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PROFESSOR: Ladies and gentlemen, welcome to this set of lectures on the finite element method.

In these lectures I would like to give you an introduction to the linear analysis of

solids and structures. You are probably well aware that the finite element method is

now widely used for analysis of structural engineering problems. The method is

used in civil, aeronautical, mechanical, ocean, mining, nuclear, biomechanical, and

other engineering disciplines.

Since the first applications two decades ago of the finite element method we now

see applications in linear, nonlinear, static, and dynamic analysis. However, in this

set of lectures, I would like to discuss with you only the linear, static, and dynamic

analysis of problems. The finite element method is used today in various computer

programs. And its use is very significant.

My objective in this set of lectures is to introduce to you the finite element methods

or some of the finite element methods that are used for linear analysis of solids and

structures. And here we understand linear to mean that we're talking about

infinitesimally small displacements and that we are using a linear elastic material

law. In other words, Hooke's law applies.

We will consider, in this set of lectures, the formulation of the finite element

equilibrium equations, the calculation of finite element matrices of the matrices that

arise in the equilibrium equations. We will be talking about the methods for solution

of the governing equations in static and dynamic analysis. And we will talk about

actual computer implementations. I will emphasize modern and effective techniques

and their practical usage.

The emphasis, in this set of lectures, is given to physical explanations of the
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methods, techniques that we are using rather than mathematical derivations. The

techniques that we will be discussing are those employed largely in the computer

programs SAP and ADINA. SAP stands for Structural Analysis Program and you

might very well be aware that there is a series of such programs, SAP I to SAP VI

now.

And ADINA stands for Automatic Dynamic Incremental Nonlinear Analysis. However,

this program is also very effectively employed for linear analysis. The nonlinear

analysis being then a next step in the usage of the program. In fact, the elements in

ADINA, the numerical methods that are used in ADINA, I consider to be the most

effective, the most modern state of the art techniques that are currently available.

These few lectures really represent a very brief and compact introduction to the field

of finite element analysis. We will go very rapidly through some or the basic

concepts, practical applications, and so on. We shall follow quite closely, however,

certain sections in my book entitled Finite Element Procedures in Engineering

Analysis to be published by Prentice Hall. And I will be referring in the study guide of

this set of lectures extensively to this book to the specific sections that we're

considering in the lectures in this book.

The finite element solution process can be described as given on this viewgraph.

You can see here that we talk about a physical problem. We want to analyze an

actual physical problem. And our first step, of course, is to establish a finite element

model of that physical problem.

Then, in the next step, we solve that model. And then we have to interpret the

results. Because the interpretation of the results depends very much on how we

established the finite element model, what kind of model we used, and so on. And in

establishing the finite element model, we have to be aware of what kinds of

elements, techniques, and so on are available to us.

Well, therefore, I will be talking, in the set of lectures, about these three steps

basically here for different kinds of physical problems. Once we have interpreted the

results we might go back from down here to there to revise or refine our model and
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go through this process again until we feel that our model has been an adequate

one for the solution of the physical problem of interest.

Let me give you or show you some models that have been used in actual structural

analysis. You might have seen similar models in textbooks, in publications already.

This, for example, is a model that was used for the analysis of a cooling tower. The

basic process of the finite element method is that we are taking the continuous

system, and we are idealizing it as an assemblage of elements. I'm drawing here a

typical three-noded triangular shell element that was used in the analysis of this

cooling tower.

We talk about very many elements in order to obtain an accurate response

prediction. And, of course, that means that we will be dealing with a large set of

equations to be solved. And there's a significant computer effort required. I will be

addressing all of these questions in these lectures.

Here you see the finite element model of a dam. The earth below the dam was

idealized as an assemblage all such elements here, triangular elements now. And

the dam itself was also idealized as an assemblage of elements. We will be talking

about how such assemblages are best created, what kinds of elements to select,

what assumptions are in the selection of these elements, and then how do we solve

the resulting finite element equilibrium equations.

Here you see the finite element analysis, or the mesh that was used in the finite

element analysis of a tire. This wall is half of the tire, as you can see, and this was

the finite element mesh used. Again, we have to judiciously choose the kinds of

finite elements to be employed. And we will be talking about that in this set of

lectures.

