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Lecture 22: Interpolation

Although (21.1) is already significant, one should suspect that a similar estimate
holds for all p ∈ (0,∞), not just even integers. However, because Riesz needed fp

to be an analytic function, he needed p to be an integer; and because he needed
(Ref)p to be non-negative, he needed it to be an even integer. It was to overcome
this problem that he proved a powerful general result, known as an interpolation
theorem, that can be viewed as an operator theoretic analog of Hölder’s equality.
The following version and proof of his result is due to G. Thorin.

Theorem 22.1. Given a σ-finite measure space (E,F , µ) and numbers 1 ≤ p0, p1, q0,
q1 ≤ ∞ with p0∧p1 <∞, assume that T is a linear operator on Lp1(µ;C)∩Lp2(µ;C)
into Lq1(µ;C) ∩ Lq2(µ;C) satisfying

∥Tf∥Lqj (µ;C) ≤Mj∥f∥Lpj (µ;C) for j ∈ {0, 1},
where M0 ∨M1 <∞. Then, for each θ ∈ [0, 1]

∥Tf∥Lqθ (µ;C) ≤M1−θ
1 Mθ

2 ∥f∥Lpθ (µ;C),

where pθ =
1−θ
p0

+ θ
p1

.

Thorin’s proof of Theorem 22.1 requires to following simple version, due to
Hadamard and known as the three lines theorem, of the Phragmen–Lindelöf theo-
rem.

Lemma 22.2. Suppose that F is a bounded continuous function on the closed strip
S = {z ∈ C : Rez ∈ [0, 1]} which is analytic on the interior of S. If |F (ıy)| ≤ m0

and |F (1 + ıy)| ≤ m1 for all y ∈ R, then |F (z)| ≤ m1−x
0 mx

1 for z = x+ ıy ∈ S.

Proof. By replacing F with F (z)

m1−z
0 mz

1

, one can reduce to the case whenm0 = m1 = 1,

in which case one needs to show that |F (z)| ≤ 1 for z ∈ S. Thus we will assume
that m0 = m1 = 1 and will prove that |F | ≤ 1.

If lim|y|→∞ supx∈[0,1] |F (x + ıy)| = 0, then the maximum principle for analytic
functions says that

sup
z∈S

|Imz|≤R

|F (z)| = sup
{
|F (x+ ıy)| : (x, y) ∈

(
{0, 1} × [−R,R]

)
∪ (0, 1)× {−R,R}

}
−→ sup

y∈R
{|F (ıy) ∨ |F (1 + ıy)|} ≤ 1.

Even if F (x + ıy) doesn’t tend to 0 as |y| → ∞, for each n ≥ 1, the function

Fn(z) = e
z2−1

n F (z) does. In addition, |Fn(ıy)|∨|Fn(1+ıy)| ≤ 1, and so |Fn(z)| ≤ 1.
Now let n→ ∞. □

Proof of Theorem 22.1. Without loss in generality, we will assume that p0 ≤ p1.
Also, q′ will be used to denote the Hölder conjugate of q ∈ [1,∞].

The first step is to check that it suffices to prove that∣∣∣∣∫ g(ξ)Tf(ξ)µ(dξ)

∣∣∣∣ ≤M1−θ
0 Mθ

1 (∗)

for simple functions f and g satisfying ∥f∥Lpθ (µ;C) = 1 and ∥g∥
Lq′

θ (µ;C) = 1. In-

deed, ∥Tf∥Lqθ (µ;C) equals the supremum of
∣∣∫ gTf dµ∣∣ over simple functions g with

∥g∥
Lq′

θ (µ;C) = 1, and, if p1 < ∞, then, for any f ∈ Lp0(µ;C) ∩ Lp1(µ;C), we can



76

choose simple function fn such that fn −→ f in both Lp0(µ;C) and in Lp1(µ;C).
Hence, if (∗) holds for simple functions, then, by Hölder’s inequality,

∥Tf∥Lqθ (µ;C) ≤ ∥T (fn − f)∥Lqθ (µ;C) + ∥Tfn∥Lqθ (µ;C)

≤ ∥T (fn − f)∥1−θLq0 (µ;C)∥T (fn − f)∥θLq1 (µ;C) +M1−θ
0 Mθ

2 ∥fn∥Lpθ (µ;C)

≤M1−θ
0 Mθ

1

(
2∥fn − f∥1−θLp0 (µ;C)∥fn − f∥θLp1 (µ;C) + ∥f∥Lpθ (µ;C)

)
,

from which the required estimate follows when n → ∞. When p1 = ∞, one can
choose the fn’s so that they converge to f in Lp1(µ;C) and are uniformly bounded
and thereby use the preceding to get the desired result.

