
Solutions

Exercise 1.1: First note if φ ∈ L2(λ[0,1);C), then
∑

n∈Z(φ, en)
2
L2(λ[0,1);C) <∞ and

therefore (φ, en)L2(λ[0,1);C) −→ 0. Next observe that

|(φ, en)L2(λ[0,1);C) − (ψ, en)L2(λ[0,1);C)| ≤ ∥φ− ψ∥L1([0,1];C)

and therefore, if φ ∈ L1([0, 1];C) and ϵ > 0, there is an R <∞ and an m ≥ 0 such
that

sup
n∈Z

|(φ, en)L2(λ[0,1);C) − (φ ∧R, en)L2(λ[0,1);C)| ≤ ∥f − φ ∧R∥L1([0,1];C) < ϵ

and supn≥m |(φ ∧R, en)L2(λ[0,1);C)| < ϵ. Thus, |(φ, en)L2(λ[0,1);C)| ≤ 2ϵ for n ≥ m.

Exercise 1.2: Set φk = p 1
k
∗ φ, and check that φk ∈ C1([0, 1];C) and ∥φ′

k∥u ≤
∥φ∥Lip. Hence

|(φ, en)L2(λ[0,1);C)| = lim
k→∞

|(φk, en)L2(λ[0,1);C)| ≤
∥φ∥Lip
2π|n|

,

and so the required estimate follows by the same argument as was used when
φ ∈ C1([0, 1];C).
Exercise 2.1: Using the initial formula for Sn(x), show that

Sn

(
1
4

)
=

1

2
− 1

π

(
n∑

m=1

1

4m+ 1
+

n∑
m=1

1

4m+ 3

)
=

1

2
+

2

π

∞∑
m=1

1

(4m+ 1)(4m+ 3)
.

Hence, after n→ ∞, one has that

1

4
=

1

2
− 2

π

∞∑
m=1

1

(4m+ 1)(4m+ 3)
,

from which

π = 8

∞∑
m=1

1

(4m+ 1)(4m+ 3)

follows.

Exercise 2.2: Set η(x) =
(
φ(1) − φ(0)

)
x and ψ = φ − η. Then ψ ∈ C1

(
[0, 1];C

)
and ψ(1) = ψ(0), and so

∥Snψ − ψ∥u ≤
∥ψ′∥L1(λR;C)

πn
1
2

≤
2∥φ′∥L1(λ[0,1);C)

πn
1
2

,

and

|Snη(x)− η(x)| ≤ 6

πn
|φ(1)− φ(0)|

(
1
x ∨ 1

1−x

)
| ≤

6∥φ′∥L1(λ[0,1);C)

πn
|
(
1
x ∨ 1

1−x

)
|.

Exercise 3.1: By Lemma 1.4,∣∣(φ, em)L2(λ[0,1);C)
∣∣ = |(φ(ℓ), em)L2(λ[0,1);C)|

(2πm)ℓ
≤
( n
m

)ℓ ∥φ(ℓ)∥L2(λ[0,1);C)

(2πn)ℓ
.

Thus, if limℓ→∞
∥φ(ℓ)∥L2(λ[0,1);C)

(2πn)ℓ
= 0, then (φ, em)L2(λ[0,1);C) = 0 for |m| ≥ n. Con-

versely, if (φ, em)L2(λ[0,1);C) = 0 for |m| ≥ n, then

∥φ(ℓ)∥2L2(λ[0,1);C) =
∑

|m|<n

(2πm)−2ℓ|(φ, em)L2(λ[0,1);C)|
2 ≤ (2π)−2ℓ∥φ∥2L2(λ[0,1);C)

∑
|m|<n

m−2ℓ,

1
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and so limℓ→∞
∥φ(ℓ)∥L2(λ[0,1);C)

(2πn)ℓ
= 0.

