Solutions

Exercise 1.1: First note if ¢ € L*(Xp,1); C), then Y ., (¢, e")%Z(A[U,l);C) < oo and
therefore (¢, en)Lz(A[O)l);C) — 0. Next observe that

(¢, en)LZ()\[o)l);C) - (w,en)me,U;ml <ll¢— ¢||L1([o,1];C)

and therefore, if ¢ € L'([0,1];C) and € > 0, there is an R < oo and an m > 0 such
that

sup (@sen)L2(rp0.1)0) = (P AR en) 2000 S If =@ AR|L1oayc) <€
n

and SUPy>m |(‘P AR, en)LQ()\[o’l);(C)| <€ ThuS7 |(§07 en)L2()\[071);C)| < 2¢ for n > m.
Exercise 1.2: Set ¢ = p1 * ¢, and check that ¢ € C*([0,1];C) and |||l <

lollLip- Hence

: llllLip
‘(507 en)LQ(A[O’l);Cﬂ = kli{go |(90k7 en)LQ()\[O’l);(C)| < 27T|’I7,| )

and so the required estimate follows by the same argument as was used when
¢ € CH([0,1];C).

Exercise 2.1: Using the initial formula for S, (x), show that

oo

1 1 1 | 12 1
Sp(3)==—-= e — ==+ - .
(%) 2 7r<m2_14m—|—1+mz_14m+3> 2+ﬂ'm:1(4m+1)(4m+3)
Hence, after n — oo, one has that
IR 1
T (4m+1)(4m +3)’

1
4 2

m=1

from which

= 1
=38
m Z (4m +1)(4m + 3)
follows.

Exercise 2.2: Set n(z) = (¢(1) — ¢(0))z and ¢ = ¢ —n. Then ¢ € C*([0,1];C)
and ¢(1) = ¢(0), and so

19 1L owie) 209 1L (ho0y:0)
||Sn¢_¢”u < (lR ) < 1[0’1) ,
™2 ™2
and
S < 6 1 1 1Y) < 6||90'||L1(,\[0,1);C) 1 1
|Spun(z) —n(z)| < %VP( ) — @(0)|(; N ﬂ)| > T\(; \ m)|-
Exercise 3.1: By Lemma 1.4,

|(@(€)vem)L2(>\[o,1)?C)| < (n)[ M

|(%87’L)L2(A[0'1);C)| - (2rm)t m (2mn)t
P ”LP(E)HLQ(/\[O 1)i0)
Thus, if limy_, — @ 0, then (ap,em)Lz(A[oyl);c) =0 for |m| > n. Con-

versely, if (i, em)Li’(,\[o,l);(C) = 0 for |m| > n, then

||50(£)||%2()\[071>;C) = Z (27m) "2 Y(@, em) L2 (a0 0)° < (27T)_2ZH<PH2L2(,\[0,1);@) Z m=%,

[m|<n |m|<n
1



d so li le ez 00 0
anda so 11My_y~o (27‘_7”); = U.
It is obvious that

(QD, em)LZ()\[O‘lﬁc) =0 for m >n <— ©w = Z (QO, em)LQ(k[O,l);C)em.

Im|<n

Finally, if 1 < |m| < n, then

n
E = n 727”71 = 0’

and so, if (¢, em)Lz(A[D:l);C) =0 for |m| > n, then

EZSO(% EZ Z (¢, em) L2(Xjo,1); C)em( )
j=1 §=1 |m|<n

—_

1 1 1
— [(e@drt 1 3 @m0 Zem ~ [ ola)ar
0 0

1<|m|<n

Exercise 4.1:
(i) Clearly

0 if m is even,

= — 1 if m is odd
SnEZ(_l) 1:{ . .

and so {S, : n > 1} doesn’t converge and

n 1 . .
5 if n is even
Sm=11 1 s odd
1 3 5n ITNn1s o 5

which means that the series is Césaro summable to %

(ii) Since %= —/+ 0, the series can’t be Césaro summable. In fact, using induction
onn > 1, one sees that S, 41 = n+ 1 = —S5,,41), and therefore that Az, = 0
and Agpq1 = % for n > 1. To see that it is Abel summable, observe that, for

€ (0,1),

o0

T 1
> (=)™m ffraz =T

m=1 m=0

asr 1.

