[-\pi, \pi]$. Clearly, if $\theta \in\left[-\frac{\pi}{8 n}, \frac{\pi}{8 n}\right] \cup\left[\frac{7 \pi}{8}, \frac{9 \pi}{8}\right], A_{n}$ can be chosen so the $A_{n} \cos 2 n \theta$ dominates $\cos ^{2 n} \theta$; and for θ not in those intervals, B_{n} can be chosen so that $B_{n} \sin ^{2 n} \theta$ dominates $\cos ^{2 n} \theta-A_{n} \cos 2 n \theta$.

With the preceding at hand, we know that

$$
\int\left(\varphi * q_{y}(x)\right)^{2 n} d x \leq A_{n} \mathfrak{R e}\left(\int f(x+\imath y)^{2 n} d x\right) d x+B_{n} \int\left(\varphi * p_{y}(x)\right)^{2 n} d x
$$

What Riesz saw is that he could use Cauchy's theorem to prove that the integral of $x \rightsquigarrow f(x+\imath y)^{2 n}$ is independent of $y>0$. Indeed, consider the rectangle $\{z=$ $\left.x+\imath y:|x| \leq R \& y_{1} \leq y \leq y_{2}\right\}$. Cauchy's theorem says that the contour integral
of $f^{2 n}$ around the boundary is 0 . In addition, as $R \rightarrow \infty$, since $\varphi \in \mathscr{S}\left(\mathbb{R}^{2} ; \mathbb{C}\right)$, the contribution to the integral from the vertical parts of the boundary tends to 0 , and so the integrals over the horizontal parts are equal. Finally, as $y \nearrow \infty$, $\int f(x+\imath y)^{2 n} d x \longrightarrow 0$, and so we now know that

$$
\left\|\varphi * q_{y}\right\|_{L^{2 n}\left(\lambda_{\mathbb{R}} ; \mathbb{C}\right)} \leq B_{n}^{\frac{1}{2 n}}\|\varphi\|_{L^{2 n}\left(\lambda_{\mathbb{R}} ; \mathbb{C}\right)} .
$$

Hence, we have proved that, for each $n \geq 1$ there is a $C_{2 n}<\infty$ such that

$$
\begin{equation*}
\sup _{y>0}\left\|\varphi * h_{y}\right\|_{L^{2 n}\left(\lambda_{\mathbb{R}} ; \mathbb{C}\right)} \leq C_{2 n}\|\varphi\|_{L^{p}\left(\lambda_{\mathbb{R}} ; \mathbb{C}\right)} . \tag{21.1}
\end{equation*}
$$

MIT OpenCourseWare
https://ocw.mit.edu

RES.18-015 Topics in Fourier Analysis

Spring 2024

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