It is obvious that

(φ, em)L2(λ[0,1);C) = 0 for m ≥ n ⇐⇒ φ =
∑

|m|<n

(φ, em)L2(λ[0,1);C)em.

Finally, if 1 ≤ |m| < n, then

n∑
j=1

em
(
j
n

)
= e

ı2π
n

1− eı2πm

1− e
ı2πm

n

= 0,

and so, if (φ, em)L2(λ[0,1);C) = 0 for |m| ≥ n, then

1

n

∑
j=1

φ
(
j
n

)
=

1

n

n∑
j=1

∑
|m|<n

(φ, em)L2(λ[0,1);C)em
(
j
n

)

=

∫ 1

0

φ(x) dx+
1

n

∑
1≤|m|<n

(φ, em)L2(λ[0,1);C)

Ñ
n∑

j=1

em
(
j
n

)é
=

∫ 1

0

φ(x) dx.

Exercise 4.1:

(i) Clearly

Sn ≡
n∑

m=1

(−1)m−1 =

®
1 if m is odd

0 if m is even,

and so {Sn : n ≥ 1} doesn’t converge and

1

n

n∑
m=1

Sm =

®
1
2 if n is even
1
2 − 1

2n if n is odd,

which means that the series is Césaro summable to 1
2 .

(ii) Since am

m −̸→ 0, the series can’t be Césaro summable. In fact, using induction
on n ≥ 1, one sees that S2n+1 = n + 1 = −S2(n+1), and therefore that A2n = 0

and A2n+1 = n+1
2n+1 for n ≥ 1. To see that it is Abel summable, observe that, for

r ∈ (0, 1),
∞∑

m=1

(−1)mmrm = −r∂
∞∑

m=0

(−r)m =
r

(1 + r)2
−→ 1

4

as r ↗ 1.

Exercise 5.1: Because | sinπx| ≤ π|x| for all x and | sinπx| ≥ 2−
1
2 if 1

4 ≤ |x| ≤ 1
2 ,Å

sinπnx

sinπx

ã
≥ 1

2π2x2
if

1

4n
≤ x ≤ 1

2n
.

Thus,

nα
∫ 1

2

− 1
2

Fn(x)|x|α dx ≥ π−2n−1+α

∫ 1
2n

1
4n

x−2+α dx ≥ 1

4nπ2
n−2+α(2n)2−α =

1

2απ2
.

Exercise 7.1: This is an elementary change of variables.
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Exercise 7.2: Because f ′, f ′′ ∈ L1(λR;C) f̂ ′(ξ) = −ı2πξf̂ and f̂ ′′ = −(2πξ)2f̂ .
Thus,∫

|f(x)| dx =

∫
|ξ|≤1

|f̂(ξ)|dξ +
∫
|ξ|>1

|f̂ ′′(ξ)|
(2πξ)2

dξ ≤ ∥f∥L1(λR;C) +
∥f ′′∥L1(λR;C)

2π2
.

Exercise 7.3: We know that∑
n∈Z

1

y2 + n2
=
π cothπy

y

and therefore

2
∑
n≥1

1

y2 + n2
=
πy coshπ − sinhπy

y2 sinhπy
=
πy + π3y3

2 − πy − π3y3

6 +O(y5)

πy +O(y3)
−→ π2

3

as y ↘ 0.

Exercise 7.4: Take f(x) = t−
1
2 e−

πx2

t . Then f̂(ξ) = e−
tξ2

4π , and therefore, by
Theorem 7.2,

t−
1
2

∑
n∈Z

e−
πn2

t =
∑
n∈Z

e−πtn2

.

Exercise 8.1: By the result in Exercise 7.4, we know that f̂ ∈ L1(λR;C). Thus,
by Lebesgue’s dominated convergence theorem,

f(x) = lim
t↘0

∫
e−

tξ2

2 e−ıξxf̂(ξ) dξ =

∫
e−ıξxf̂(ξ) dξ.