Exercise 5.1: Because |sinmz| < w|z| for all z and |sinmz| > 272 if L <l|z[ <1,
sin Tnw 1 .1 1

- > if —<z<—.

sin wx 2w2x? " 4n 2n

Thus,

1 1
e 2 F ( )| |ad > 2,1+ n 72+ad > 1 72+a(2 )27a 1
n x)|z|%dx > 7 n x x> —=n n =—.
-1 " - L ~ dnmw? 2072

Exercise 7.1: This is an elementary change of variables.
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Exercise 7.2: Because f/, f” € L'(\g;C) f/(¢) = —i2n&f and ﬁ = —(21€)%f.
Thus,

-~

V. 70) 17" ey
Ju@nas= [ i@l [ S ae < Wl + g,

Exercise 7.3: We know that
Z 1 7 coth my

yan? oy

nez
and therefore
2

3,3 3.3
22 1 :wycoshw—sinhﬂy:7ry+%—7ry—%+0(y5) .
y2_|_n2

Qo
= y? sinh 7y my + O(y3) 3

as y \(0.
Exercise 7.4: Take f(z) = t~3e=™F. Then f(é) = e~ 7, and therefore, by

Theorem 7.2,
_1 _zn? _ 2
t™2 E et = E e~
nez neZ

Exercise 8.1: By the result in Exercise 7.4, we know that f € L'(Ag;C). Thus,
by Lebesgue’s dominated convergence theorem,

f@) =lim [ o5 e f(e) de = / e f () de.

A
Exercise 8.2: Since e !l = 5;(¢),
9 _ —1fx—t& d / 1§x—t§ d¢ = = .
7pe () /0 e ¢+ | e 3 zx+t+fzx+t 2+ 22

Exercise 8.3: For the cited facts about convolution, see §6.3.3 in my text Fs-
sentials of Integration Theory for Analysis, 2nd ed. published by Springer in their

GTM series. Given those facts, the asserted results follow easily from: p; * f(§) =
p(t€) f(€) € L' (Ar; C) and

2 f(a) = [ DFE) e

Exercise 9.1: First show that it suffices to treat the case when (y,1)2(y,c) =0
and therefore (P;p,1)2(y,c) = 0 for all £ > 0.
Let ¢ € Cp(R;C), and check that

lim Pyp = ¢ and lim Pyp = (©,1)12(y,c)) boundedly and uniformly on compact subsets.
N0 t oo ’
Next, suppose that ¢ € CZ(R; C) with (¢, 1)12(y,c) = 0. Then

9, Pupl() = 0, / oy + e 2)p(t, 0,y) dy = ¢ / o ()p(t, 2, y) dy,

[SES

and
O Pl 720y = Q(Pt%ﬁpﬂﬁ)pmc) = —1(Pep) 132y

= =P 12 (ri0) = —¢ 1€ 72000
After integrating (x) in ¢ from 0 to oo, one has

7”90“%2(7,([:) Z 7“90/”%2(’}/;(:)
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which means that

||§0 - (90’ 1)L2('Y;C)H%2('y;@) = ”90”%2(7,([:) - (907 1)%2(7;((:) < ||§0/H%2('y;(3)7
first for ¢ € CZ(R;C) and then, by an easy limit argument, for ¢ € CL(R;C).
Finally, because (P, 1)2(y;c) = 0 for all ¢ > 0 and therefore, by the preceding,
atHPt<p||%2('y;C) = _”(Pt(p)/H%Q(’y;C) < _||Pt(p||%2(’y;([:)'

Thus et||Ptg0||%2( ¢y is non-increasing. Again an easy limit argument shows that
the assumption that ¢ € C?(R;C) can be replaced by ¢ € L?(v;C).