Turning to the proof of (∗), let θ ∈ (0, 1) and determine p and q by 1
p = 1−θ

p0
+ θ
p1

and 1
q = 1−θ

q0
+ θ

q1
. Next, define p(z) and q(z) for (cf. Lemma 22.2) z ∈ S so that

1
p(z) =

1−z
p0

+ z
p1

and 1
q′(z) =

1−z
q′0

+ z
q′1
. Given simple functions

f =
n∑

m=1

am1Γm
and g =

n∑
m=1

bm1∆m
with ∥f∥Lp(µ;C) = 1 and ∥g∥Lq′ (µ;C) = 1,

define fz = |f |
p

p(z) f
|f | and gz = |g|

q′
q′(z) g

|g| , where
h(ξ)
|h(ξ)| is taken to be equal 0 if

h(ξ) = 0. Then

fz =
n∑

m=1

|am|
p

p(z)
am
|am|

1Γm
and gz =

n∑
m=1

|bm|
q′

q′(z)
bm
|bm|

1∆m
.

Now define

F (z) =

∫
gz(ξ)Tfz(ξ)µ(dξ) =

n∑
k,ℓ=1

|ak|
p

p(z)
ak
|ak|

|bℓ|
q′

q′(z)
bℓ
|bℓ|

∫
∆ℓ

T1Γk
(ξ)µ(dξ).

Then F is a bounded continuous function on S that is analytic function on the
interior of S, and so, by Lemma 22.2,

|F (θ)| ≤ m1−θ
0 mθ

1 where m0 = sup
y∈R

|F (ıy)| and m1 = sup
y∈R

|F (1 + ıy)|.

Thus, what remains is to check that m0 ≤ M0 and m1 ≤ M1. But, by Hölder’s
inequality,

|F (ıy)| ≤ ∥gıy∥Lq′0 (µ;C)∥Tfıy∥Lq0 (µ;C) ≤M0∥gıy∥Lq′0 (µ;C)∥fıy∥Lp0 (µ;C),

and

∥fıy∥p0Lp0 (µ;C) =
n∑

m=1

∣∣|am|
p

p(ıy)
∣∣p0µ(Γm) =

n∑
m=1

|am|pµ(Γm) = 1

Similarly

∥f1+ıy∥p1Lp1 (µ;C) = 1, ∥gıy∥
q′0

Lq′0 (µ;C)
= 1, and ∥g1+ıy∥

q′1

Lq′1 (µ;C)
= 1.

□
By combining (21.1) and Theorem 22.1, we know that there is a Cp < ∞ such

supy>0 ∥φ ∗ hy∥Lp(λR;C) ≤ Cp∥φ∥Lp(λR;C) for each p ∈ [2,∞). To extend this result
to p ∈ (1, 2), observe that if p ∈ (1, 2), then p′ ∈ (2,∞). Hence, since

(ψ,φ ∗ hy)L2(λR;C) = −(ψ ∗ hy, φ)L2(λR;C),
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we have that

|(ψ,φ ∗ hy)L2(λR;C)| ≤ Cp′∥ψ∥Lp′ (λR;C)∥φ∥Lp(λR;C)

and therefore that, for all p ∈ (1,∞),

(22.1) sup
y>0

∥φ ∗ hy∥Lp(λR;C) ≤ Cp∥φ∥Lp(λR;C),

where Cp = Cp′ when p ∈ (1, 2).

Exercise 22.3. Note that ∥φ̂∥L2(λRN ;C) = (2π)
N
2 ∥φ∥L2(λR;C) and ∥φ̂∥L∞(λRN ;C) ≤

∥φ∥L1(λRN ;C), and use Theorem 22.1 to prove that ∥φ̂∥Lp′ (λRN ;C) ≤ (2π)
N
p′ ∥φ∥Lp(λRN ;C)

for p ∈ [1, 2]. Next, let ψ ∈ Lp(λRN ;C) for some p ∈ [1,∞), and define Tφ = φ ∗ψ.
Remember that ∥Tφ∥Lp(λRN ;C) ≤ ∥φ∥Lp(λRN ;C)∥ψ∥L1(λRN ;C) and ∥Tφ∥L∞(λRN ;C) ≤
∥φ∥Lp(λRN ;C)∥ψ∥Lp′ (λRN ;C), and use Theorem 22.1 to prove Young’s inequality

∥ψ ∗ ψ∥Lr(λRN ;C) ≤ ∥φ∥Lp(λRN ;C)∥ψ∥Lq(λRN ;C) if
1

r
=

1

p
+

1

q
− 1 ≥ 0.
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