Exercise 8.2: Since e−t|ξ| = “pt(ξ),
2πpt(x) =

∫ ∞

0

e−ıξx−tξ dξ +

∫ ∞

0

eıξx−tξ dξ =
1

ıx+ t
+

1

−ıx+ t
=

2t

t2 + x2
.

Exercise 8.3: For the cited facts about convolution, see § 6.3.3 in my text Es-
sentials of Integration Theory for Analysis, 2nd ed. published by Springer in their

GTM series. Given those facts, the asserted results follow easily from: ’ρt ∗ f(ξ) =
ρ̂(tξ)f̂(ξ) ∈ L1(λR;C) and

2πρt ∗ f(x) =
∫
e−ıξxρ̂(tξ)f̂(ξ) dξ.

Exercise 9.1: First show that it suffices to treat the case when (φ,1)L2(γ;C) = 0
and therefore (Ptφ,1)L2(γ;C) = 0 for all t ≥ 0.

Let φ ∈ Cb(R;C), and check that

lim
t↘0

Ptφ = φ and lim
t↗∞

Ptφ = (φ,1)L2(γ;C)⟩ boundedly and uniformly on compact subsets.

Next, suppose that φ ∈ C2
b(R;C) with (φ,1)L2(γ;C) = 0. Then

∂xPtφ(x) = ∂x

∫
φ
(
y + e−

t
2x
)
p(t, 0, y) dy = e−

t
2

∫
φ′(y)p(t, x, y) dy,

and
∂t∥Ptφ∥2L2(γ;C) = 2

(
Ptφ,LPtφ

)
L2(γ;C) = −∥(Ptφ)

′∥2L2(γ;C)

= −e−t∥Ptφ
′∥2L2(γ;C) ≥ −e−t∥φ′∥2L2(γ;C).

(∗)

After integrating (∗) in t from 0 to ∞, one has

−∥φ∥2L2(γ;C) ≥ −∥φ′∥2L2(γ;C)
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which means that∥∥φ− (φ,1)L2(γ;C)∥2L2(γ;C) = ∥φ∥2L2(γ;C) − (φ,1)2L2(γ;C) ≤ ∥φ′∥2L2(γ;C),

first for φ ∈ C2
b(R;C) and then, by an easy limit argument, for φ ∈ C1

b(R;C).
Finally, because (Ptφ,1)L2(γ;C) = 0 for all t ≥ 0 and therefore, by the preceding,

∂t∥Ptφ∥2L2(γ;C) = −∥(Ptφ)
′∥2L2(γ;C) ≤ −∥Ptφ∥2L2(γ;C).

Thus et∥Ptφ∥2L2(γ;C) is non-increasing. Again an easy limit argument shows that

the assumption that φ ∈ C2(R;C) can be replaced by φ ∈ L2(γ;C).

Exercise 10.1: Reduce to the case when (φ,1)L2(γ;C) = 0. Then, from (10.3), one
has

Ptφ =
∞∑

m=1

e−
mt
2 (φ,Hm)L2(γ;C)Hm,

and so

∥Ptφ∥2L2(γ;C) =

∞∑
m=1

e−mt|(φ,Hm)L2(γ;C)|2

≤ e−t
∞∑

m=0

|(φ,Hm+1)L2(γ;C)|2 = e−t∥φ∥L2(γ;C),

and

∥Ptφ∥2L2(γ;C) = e−t
∞∑

m=0

e−mt|(φ,Hm+1)L2(γ;C)|2 = e−t
∞∑

m=0

e−mt|(φ,A+Hm)L2(γ;C)|2

= e−t
∞∑

m=0

e−mt|(φ′, Hm)L2(γ;C)|2 ≤ e−t∥φ′∥2L2(γ;C).