Exercise 10.1: Reduce to the case when (¢,1)12(y,c) = 0. Then, from (10.3), one
has

P = Z et m) L2 (;€) Him,
and so
1Py = 3 € ™10, Hin) oy
m=1
B Z (s Hma1) 2(v:0))? = el 209,
m=0
and

IPepll72 () = €7° Z e "M@, Hm1)r2(yo)|* = €7* Z e " (e, Ay Hin) 2(y:0)I°

m=0 m=0
_t Ze—mf| @a )L2 "/(C)| <e fH(p ||L2 (v;C)*

Exercise 11.1: Using the estimates in Corollary 11.2, one knows that the se-
mt

ries > °_ e 2 Hy,(z)H,,(y) is absolutely and uniformly convergent on compact
subsets of (0,00) x R x R. Thus, if ¢ € C.(R;C),

. - -
Pt(p = nh_)néo Z (QD? Hm)Lz(’y;C)Pth = e? (907 Hm)Lz(’y;C)Hmv
m=0 m=0
and so
_1 = _mt _y?
[ewpttspdy=ent [ (X e ¥ B Hal) ) e o) d.
m=0

from which it follows that

@m)Ep(t,z,y)eT =Y e Hy(2)Hpn(y)-

t

Finally, set e”2 = 6, and check that the preceding is Mehler’s formula.

Exercise 12.1: Since f ~ f is an isomorphism on L?(\g;C) and

IFFNZ2 ns) = / |f@re)? de = 2m) T FlEz ey = 112200y
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F is an orthogonal operator on L?(Ag;C). Thus F~! = F*. Finally, by Fubini’s
theorem,

(1 F0) oy = [ 10 ([ a@ian) de =[5 [ e s de)

and so F*f = (Ff)Y = Ff.

Exercise 13.1: The lower bound is an easy application of Lemma 13.1. To prove
the upper bound, first check that a” hyy,, = (]H”)' hi and therefore that a hk+n =

( (k+”)' > hy. Hence

2 k! 2 k! - 5
’ W’(@a *thr")L?(A]R(C)’ :m’(aiw’thr”)Lz(Am;C)}

)

| (¢, Bk) L2 (Ag;C)

and so
|2

Kl ~
H‘PHy(ern) (R;C) = Zﬂk ( ) |(aig0, hk+")L2(/\R;C)

Using Stirling’s formula, show that

kl\pl
C =su ( k ) < 00,
kzg (k+n)'

and therefore that |||l s m+m @,c)y < C’%HaiapHy(m)(R;c). Finally, write a’} ¢ as a
linear combination of terms of the form z*9%p with k4 ¢ < n, and apply the lower
bound to each of these terms.

Exercise 13.2: Because, by Theorem 13.5, the sequence is relatively compact,
and, by assumption, it is pointwise convergent, it can have at most one limit. Thus
it must be convergent.

Exercise 13.3: Choose n € C*™(R;[0,1]) so that n(z) = 1 if |z| < 1 and n(z) =0
if |z| > 2. For R > 0 define ng(z) = n(R™'z).

(i) Given ¢ € .Y (R;C), set ¢ = nry for R > 0. Clearly g € C(R;C) and
¢r = ¢ on [—R, R]. In addition,