Here you see the finite element model employed in the analysis of a spherical cover

of a laser vacuum target chamber. This is the finite element mesh used. Again,

specific elements were employed here. And we will be talking about the

characteristics of these elements in this set of lectures.
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Here you see the model of the shell structure subjected to a pinching load. There's

a load up here and a load down there. These are the triangular elements that were

used in the idealization of that shell and the resulting bending moments and

displacements along the line DC are plotted here that have been predicted by the

finite element analysis.

Finally here you see the finite element idealization of a wind tunnel that was used

for the dynamic analysis of this tunnel. You can see a large number of shell

elements were employed in the idealization of the shelf of the tunnel. Then, of

course, supports were provided here for that shell. And this was a very large system

that was solved. And the eigenvalues of this system were calculated using the

subspace iteration method that we would be also talking about in this set of lectures.

Well, with this short introduction then, I would like to go now and discuss with you

some basic concepts of engineering analysis. There's a lot of work ahead in this set

of lectures. So let me take off my jacket with your permission, and let us just go right

on with the actual discussion of the theory of the finite element method.

The basic concepts that I address here, in this first lecture, is summarized basically

here once more. We are talking about the idealization of a system. We are talking

about the formulation of the equilibrium equations, then the solution of the

equations, and then, as I mentioned earlier already, the interpretation of the results.

These are really the four steps that have to be performed in the analysis of an

engineering system or of a physical system that we want to analyze.

Now when we talk about systems, we are really talking about discrete and

continuous systems where, however, in reality, we recognize that all systems are

really continuous. However, if the system consists of a set of springs, dashpots,

beam elements, then we might refer to this continuous system as a discrete system

because we can see already, it is obvious, so to say, how to idealize a system into a

set of elements, discrete elements. In that case, the response is described by

variables at a finite number of points. And this means that we have to set up a set of

algebraic questions to solve that system.
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So here I'm talking about elementary systems ofl springs, dashpots, discrete beam

elements, and so on. In the analysis of a continuous system the response is

described really by variables at an infinite number of points. And, in this case, we

really come up with a differential equation, obviously a set of differential equations,

that we have to solve.

The analysis of a complex continuous system requires a dissolution of the

differential equations using numerical procedures. And this solution via numerical

procedures-- and, of course, in this set of lectures we will be talking about the finite

element method numerical procedures-- really reduces a continuous system to a

discrete form. The powerful mechanism that we talk about here is the finite element

method implemented on a digital computer.

The problem types that I will be talking about are steady-state problems, or static

analysis, propagation problems, dynamic analysis, and eigenvalue problems. And

these three types of problems, of course, arise for discrete and continuous systems.

Now let us talk first about the analysis of discrete systems in this first lecture.

Because many of the characteristics that we are using in the analysis of discrete

systems, discrete meaning, springs, dashpots, et cetera, we can directly see the

discrete elements of the system. The steps involved in the analysis of such discrete

systems are very similar to the analysis of complex finite element systems. The

steps involved are the system idealization into elements. And that idealization is

somewhat obvious because we have the discrete elements already. The evaluation

of the element equilibrium requirements, the element assemblage, and the solution

of the response.

Notice when we later on talk about the analysis of continuous systems instead of

discrete systems, then the system idealization into finite elements here is not an

obvious step and needs much attention. But these three steps here are the same in

the finite element analysis of a continuous system. And I would like to now discuss

all of these steps here just to show you, basically, some of the basic concepts that

we're using in the finite element analysis.
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Let us look at this discrete system here as an example. And let us display the basic

ideas in the analysis of this discrete system. Here we have a set of rigid carts, three

rigid carts, vertical carts that are supported on rollers down here. This means that

each of these carts can just roll horizontally. The carts are connected via springs,

k2, k3, k4, k5. And the first cart here is connected via k1 to a rigid support that does

not move.

The displacement all of this cart here is u1. The load applied is R1. Notice that u1 is

the displacement of each of these springs since this cart is rigid.

The displacement of this cart here is u2. And R2 is the load applied. The

displacement of this cart is u3. And R3 is the load applied.

We now want to analyze this system when R1, R2, looking at it, we can directly see

the elements of the system k1 to k5, and we can see directly, of course, how these

elements are interconnected. The steps that we will be talking about in the analysis

of this discrete system are really very similar to the steps that we're using in the

finite element analysis of continuous systems.