Exercise 11.1: Using the estimates in Corollary 11.2, one knows that the se-
ries

∑∞
m=0 e

−mt
2 Hm(x)Hm(y) is absolutely and uniformly convergent on compact

subsets of (0,∞)× R× R. Thus, if φ ∈ Cc(R;C),

Ptφ = lim
n→∞

n∑
m=0

(φ,Hm)L2(γ;C)PtHm =

∞∑
m=0

e
mt
2 (φ,Hm)L2(γ;C)Hm,

and so∫
φ(y)p(t, x, y) dy = (2π)−

1
2

∫ ( ∞∑
m=0

e−
mt
2 Hm(x)Hm(y)

)
e−

y2

2 φ(y) dy,

from which it follows that

(2π)
1
2 p(t, x, y)e

y2

2 =
∞∑

m=0

e−
mt
2 Hm(x)Hm(y).

Finally, set e−
t
2 = θ, and check that the preceding is Mehler’s formula.

Exercise 12.1: Since f ⇝ f̂ is an isomorphism on L2(λR;C) and

∥Ff∥2L2(λR;C) =

∫
|f̂(2πξ)|2 dξ = (2π)−1∥f̂∥2L2(λR;C) = ∥f∥2L2(λR;C),
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F is an orthogonal operator on L2(λR;C). Thus F−1 = F∗. Finally, by Fubini’s
theorem,(
f,Fg

)
L2(λ[0,1);C)

=

∫
f(ξ)

Å∫
e−2πıξxg(x) dx

ã
dξ =

∫
g(x)

Å∫
e−2πξxf(ξ) dξ

ã
dx,

and so F∗f = (Ff)∪ = F f̆ .

Exercise 13.1: The lower bound is an easy application of Lemma 13.1. To prove

the upper bound, first check that an−hk+n = (k+n)!
k! hk and therefore that an−h̃k+n =Ä

(k+n)!
k!

ä 1
2
h̃k. Hence∣∣(φ, h̃k)L2(λR;C)

∣∣2 =
k!

(k + n)!

∣∣(φ, an−h̃k+n

)
L2(λR;C)

∣∣2 =
k!

(k + n)!

∣∣(an+φ, h̃k+n

)
L2(λR;C)

∣∣2,
and so

∥φ∥2S (m+n)(R;C) =
∞∑
k=0

µm
k

Å
k!µn

k

(k + n)!

ã ∣∣(an+φ, h̃k+n

)
L2(λR;C)

∣∣2.
Using Stirling’s formula, show that

C = sup
k≥0

Å
k!µn

k

(k + n)!

ã
<∞,

and therefore that ∥φ∥S (m+n)(R;C) ≤ C
1
2 ∥an+φ∥S (m)(R;C). Finally, write an+φ as a

linear combination of terms of the form xk∂ℓφ with k+ ℓ ≤ n, and apply the lower
bound to each of these terms.

Exercise 13.2: Because, by Theorem 13.5, the sequence is relatively compact,
and, by assumption, it is pointwise convergent, it can have at most one limit. Thus
it must be convergent.

Exercise 13.3: Choose η ∈ C∞(R; [0, 1]) so that η(x) = 1 if |x| ≤ 1 and η(x) = 0

if |x| ≥ 2. For R > 0 define ηR(x) = η
(
R−1x

)
.

(i) Given φ ∈ S (R;C), set φR = ηRφ for R > 0. Clearly φR ∈ C∞
c (R;C) and

φR = φ on [−R,R]. In addition,

∥xk∂ℓ(φ− φR)∥u ≤ sup
|x|≥R

∥xk∂ℓφ(x)|+ sup
|x|≥R

∥xk∂ℓφR(x)|

≤ 1

R

(
∥xk+1∂ℓφ∥u + ∥xk+1∂ℓφℓ

Rφ∥u
)
≤ 1

R

(
∥φ∥(k+ℓ+1)

u + ∥φR∥(k+ℓ+1)
u

)
.

Finally, because ∂ℓφR(x) is a linear combination of terms of the form

R−kη(k)
(
R−1x

)
φℓ−k(x),

supR≥1 ∥φR∥(k+ℓ+1)
u <∞.

