Lecture 22: Interpolation

Although (21.1) is already significant, one should suspect that a similar estimate holds for all $p \in (0,\infty)$, not just even integers. However, because Riesz needed f^p to be an analytic function, he needed p to be an integer; and because he needed $(\mathfrak{Re} f)^p$ to be non-negative, he needed it to be an even integer. It was to overcome this problem that he proved a powerful general result, known as an *interpolation* theorem, that can be viewed as an operator theoretic analog of Hölder's equality. The following version and proof of his result is due to G. Thorin.

Theorem 22.1. Given a σ -finite measure space (E, \mathcal{F}, μ) and numbers $1 \leq p_0, p_1, q_0$, $q_1 \leq \infty$ with $p_0 \wedge p_1 < \infty$, assume that T is a linear operator on $L^{p_1}(\mu; \mathbb{C}) \cap L^{p_2}(\mu; \mathbb{C})$ into $L^{q_1}(\mu; \mathbb{C}) \cap L^{q_2}(\mu; \mathbb{C})$ satisfying

$$|Tf||_{L^{q_j}(\mu;\mathbb{C})} \le M_j ||f||_{L^{p_j}(\mu;\mathbb{C})} \text{ for } j \in \{0,1\},$$

 $\|Tf\|_{L^{q_j}(\mu;\mathbb{C})} \leq M_j \|f\|_{L^{p_j}(\mu;\mathbb{C})}$ where $M_0 \vee M_1 < \infty$. Then, for each $\theta \in [0, 1]$

$$||Tf||_{L^{q_{\theta}}(\mu;\mathbb{C})} \le M_1^{1-\theta} M_2^{\theta} ||f||_{L^{p_{\theta}}(\mu;\mathbb{C})},$$

where $p_{\theta} = \frac{1-\theta}{p_0} + \frac{\theta}{p_1}$.

Thorin's proof of Theorem 22.1 requires to following simple version, due to Hadamard and known as the three lines theorem, of the Phragmen-Lindelöf theorem.

Lemma 22.2. Suppose that F is a bounded continuous function on the closed strip $S = \{z \in \mathbb{C} : \Re \mathfrak{e} z \in [0,1]\}$ which is analytic on the interior of S. If $|F(iy)| \leq m_0$ and $|F(1+\imath y)| \leq m_1$ for all $y \in \mathbb{R}$, then $|F(z)| \leq m_0^{1-x} m_1^x$ for $z = x + \imath y \in S$.

Proof. By replacing F with $\frac{F(z)}{m_0^{1-z}m_1^z}$, one can reduce to the case when $m_0 = m_1 = 1$, in which case one needs to show that $|F(z)| \leq 1$ for $z \in S$. Thus we will assume that $m_0 = m_1 = 1$ and will prove that $|F| \leq 1$.

If $\lim_{|y|\to\infty} \sup_{x\in[0,1]} |F(x+iy)| = 0$, then the maximum principle for analytic functions says that

$$\sup_{\substack{z \in S \\ |\Im m z| \le R}} |F(z)| = \sup \left\{ |F(x + \imath y)| : \ (x, y) \in \left(\{0, 1\} \times [-R, R]\right) \cup (0, 1) \times \{-R, R\} \right\}$$

$$\longrightarrow \sup_{y \in \mathbb{R}} \{ |F(\imath y) \lor |F(1+\imath y)| \} \le 1.$$

Even if F(x + iy) doesn't tend to 0 as $|y| \to \infty$, for each $n \ge 1$, the function $F_n(z) = e^{\frac{z^2-1}{n}}F(z)$ does. In addition, $|F_n(iy)| \vee |F_n(1+iy)| \le 1$, and so $|F_n(z)| \le 1$. Now let $n \to \infty$.

Proof of Theorem 22.1. Without loss in generality, we will assume that $p_0 \leq p_1$. Also, q' will be used to denote the Hölder conjugate of $q \in [1, \infty]$.

The first step is to check that it suffices to prove that

$$\left| \int g(\xi) T f(\xi) \, \mu(d\xi) \right| \le M_0^{1-\theta} M_1^{\theta} \tag{*}$$

for simple functions f and g satisfying $\|f\|_{L^{p_{\theta}}(\mu;\mathbb{C})} = 1$ and $\|g\|_{L^{q'_{\theta}}(\mu;\mathbb{C})} = 1$. Indeed, $||Tf||_{L^{q_{\theta}}(\mu;\mathbb{C})}$ equals the supremum of $|\int gTf d\mu|$ over simple functions g with $\|g\|_{L^{q'_{\theta}}(\mu;\mathbb{C})} = 1$, and, if $p_1 < \infty$, then, for any $f \in L^{p_0}(\mu;\mathbb{C}) \cap L^{p_1}(\mu;\mathbb{C})$, we can choose simple function f_n such that $f_n \longrightarrow f$ in both $L^{p_0}(\mu; \mathbb{C})$ and in $L^{p_1}(\mu; \mathbb{C})$. Hence, if (*) holds for simple functions, then, by Hölder's inequality,