12*0%(p — pr)llu < sup lz*0 o ()| + sup [a*0 ¢R(x)|

1= |2 R
< = (410l + 70 6lplls) < 3 (Il + ml¢++0).
Finally, because 8‘pr(z) is a linear combination of terms of the form
R Fyk) (R'a) " " (),

suppzy eorll6 Y <

(ii) Because Cy(R;C) is a closed subset of Cy(R; C) with respect of the uniform
topology, it is a Banach space. Now choose p € C'* (R; [0,00)) so that p = 0 off
of (—1,1) and [ p(z)dx = 1, and define p.(z) = e 'p(e~'z) for € > 0. Given
© € Co(R;C), pe x o € CX(R;C) and ||pe * ¢ — @|lu —> 0 as € \, 0. Thus, we
will know that C°(R; C), and therefore also . (R; C), is dense in Cy(R; C) once we
show that C.(R;C) is dense in Cy(R;C). But if ¢ € Cy(R; C), then pr € C.(R;C)
and [[or — @llu < 2supj, > l@(2)] as R — oo.
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Exercise 13.4: Begin by checking that

gl < {2l Iyl <20l
2z +yl if |yl = 2[=|.

Thus,
|ykaé(p($_~_y)‘ < {2k|x|k|ai<p(x+y)| if ‘yl S 2‘.’L‘|
T2+ ylF0 (e +y)| i Jy| > 2]l

and so, if kK + ¢ < m, then
ly* o', < 27 (Il vV )™ [l -

Next suppose that x1 < x2. Then

T2

Y (10,09 (y) — 70 0O (1)) =/ YR (t +y) dt,

1

and so, if £+ ¢ < m, then

Q) = 70 W)] < oz = 1] max [yt +y)|

< 25 (Jzz| v DHlll{" D |22 — -

|yk (7—382 12

Exercise 14.1: Set u = f(|z|). Then

e’} 0
(o) = / o () () dir / o (@) F(~a) dx

— 00

') 0
— o(0)F(0) + / (@) /() dz — p(0) F(0) - / (@) /() da
- / o(@)sgn(x) F'(|]) de

and so v/ = sgn(x) f'(|]x|). Next

(e’ 0
(") = — / o () () d + / o (@) F/(—z) da

— 00

0

— 20(0)/1(0) + / Ce@ @ — [ e ds

— 27(0)(0) + / o (@)sgn(z) F(a]) de
which means that u” = 2f(0)do + sgn(z) f”(|x|).

Exercise 15.1:

(i) By Fubini’s theorem,

<w,w*u>=/(/ (z+y)d(x)d )(dy / (/wrc— ))dfc,

and so ¢+ p = [(x —y) p(dy).




(ii) Again by Fubini’s theorem,

i) = (o) = [ ([ et de) i)

~ [t ( / eﬂ%(dw)) de,
and so i = [ €7 p(dx).

(iii) Using Lebesgue’s dominated convergence theorem, one can check that

/|Z‘|k+1 ulde) = 85/561“615” dx = /mkﬂez&” p(dz).

Thus, 1 € Cg°(R; C), and so, since Ve S (R;C), i € 7 (R;C).

Exercise 16.1: Because the real and imaginary parts of f are harmonic elements
of Z(R;C), they, and therefore f, are polynomials. Thus, if f is an entire function
that is not a polynomial, it can’t be an element of .#(R;C), which means that it
must grow at infinity faster than a polynomial.

Exercise 17.1: Trivially, p,——sp = pn — p in .#(R;C)*, and, by Theorem
173, p — pin . (R;C)" = i ——p.

Exercise 18.1: In the proof of Theorem 18.3, it was shown that f is a characteristic
function if f(0) =1 and

|| 1€~ meteremiagn = o
for all ¢ € .Z(R;C). Thus, f is a characteristic function if and only if f(0) =1

and (¢, %) is a non-negative quadric form. Conversely, if f is a Finally, if f = f,
then, by Parseval’s idententy and Fourier inversion formula,

Jeeitntax) = [ o6 (5) @) ntax) = 207 [ (2(5)") @@ e
~ [tex D)@ de = [[ 1ot - mivtm dgan

Exercise 18.2:

(i) If A is an bounded operator on a complex Hilbert H space and (Ah,h)g € R
for all h € H, then A is self-adjoint. Thus, if A = ( ! f(_s)), then f(—€) =

& 1
(&), and so A is non-negative definite Hermitian matrix and 0 < det(A) = 1 —
FACIL
Next take
f(=¢  f(=m)
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and a; = 2z, ag = —1, ag = 1. Then

2

< Z Ap ey = |2|* = 2Rezf () + 2Rezf(n) + 2 — Ref(n — £)

= |2|* — 20z (f(n) — f(€)) +2(1 — Ref(n - ).