What we will be doing is that we look at the equilibrium requirements for each spring

as a first step. Then we look at the interconnection requirements between these

springs that, in other words, the force on these springs here at this cart, and that

spring, must be balanced by R1. And then, of course, we have a compatibility

requirement that u1 is a displacement of each of these springs here.

So we are talking about the constitutive relations, the equilibrium requirements, and

the compatibility requirements. These are, of course, the three requirements that

we also have to satisfy in the analysis of a continuous system using, later on, finite

element methods.

Notice that these springs here are our finite elements, if you want to think of it that

way, a very simple set of elements. In a more complex analysis, these springs here

would be plane stress elements, plane strain elements, three dimension elements,

shell elements. And we will be talking about how we derive the characteristics of
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these elements.

And we will, however, interconnect these elements, these more complex elements,

later in exactly the same way as we connect these simple elements. So the

connections between the elements are established in the same way, and the

solution of the equilibrium equations is also performed in the same way. But in this

simple analysis, we are given directly the spring stiffnesses. And one other

important point is that the spring stiffnesses here are exact stiffnesses.

In a finite element analysis of a continuous system, we have a choice on what kind

of interpolations we can use for an element. We have a choice on what assumptions

we want to lay down for an element. And then using different assumptions we are

coming up with different stiffnesses of the element domain that we will be talking

about.

And we will also find that the equilibrium in that element domain is not satisfied. It

will only be satisfied in the limit as the elements become smaller, and smaller, and

smaller. Whereas in the analysis of this discrete system, the equilibrium in each

spring is always satisfied. So this is a very simple finite element analysis if you want

to think of it that way.

The elements here than are k1. And notice that the equilibrium requirement for this

element says simply that k1u1 is equal to the force applied to this node. It's a force,

the external force, applied to this node. The equilibrium requirement of this element,

k2, is written down here in matrix form. k2 is the physical stiffness of the spring. And

F1, F2 are the forces applied at these two ends.

Notice, please, that the superscript here refers to the element number, superscript 1

here for element 1, superscript 2 here for element 2. And notice that we would find

that F1(2) is minus F2(2) given u1 and u2. Of course, that means the element is in

equilibrium.

Notice also, if you look at this matrix closer, that if u1 is greater than u2, then we

would find that, in other words, u1 greater than u2 means that the spring is in

7



compression. We would find that F1(2) is positive by simply multiplying this out here.

And F2(2) is negative, which corresponds to the physical situation that we actually

have. If u1 is greater than u2, this force here is positive, and that force is negative

because the spring is compressed.

Well, similarly, we can write down the equilibrium requirement for the spring 3. And

I've written down the matrix here. The only difference to the equilibrium

requirements for spring 2 are that we're using now k3 here. And, of course, the

superscript now is 3.

We can then proceed to write down the equilibrium equation for spring 4, which is

the same form as before, now k4 here and the 4 superscript denoting element 4.

And, finally for k5, we have k5 here and superscripts 5 here to denote element 5.

Now we should also point out one other important point. Namely, if we look at this

cart systems here, notice that this k1 spring is connected to u1. It's connected to u1.

k4 is connected to u1 and u3. So if we look at the equilibrium requirements here,

you will notice that I have F1 here for k1 because this is u1 here. That is the global

displacement u1. And looking now at k4, a more complicated case which is

connected to u1 and u3, I have for that spring the u1 and u3 denoted here. And we

have F1 and F3 here, F1 and F3. So these are the forces that go directly into the

degrees of freedom 1 and 3 respectively, and similarly for the other springs.

Now if we want to assemble the global equilibrium equations for this structure with

the unknowns u1, u2, u3, the loads R1, R2, and R3 are known, then we have to use

now the equilibrium requirement at these degrees of freedom u1, u2, and u3, or

rather at the cart 1, 2, and 3. And that equilibrium requirement then means that the

sum of the forces acting onto the individual springs 1, 2, 3, and 4 at degree of

freedom 1 must be equal to R1.

Now let us look once at this first equation back here again. Notice u1 couples into

this spring 1, spring 2, spring 3, and spring 4. And that coupling is seen right here in

spring 1, 2, 3, and 4. And summing all these forces that are acting individually onto

the springs, the sum of these forces must be equal to the external load. That is the

8



interconnection requirement between the springs.