$$\begin{split} \|Tf\|_{L^{q_{\theta}}(\mu;\mathbb{C})} &\leq \|T(f_{n}-f)\|_{L^{q_{\theta}}(\mu;\mathbb{C})} + \|Tf_{n}\|_{L^{q_{\theta}}(\mu;\mathbb{C})} \\ &\leq \|T(f_{n}-f)\|_{L^{q_{0}}(\mu;\mathbb{C})}^{1-\theta}\|T(f_{n}-f)\|_{L^{q_{1}}(\mu;\mathbb{C})}^{\theta} + M_{0}^{1-\theta}M_{2}^{\theta}\|f_{n}\|_{L^{p_{\theta}}(\mu;\mathbb{C})} \\ &\leq M_{0}^{1-\theta}M_{1}^{\theta}\left(2\|f_{n}-f\|_{L^{p_{0}}(\mu;\mathbb{C})}^{1-\theta}\|f_{n}-f\|_{L^{p_{1}}(\mu;\mathbb{C})}^{\theta} + \|f\|_{L^{p_{\theta}}(\mu;\mathbb{C})}\right), \end{split}$$

from which the required estimate follows when $n \to \infty$. When $p_1 = \infty$, one can choose the f_n 's so that they converge to f in $L^{p_1}(\mu; \mathbb{C})$ and are uniformly bounded and thereby use the preceding to get the desired result.

Turning to the proof of (*), let $\theta \in (0, 1)$ and determine p and q by $\frac{1}{p} = \frac{1-\theta}{p_0} + \frac{\theta}{p_1}$ and $\frac{1}{q} = \frac{1-\theta}{q_0} + \frac{\theta}{q_1}$. Next, define p(z) and q(z) for (cf. Lemma 22.2) $z \in S$ so that $\frac{1}{p(z)} = \frac{1-z}{p_0} + \frac{z}{p_1}$ and $\frac{1}{q'(z)} = \frac{1-z}{q'_0} + \frac{z}{q'_1}$. Given simple functions

$$f = \sum_{m=1}^{n} a_m \mathbf{1}_{\Gamma_m} \text{ and } g = \sum_{m=1}^{n} b_m \mathbf{1}_{\Delta_m} \text{ with } \|f\|_{L^p(\mu;\mathbb{C})} = 1 \text{ and } \|g\|_{L^{q'}(\mu;\mathbb{C})} = 1,$$

define $f_z = |f|^{\frac{p}{|p(z)|}} \frac{f}{|f|}$ and $g_z = |g|^{\frac{q'}{q'(z)}} \frac{g}{|g|}$, where $\frac{h(\xi)}{|h(\xi)|}$ is taken to be equal 0 if $h(\xi) = 0$. Then

$$f_z = \sum_{m=1}^n |a_m|^{\frac{p}{p(z)}} \frac{a_m}{|a_m|} \mathbf{1}_{\Gamma_m} \text{ and } g_z = \sum_{m=1}^n |b_m|^{\frac{q'}{q'(z)}} \frac{b_m}{|b_m|} \mathbf{1}_{\Delta_m}$$

Now define

$$F(z) = \int g_z(\xi) T f_z(\xi) \, \mu(d\xi) = \sum_{k,\ell=1}^n |a_k|^{\frac{p}{p(z)}} \frac{a_k}{|a_k|} |b_\ell|^{\frac{q'}{q'(z)}} \frac{b_\ell}{|b_\ell|} \int_{\Delta_\ell} T \mathbf{1}_{\Gamma_k}(\xi) \, \mu(d\xi).$$

Then F is a bounded continuous function on S that is analytic function on the interior of S, and so, by Lemma 22.2,

$$|F(\theta)| \le m_0^{1-\theta} m_1^{\theta}$$
 where $m_0 = \sup_{y \in \mathbb{R}} |F(iy)|$ and $m_1 = \sup_{y \in \mathbb{R}} |F(1+iy)|$.