(ii) Because C0(R;C) is a closed subset of Cb(R;C) with respect of the uniform
topology, it is a Banach space. Now choose ρ ∈ C∞(R; [0,∞)

)
so that ρ = 0 off

of (−1, 1) and
∫
ρ(x) dx = 1, and define ρϵ(x) = ϵ−1ρ

(
ϵ−1x

)
for ϵ > 0. Given

φ ∈ Cc(R;C), ρϵ ∗ φ ∈ C∞
c (R;C) and ∥ρϵ ∗ φ − φ∥u −→ 0 as ϵ ↘ 0. Thus, we

will know that C∞
c (R;C), and therefore also S (R;C), is dense in C0(R;C) once we

show that Cc(R;C) is dense in C0(R;C). But if φ ∈ C0(R;C), then φR ∈ Cc(R;C)
and ∥φR − φ∥u ≤ 2 sup|x|≥R |φ(x)| as R→ ∞.
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Exercise 13.4: Begin by checking that

|y| ≤
®
2|x| if |y| ≤ 2|x|
2|x+ y| if |y| ≥ 2|x|.

Thus,

|yk∂ℓφ(x+ y)| ≤
®
2k|x|k|∂ℓφ(x+ y)| if |y| ≤ 2|x|
2k|x+ y|k|∂ℓφ(x+ y)| if |y| ≥ 2|x|,

and so, if k + ℓ ≤ m, then∥∥yk∂ℓτxφ∥∥u ≤ 2m(|x| ∨ 1)m∥φ∥(m)
u .

Next suppose that x1 < x2. Then

yk
(
τx2φ

(ℓ)(y)− τx1φ
(ℓ)(y)

)
=

∫ x2

x1

ykφ(ℓ+1)(t+ y) dt,

and so, if k + ℓ ≤ m, then∣∣yk(τx2
φ(ℓ)(y)− τx1

φ(ℓ)(y)
)∣∣ ≤ |x2 − x1| max

x1≤t≤x2

∣∣ykφ(ℓ+1)(t+ y)
∣∣

≤ 2k(|x2| ∨ 1)k∥φ∥(m+1)
u |x2 − x1|.

Exercise 14.1: Set u = f(|x|). Then

⟨φ, u′⟩ = −
∫ ∞

0

φ′(x)f̄(x) dx−
∫ 0

−∞
φ′(x)f̄(−x) dx

= φ(0)f̄(0) +

∫ ∞

0

φ(x)f̄ ′(x) dx− φ(0)f̄(0)−
∫ 0

−∞
φ(x)f̄ ′(−x) dx

=

∫
φ(x)sgn(x)f̄ ′(|x|) dx,

and so u′ = sgn(x)f̄ ′(|x|). Next

⟨φ, u′′⟩ = −
∫ ∞

0

φ′(x)f̄ ′(x) dx+

∫ 0

−∞
φ′(x)f̄ ′(−x) dx

= 2φ(0)f̄ ′(0) +

∫ ∞

0

φ(x)f ′′(x) dx−
∫ 0

−∞
φ(x)f ′′(−x) dx

= 2f̄(0)φ(0) +

∫
φ(x)sgn(x)f ′′(|x|) dx,

which means that u′′ = 2f(0)δ0 + sgn(x)f ′′(|x|).

Exercise 15.1:

(i) By Fubini’s theorem,

⟨φ,ψ ∗ µ⟩ =
∫ Å∫

φ(x+ y)ψ̄(x) dx

ã
µ(dy) =

∫
φ(x)

Ç∫
ψ(x− y)µ(dy)

å
dx,

and so ψ ∗ µ =
∫
ψ(x− y)µ(dy).
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(ii) Again by Fubini’s theorem,

⟨φ, µ̂⟩ = ⟨φ̌, µ⟩ =
∫ Å∫

e−ıξxφ(ξ) dξ

ã
µ̄(dx)

=

∫
φ(ξ)

Ç∫
eıξxµ(dx)

å
dξ,

and so µ̂ =
∫
eıξx µ(dx).

