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LECTURE 21: THE HILBERT TRANSFORM

A key fact about Ggg) is that it is a homogeneous function of order N whose
integral over SV~1 is 0. That is, it is a function of the form

where Q(rz) = Q(z) for all 7 > 0 and [y, Q(w) Agv-1(dw) = 0. Such functions
are called Calderon—Zygmund kernels because Calderon and Zygmund were able to
prove a large number of deep results about convolution with respect to them. In
particular (cf. (23.2) below), they showed that, in great generality, for each p €
(1, 00) there is a constant C), depending on N and (2, such that ||¢ * kHLp(,\]RN;c) <

Cp||90||Lp(,\RN iC)-

When N = 1 there is, up to a multiple constant, only one C-K kernel, namely, the
function h(z) = % Convolution with respect to h was studied originally by Hilbert
and has been known as the Hilbert transform ever since. A seminal observation of
Hilbert is that, even though h ¢ L*(\g; C), this transform is a bounded mapping of
L?(\g;C) into itself. Indeed, thinking of h as a tempered distribution, we showed
n (6.2) that h(£) = wsgn(&). Thus, we know that || * hllz2(x0) < ll@ll22(aei0)-

In order to prove the estimate for p # 2, I will use an beautiful approach that
I think was introduced by M. Riesz and is closely related to the ideas we used
to compute h. Recall the functions p,(z) = %ﬁ and g, = %%erz which
are, respectively, the real and imaginary parts of 7 when z = x +1y. Next, set
hy(x) = 1py cc)(x)h(z), and observe that ||hy — g,/ (xe;0) = 1P — @1l 1 (i) <
2 and therefore || * hy — ¢ * qyl|Lr(ap:c) < 2@l Lr(assc)- Thus, showing that
sup, s 19 * @yl Lr (resc) < Cpll@llLr (agsc) for some Cp < oo will show that

sgg ll * hyll e (apse) < Cpll@llLe(rg;c) for some other Cp < oo.
y

The advantage that g, has over h, is its connection to analytic functions. Namely,
since = p,(z) + 1qy(7)

J() = ¢ xpy (@) +1p % gy (@) = ;/waf)—gdg.

Further, because ||py|lzr(apic) = 1, @ *yllLe apic) < 10l Lr (A gsc)» and Riesz’s idea
is to use these observations to control [[¢ * gy || Lr(as;c) in terms of [|o * py || Lo (aps0)-
To do so he needed the fact that, for each n > 1 there exist finite constants A,, and
B,, such that

(Jm¢)?™ < A, ReC" + B,(Re¢)®™ for ¢ € C. (%)
Proving (x) comes down to showing that cos®” @ < A, cos2nf + B, sin?" @ for
0 € [—m,7]. Clearly, if 6 € [f&, &] U [%, %], A,, can be chosen so the A,, cos 2nf
dominates cos?"#; and for 6 not in those intervals, B, can be chosen so that
B,, sin®" @ dominates cos®™ § — A,, cos 2nd.

With the preceding at hand, we know that

/(90 * Qy(f))zn dr < ApRe (/ [l +w)®" dx) dz + B, /(gp * py(:r))zn dz.

What Riesz saw is that he could use Cauchy’s theorem to prove that the integral
of z ~ f(x + 1y)?" is independent of y > 0. Indeed, consider the rectangle {z =
x4 |z] < R& y1 <y <ys}. Cauchy’s theorem says that the contour integral
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of f?" around the boundary is 0. In addition, as R — oo, since ¢ € . (R?;C),
the contribution to the integral from the vertical parts of the boundary tends to
0, and so the integrals over the horizontal parts are equal. Finally, as y * oo,
[ f(@ +w)*" dz — 0, and so we now know that

1
¢ * qyllL2n (i) < BA™ [0l L2 (ags0)-

Hence, we have proved that, for each n > 1 there is a Cs,, < oo such that

(21.1) Sup ¢ * hyll L2n (azs) < Conll@llLr (asso)-
Yy
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