Topic 19

Beam, Plate, and Shell Elements— Part I

Con	ten	ts:
UUM	UULL	

Brief review of major formulation appr	roache	es
--	--------	----

- The degeneration of a three-dimensional continuum to beam and shell behavior
- Basic kinematic and static assumptions used
- Formulation of isoparametric (degenerate) general shell elements of variable thickness for large displacements and rotations
- Geometry and displacement interpolations
- The nodal director vectors
- Use of five or six nodal point degrees of freedom, theoretical considerations and practical use
- The stress-strain law in shell analysis, transformations used at shell element integration points
- Shell transition elements, modeling of transition zones between solids and shells, shell intersections

Textbook:	Sections 6.3.4, 6.3.5	
References:	The (degenerate) isoparametric shell and beam elements, including the transition elements, are presented and evaluated in	
	Bathe, K. J., and S. Bolourchi, "A Geometric and Material Nonlinear Plate and Shell Element," <i>Computers & Structures</i> , 11, 23-48, 1980.	
	Bathe, K. J., and L. W. Ho, "Some Results in the Analysis of Thin Shell Structures," in <i>Nonlinear Finite Element Analysis in Structural</i> <i>Mechanics</i> , (Wunderlich, W., et al., eds.), Springer-Verlag, 1981.	
	Bathe, K. J., E. Dvorkin, and L. W. Ho, "Our Discrete Kirchhoff and Iso- parametric Shell Elements for Nonlinear Analysis—An Assessment," <i>Computers & Structures</i> , 16, 89–98, 1983.	

References: (continued)

The triangular flat plate/shell element is presented and also studied in

Bathe, K. J., and L. W. Ho, "A Simple and Effective Element for Analysis of General Shell Structures," *Computers & Structures*, 13, 673-681, 1981.

STRUCTURAL ELEMENTS

- Beams
- Plates
- · Shells

We note that in geometrically nonlinear analysis, a plate (initially "flat shell") develops shell action, and is analyzed as a shell. Transparency 19-1

Various solution approaches have been proposed:

- Use of general beam and shell theories that include the desired nonlinearities.
 - With the governing differential equations known, variational formulations can be derived and discretized using finite element procedures.
 - Elegant approach, but difficulties arise in finite element formulations:
 - Lack of generality
 - Large number of nodal degrees of freedom

Transparency 19-2

$$\overset{t+\Delta t}{\underline{V}_{n}^{k}} = \overset{t}{\underline{V}_{n}^{k}} + \int_{\alpha_{k},\beta_{k}} \left(-\overset{\tau}{\underline{V}_{2}^{k}} d\alpha_{k} + \overset{\tau}{\underline{V}_{1}^{k}} d\beta_{k}\right)$$

Nodal point degrees of freedom:

- We have only five degrees of freedom per node:
 - three translations in the Cartesian coordinate directions
 - two rotations referred to the local nodal point vectors ${}^{t}\underline{V}_{1}^{k}$, ${}^{t}\underline{V}_{2}^{k}$
- The nodal point vectors ^t<u>V</u>^k₁, ^t<u>V</u>^k₂ change directions in a geometrically nonlinear solution.

Transparency 19-26

Transparency 19-25

MIT OpenCourseWare http://ocw.mit.edu

Resource: Finite Element Procedures for Solids and Structures Klaus-Jürgen Bathe

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.