Now take z = f(n) — f(&).

(ii) Clearly af1 + bfs is non-negative definite for all a,b > 0. To see that f fo is
non-negative definite, it suffices to show that if A and B are non-negative definite
matrices, then so is ((Ak7gB;€,g))1<k r<n- To this end, use the fact that B = CC,

where C is again a non-negative definite matrix. Hence

N

> Ak By oty Z AppoC i Cpjag = 0
kyf=1 =1 k=1

(iii) Assume lim x|\ o %I() = 0. Since, for each e € SV 1,

FE+te) — FOP _ 1 Refte)

12 < P — 0

ast — 0, f' is 0 everwhere and therefore f is constant.

(iv) Using the Hahn decompostion theorem, write y = puy — p— where py L p_.
Then, for ¢ € .7 (RY;C),

en) [oeuan = [e@ @ de- [ @ m(-¢ e - [ p@n-e a0,

and so [ pduy = [@(x)du_ for all p € 7 (RY;C) and therefore py = p_.
(v) Choose p € M;(R) so that f = ji. Since f is not constant, p # do.

The first step is to show that f”(¢) = — [2%e%® u(dz). To this end, observe
that
2= f)—f(=t) .. 1-— costac
_ = _— —
17(0) = fim 2 }%2/ 2 /x plde).

Knowing that [ 22 u(dr) < oo, the same reasoning shows that — f” (&) = [ 22e*® u(dwx).
Since p # 09, —f"(0) < 0, and so f,Jf(O) = U, where v(dz) = %u(dx).

Clearly |f”(&)] < [2? u(dz) = |f”(0)|. Knowing that z is u-square integrable,
it is easy to check that f/(§) = [ xe’® u(dx), and therefore that |f'(£)|> <
J2? u(da) = [£7(0)]. Finally, | f(n) = f(E)] < |/ luln— & < [£7(0)[2|n —&|.
(vi) It is easy to check that f must be a non-negative definite function for which
f(0) = 1. By part (i), we know that f is continuous everywhere since it is contin-
uous at 0. Hence, f = i for some p € M;(R), and so, by Theorem 18.1, f1,, — .

Clearly, this proves that if {f, : n > 1} is unformly convergent at 0, then p,, —u
for some

(vii) There is essentially nothing to do.
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Exercise 19.1: Set M,(dy) = 1. )(ly|) M(dy) for r > 0. If M is symmetric,
then

/ (62(€’Y)RN _1- 13(071)(}7)) Mr(d}’)
= /(COS(&Y)RN — 1) M, (dy) + /(zsin(&,y)RN — 1501 (y)(& ¥y ) M, (dy)
= [ (coste v — 1))

for all 7 > 0. Since | cos(&, x)py — 1| < |€]2|x|?, Lebesgue’s dominated convergence
justifies

}i{%/(cos(g,y)RN - 1)Mr(dy) = /(cos(ﬁ,y)RN - 1)M(dy).

Next assume that M is invariant under orthogonal transformations and choose
e € S¥~1. Then it is symmetric and

[ (coste v~ 1)0dy) = [ (cos(igle,) - 1) M(ay)
Finally, if M(dy) = |y|~N ~*Ag~ (dy) for some a € (0,2) and e € SV~ then

/ (cos(€, ¥ — 1) M(dy) = / (cos(e, [€1y)mx — 1)]y] ™~ Agw (dy)
e / (cos(e, y)rv — 1)y~ Agw (d).
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