Thus, what remains is to check that $m_0 \leq M_0$ and $m_1 \leq M_1$. But, by Hölder's inequality,

$$|F(iy)| \le ||g_{iy}||_{L^{q'_0}(\mu;\mathbb{C})} ||Tf_{iy}||_{L^{q_0}(\mu;\mathbb{C})} \le M_0 ||g_{iy}||_{L^{q'_0}(\mu;\mathbb{C})} ||f_{iy}||_{L^{p_0}(\mu;\mathbb{C})},$$

and

$$\|f_{iy}\|_{L^{p_0}(\mu;\mathbb{C})}^{p_0} = \sum_{m=1}^n \left||a_m|^{\frac{p}{p(iy)}}\right|^{p_0} \mu(\Gamma_m) = \sum_{m=1}^n |a_m|^p \mu(\Gamma_m) = 1$$

Similarly

$$||f_{1+iy}||_{L^{p_1}(\mu;\mathbb{C})}^{p_1} = 1, ||g_{iy}||_{L^{q'_0}(\mu;\mathbb{C})}^{q'_0} = 1, \text{ and } ||g_{1+iy}||_{L^{q'_1}(\mu;\mathbb{C})}^{q'_1} = 1.$$

By combining (21.1) and Theorem 22.1, we know that there is a $C_p < \infty$ such $\sup_{y>0} \|\varphi * h_y\|_{L^p(\lambda_{\mathbb{R}};\mathbb{C})} \leq C_p \|\varphi\|_{L^p(\lambda_{\mathbb{R}};\mathbb{C})}$ for each $p \in [2,\infty)$. To extend this result to $p \in (1,2)$, observe that if $p \in (1,2)$, then $p' \in (2,\infty)$. Hence, since

$$(\psi, \varphi * h_y)_{L^2(\lambda_{\mathbb{R}};\mathbb{C})} = -(\psi * h_y, \varphi)_{L^2(\lambda_{\mathbb{R}};\mathbb{C})},$$

we have that

$$|(\psi, \varphi * h_y)_{L^2(\lambda_{\mathbb{R}};\mathbb{C})}| \le C_{p'} \|\psi\|_{L^{p'}(\lambda_{\mathbb{R}};\mathbb{C})} \|\varphi\|_{L^p(\lambda_{\mathbb{R}};\mathbb{C})}$$

and therefore that, for all $p \in (1, \infty)$,

(22.1)
$$\sup_{y>0} \|\varphi * h_y\|_{L^p(\lambda_{\mathbb{R}};\mathbb{C})} \le C_p \|\varphi\|_{L^p(\lambda_{\mathbb{R}};\mathbb{C})},$$

where $C_p = C_{p'}$ when $p \in (1, 2)$.

Exercise 22.3. Note that $\|\hat{\varphi}\|_{L^2(\lambda_{\mathbb{R}^N};\mathbb{C})} = (2\pi)^{\frac{N}{2}} \|\varphi\|_{L^2(\lambda_{\mathbb{R}};\mathbb{C})}$ and $\|\hat{\varphi}\|_{L^{\infty}(\lambda_{\mathbb{R}^N};\mathbb{C})} \leq \|\varphi\|_{L^p(\lambda_{\mathbb{R}^N};\mathbb{C})}$, and use Theorem 22.1 to prove that $\|\hat{\varphi}\|_{L^{p'}(\lambda_{\mathbb{R}^N};\mathbb{C})} \leq (2\pi)^{\frac{N}{p'}} \|\varphi\|_{L^p(\lambda_{\mathbb{R}^N};\mathbb{C})}$ for $p \in [1, 2]$. Next, let $\psi \in L^p(\lambda_{\mathbb{R}^N};\mathbb{C})$ for some $p \in [1, \infty)$, and define $T\varphi = \varphi * \psi$. Remember that $\|T\varphi\|_{L^p(\lambda_{\mathbb{R}^N};\mathbb{C})} \leq \|\varphi\|_{L^p(\lambda_{\mathbb{R}^N};\mathbb{C})} \|\psi\|_{L^1(\lambda_{\mathbb{R}^N};\mathbb{C})}$ and $\|T\varphi\|_{L^{\infty}(\lambda_{\mathbb{R}^N};\mathbb{C})} \leq \|\varphi\|_{L^p(\lambda_{\mathbb{R}^N};\mathbb{C})}$, and use Theorem 22.1 to prove *Young's inequality*

$$\|\psi * \psi\|_{L^r(\lambda_{\mathbb{R}^N};\mathbb{C})} \le \|\varphi\|_{L^p(\lambda_{\mathbb{R}^N};\mathbb{C})} \|\psi\|_{L^q(\lambda_{\mathbb{R}^N};\mathbb{C})} \text{ if } \frac{1}{r} = \frac{1}{p} + \frac{1}{q} - 1 \ge 0.$$

RES.18-015 Topics in Fourier Analysis Spring 2024

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.