Topic 14

Solution of Nonlinear Dynamic Response—Part II

Contents:	Mode superposition analysis in nonlinear dynamics
	Substructuring in nonlinear dynamics, a schematic example of a building on a flexible foundation
	Study of analyses to demonstrate characteristics of procedures for nonlinear dynamic solutions
	Example analysis: Wave propagation in a rod
	Example analysis: Dynamic response of a three degree of freedom system using the central difference method
	Example analysis: Ten-story tapered tower subjected to blast loading
	Example analysis: Simple pendulum undergoing large displacements
	Example analysis: Pipe whip solution
	Example analysis: Control rod drive housing with lower support
	Example analysis: Spherical cap under uniform pressure loading
	Example analysis: Solution of fluid-structure interaction problem

Textbook: Examples: Sections 9.3.1, 9.3.2, 9.3.3, 9.5.3, 8.2.4 9.6, 9.7, 9.8, 9.11 References:The use of the nonlinear dynamic analysis techniques is described with
example solutions inBathe, K. J., "Finite Element Formulation, Modeling and Solution of
Nonlinear Dynamic Problems," Chapter in Numerical Methods for Par-
tial Differential Equations, (Parter, S. V., ed.), Academic Press, 1979.Bathe, K. J., and S. Gracewski, "On Nonlinear Dynamic Analysis Using
Substructuring and Mode Superposition," Computers & Structures, 13,
699–707, 1981.Ishizaki, T., and K. J. Bathe, "On Finite Element Large Displacement

Ishizaki, T., and K. J. Bathe, "On Finite Element Large Displacement and Elastic-Plastic Dynamic Analysis of Shell Structures," *Computers* & Structures, 12, 309–318, 1980.

Markerboard 14-1

Determine "accurate" natural frequencies represented by 30 element mesh:

From eigenvalue solutions of the 30 and 60 element meshes, we find

mode number	natural freq		
	30 element mesh	60 element mesh]
1	1.914	1.914	
2	4.815	4.828	accurate
3	8.416	8.480	
4	12.38	12.58	
5	16.79	17.27	
6	21.45	22.47	
7	26.18	28.08	11
8	30.56	29.80	inaccurate

Transparency 14-43

Calculate time step:

$$T_{co} = \frac{1}{17} \text{Hz} = .059 \text{ sec}$$
$$\Delta t \doteq \frac{1}{20} T_{co} = .003 \text{ sec}$$

- A smaller time step would accurately "integrate" frequencies, which are not accurately represented by the mesh.
- A larger time time step would not accurately "integrate" all frequencies which are accurately represented by the mesh.

Transparency 14-44

MIT OpenCourseWare http://ocw.mit.edu

Resource: Finite Element Procedures for Solids and Structures Klaus-Jürgen Bathe

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.