Topic 17

Contents:

Modeling of Elasto-Plastic and Creep Response—Part I

Basic considerations in modeling inelastic response

17

	A schematic review of laboratory test results, effects of stress level, temperature, strain rate	
	One-dimensional stress-strain laws for elasto-plasticity, creep, and viscoplasticity	
	Isotropic and kinematic hardening in plasticity	
	General equations of multiaxial plasticity based on a yield condition, flow rule, and hardening rule	
	Example of von Mises yield condition and isotropic hardening, evaluation of stress-strain law for general analysis	
	Use of plastic work, effective stress, effective plastic strain	
	Integration of stresses with subincrementation	
	Example analysis: Plane strain punch problem	
	Example analysis: Elasto-plastic response up to ultimate load of a plate with a hole	
	Computer-plotted animation: Plate with a hole	
Textbook:	Section 6.4.2	
Example:	6.20	
References:	The plasticity computations are discussed in	
	Bathe, K. J., M. D. Snyder, A. P. Cimento, and W. D. Rolph III, "On Some Current Procedures and Difficulties in Finite Element Analysis of Elas tic-Plastic Response," <i>Computers & Structures</i> , 12, 607–624, 1980.	

References: (continued)

Snyder, M. D., and K. J. Bathe, "A Solution Procedure for Thermo-Elastic-Plastic and Creep Problems," *Nuclear Engineering and Design*, 64, 49-80, 1981.

The plane strain punch problem is also considered in

Sussman, T., and K. J. Bathe, "Finite Elements Based on Mixed Interpolation for Incompressible Elastic and Inelastic Analysis," *Computers & Structures*, to appear.

• WE DISCUSSED IN THE PREVIOUS LEC - TURES THE MODELING OF ELASTIC MATERIALS	WE NOW WANT TO DISCUSS THE MODELING OF INELASTIC MATERIALS
- LINEAR STRESS -	- ELASTO-PLASTICITY
STRAIN LAW	AND CREEP
- NONLINEAR STRESS- STRAIN LAW THE T.L. AND U.L. FORMULATIONS	 WE PROCEED AS WE DISCUSS BRIEFLY MODELING OF SUCH RESPONSE IN I-D ANALYSIS MELASTIC MATERIAL BEHAVIORS, AS OB- SERVED IN LAB- ORATORY TESTS WE DISCUSS BRIEFLY MODELING CONSIDERATIONS TO 2-D AND 3-D STRESS SITUATIONS

Markerboard 17-1

Viscoplasticity:

 Time-dependent response is modeled using a fluidity parameter γ:

$$\dot{\mathbf{e}} = \frac{\dot{\mathbf{\sigma}}}{\mathbf{E}} + \underbrace{\gamma \left\langle \frac{\mathbf{\sigma}}{\mathbf{\sigma}_{y}} - 1 \right\rangle}_{\dot{\mathbf{e}}^{\mathsf{VP}}}$$

where

$$\left\langle \sigma - \sigma_{y} \right\rangle = \begin{cases} 0 & \text{, } \sigma \leq \sigma_{y} \\ \sigma - \sigma_{y} & \text{, } \sigma > \sigma_{y} \end{cases}$$

Transparency 17-19

Transparency 17-20

MIT OpenCourseWare http://ocw.mit.edu

Resource: Finite Element Procedures for Solids and Structures Klaus-Jürgen Bathe

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.