(iii) Using Lebesgue’s dominated convergence theorem, one can check that∫
|x|k+1 µ(dx) =⇒ ∂ξ

∫
xkeıξx dx =

∫
xk+1eıξx µ(dx).

Thus, µ̂ ∈ C∞
b (R;C), and so, since ψ̂ ∈ S (R;C), ψ̂µ̂ ∈ S (R;C).

Exercise 16.1: Because the real and imaginary parts of f are harmonic elements
of S (R;C), they, and therefore f , are polynomials. Thus, if f is an entire function
that is not a polynomial, it can’t be an element of S (R;C), which means that it
must grow at infinity faster than a polynomial.

Exercise 17.1: Trivially, µn
w−→µ =⇒ µn −→ µ in S (R;C)∗, and, by Theorem

17.3, µ −→ µ in S (R;C)∗ =⇒ µn
w−→µ.

Exercise 18.1: In the proof of Theorem 18.3, it was shown that f is a characteristic
function if f(0) = 1 and ∫∫

f(ξ − η)φ(ξ)φ(η) dξdη ≥ 0

for all φ ∈ S (R;C). Thus, f is a characteristic function if and only if f(0) = 1
and (φ,ψ)f is a non-negative quadric form. Conversely, if f is a Finally, if f = µ̂,
then, by Parseval’s idententy and Fourier inversion formula,∫

φ̂(x)ψ̂(x)µ(dx) =

∫
φ̂(x)

(
ψ̆
)∧

(x)µ(dx) = (2π)−N

∫ (
φ̂
(
ψ̆
)∧)∨

(ξ)µ̆(ξ) dξ

=

∫ (
φ ∗ ψ̆

)
(ξ)f(ξ) dξ =

∫∫
f(ξ)φ(ξ − η)ψ(−η) dξ dη

=

∫∫
f(ξ − η)φ(ξ)ψ(η) dξdη.

Exercise 18.2:

(i) If A is an bounded operator on a complex Hilbert H space and (Ah, h)H ∈ R

for all h ∈ H, then A is self-adjoint. Thus, if A =

Å
1 f(−ξ)

f(ξ) 1

ã
, then f(−ξ) =

f(ξ), and so A is non-negative definite Hermitian matrix and 0 ≤ det(A) = 1 −
|f(ξ)|2.

Next take

A =

Ñ
1 f(−ξ) f(−η)

f(ξ) 1 f(ξ − η)
f(η) f(η − η) 1

é
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and α1 = z, α2 = −1, α3 = 1. Then

0 ≤
2∑

k,ℓ=1

Ak,ℓαkαℓ = |z|2 − 2Rez̄f(ξ) + 2Rez̄f(η) + 2−Ref(η − ξ)

= |z|2 − 2Rez̄
(
f(η)− f(ξ)

)
+ 2
(
1−Ref(η − ξ)

)
.

Now take z = f(η)− f(ξ).

(ii) Clearly af1 + bf2 is non-negative definite for all a, b ≥ 0. To see that f1f2 is
non-negative definite, it suffices to show that if A and B are non-negative definite
matrices, then so is

((
Ak,ℓBk,ℓ

))
1≤k,ℓ≤N

. To this end, use the fact that B = CC̄,

where C is again a non-negative definite matrix. Hence

N∑
k,ℓ=1

Ak,ℓBk,ℓαlαℓ =
N∑
j=1

N∑
k,ℓ=1

Ak,ℓαkCk,jCℓ,jαℓ ≥ 0

(iii) Assume lim|x|↘0
1−f(x)
|x|2 = 0. Since, for each e ∈ SN−1,

|f(ξ + te)− f(ξ)|2

t2
≤ 2

1−Ref(te)

t2
−→ 0

as t→ 0, f ′ is 0 everwhere and therefore f is constant.

(iv) Using the Hahn decompostion theorem, write µ = µ+ − µ− where µ+ ⊥ µ−.
Then, for φ ∈ S (RN ;C),

(2π)N
∫
φ(x)µ(dx) =

∫
φ̂(ξ)”µ+(ξ) dξ−

∫
φ̂(ξ)”µ−(−ξ) dξ =

∫
φ̂(ξ)µ̂(−ξ) dξ = 0,

and so
∫
φdµ+ =

∫
φ(x) dµ− for all φ ∈ S (RN ;C) and therefore µ+ = µ−.

(v) Choose µ ∈ M1(R) so that f = µ̂. Since f is not constant, µ ̸= δ0.
The first step is to show that f ′′(ξ) = −

∫
x2eıξx µ(dx). To this end, observe

that

−f ′′(0) = lim
t→0

2− f(t)− f(−t)
t2

= lim
t→0

2

∫
1− cos tx

t2
µ(dx) −→

∫
x2 µ(dx).

Knowing that
∫
x2 µ(dx) <∞, the same reasoning shows that−f ′′(ξ) =

∫
x2eıξx µ(dx).

Since µ ̸= δ0, −f ′′(0) < 0, and so f ′′

f ′′(0) = ν̂, where ν(dx) = x2

−f ′′(0)µ(dx).

Clearly |f ′′(ξ)| ≤
∫
x2 µ(dx) = |f ′′(0)|. Knowing that x is µ-square integrable,

it is easy to check that f ′(ξ) = ı
∫
xeıξx µ(dx), and therefore that |f ′(ξ)|2 ≤∫

x2 µ(dx) = |f ′′(0)|. Finally, |f(η)− f(ξ)| ≤ ∥f ′∥u|η − ξ| ≤ |f ′′(0)| 12 |η − ξ|.
(vi) It is easy to check that f must be a non-negative definite function for which
f(0) = 1. By part (i), we know that f is continuous everywhere since it is contin-

uous at 0. Hence, f = µ̂ for some µ ∈ M1(R), and so, by Theorem 18.1, µn
w−→µ.

Clearly, this proves that if {µ̂n : n ≥ 1} is unformly convergent at 0, then µn
w−→µ

for some

(vii) There is essentially nothing to do.
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Exercise 19.1: Set Mr(dy) = 1[r,∞)(|y|)M(dy) for r > 0. If M is symmetric,
then∫ Ä

eı(ξ,y)RN − 1− 1B(0,1)(y)
ä
Mr(dy)

=

∫ (
cos(ξ,y)RN − 1

)
Mr(dy) +

∫ (
ı sin(ξ,y)RN − 1B(0,1)(y)(ξ,y)RN

)
Mr(dy)

=

∫ (
cos(ξ,y)RN − 1

)
Mr(dy)

for all r > 0. Since | cos(ξ,x)RN − 1| ≤ |ξ|2|x|2, Lebesgue’s dominated convergence
justifies

lim
r↘0

∫ (
cos(ξ,y)RN − 1

)
Mr(dy) =

∫ (
cos(ξ,y)RN − 1

)
M(dy).

Next assume that M is invariant under orthogonal transformations and choose
e ∈ SN−1. Then it is symmetric and∫ (

cos(ξ,y)RN − 1
)
M(dy) =

∫ (
cos(|ξ|e,y)− 1

)
M(dy).

Finally, if M(dy) = |y|−N−αλRN (dy) for some α ∈ (0, 2) and e ∈ SN−1, then∫ (
cos(ξ,y)RN − 1

)
M(dy) =

∫ (
cos(e, |ξ|y)RN − 1

)
|y|−1−α λRN (dy)

= |ξ|α
∫ (

cos(e,y)RN − 1
)
|y|−1−α λRN (dy).
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