The equilibrium requirements within the springs are expressed by these individual

matrices here that we looked at already. These are the equilibrium requirements for

the individual springs. Now I'm talking about the equilibrium requirement at the

carts, the interconnection requirements between the springs.

Similarly, we can sum the forces that have to be equal to R2 and sum the forces

that have to be equal to R3. And these three equations then set up in matrix form by

substituting for F1(1), F1(2), and so on from the equilibrium requirements of the

springs, we directly obtain this set off equations, KU equals R. Notice that K now is a

3 by 3 matrix. U is a 3 by 1 vector. R is a 3 by 1 vector. I denote matrices and

vectors by bars under the symbols. As you can see here there are bars under these

symbols.

Well, if we look at these equilibrium equations, we notice that our U vector, this

vector U here contains u1, u2, and u3 as the unknowns. Notice this T here, this

superscript T means transpose. The actual vector U actually looks this way u1, u2,

u3. It lists the displacements vertically downwards. But it is easier to write it this way

by transposing as a vector. So UT, capital T there, means transpose.

Similarly for R we have R1, R2, and R3 as the components. And the K matrix that

we have obtained by substituting into these equations from the element equilibrium

requirements, the K matrix is this one here. Now let us look a little closer at how do

we construct this K matrix.

Well, we note that the total K matrix can be constructed by summing all of the

individual element matrices from 1 to 5. And these individual element matrices are,

for two extremes, written down here. K1 is a 3 by 3 matrix now. Not anymore the 1

by 1 or 2 by 2. It's a 3 by 3 matrix with just k1 in the 1,1 position. All the other

elements are 0.

K2 is this matrix. So what I have done then is I have taken the 2 by 2 matrix which

appeared in the element equilibrium requirement and has blown this matrix up filling
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zeroes for the third degree of freedom. Similarly we would obtain K3 and so on. The

zeroes always appear in those rows and columns into which the element does not

couple, in other words, into those degrees of freedom that the element does not

couple.

For example, k1, this element 1 here, couples only into the degree of freedom 1.

So, therefore, we have the second and third rows be 0. Element 2 couples only into

degree of freedom 1 and 2. Therefore, the third degree of freedom contains all

zeroes, and so on.

This assemblage process is called the direct stiffness method, an extremely

important concept that is very well implemented in a computer program. It

represents the basis of the implementation of the finite element method in almost

every code that is currently in use. The direct stiffness method has also a very nice

physical explanation. And this is what I really want to talk to you about now for the

next five minutes.

The steady-state analysis, of course, then is completed. The steady-state analysis

of this system, of course, is completed by solving this system of equations here,

equations a. Once we know U we can go back to the elements and calculate the

forces in the elements themselves by going to the element equilibrium

requirements.

Well let us look then at what we are doing when we perform this process here by

summing, in other words, the K element, the stiffnesses of the elements into a

global stiffness matrix. And let us look at what we're doing physically. Because that

really, of course, is the direct stiffness method that we are using here. And it is, I

think, very nice if you can clearly see what is happening in that method.

Well, the basic process is the following. Here I have drawn the carts without any

strings. Of course, our degrees of freedom are here, u1, u2, and u3. And the loads

are R1, R2, R3. I don't need to put them in again. This system here corresponds to

a K matrix with zeroes everywhere. Blanks in these positions here denote zeroes.

So this is a system that we're starting off with in this direct stiffness method, a
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system without any elements, a matrix without any elements also.

The process, then, is the following. We are using this cart system. And we're adding

one spring on. That is the first edition. That is spring k1.

Mathematically this means that we're going through the following process. We are

taking our K matrix with blanks everywhere, and we're adding into it this one

element, k1. Now this is a K matrix, this stiffness matrix governing-- and this is very

important-- governing this system. Once again, this is a K matrix governing this

system. Of course, this is not a stable system yet because there are no connections

between these carts here.

Well, with a second edition we're adding in the second spring. And that means we

are putting this spring there. That is k2. Well in our matrix formulation then, what

that means in our direct stiffness method is that we are going from this system over

on this K matrix to that K matrix.

We are adding this second spring stiffness into the K matrix. So this is the stiffness

matrix that governs the equilibrium of this physical system. Notice that this spring

here, the second spring, couples into u1 and u2. And therefore we have added

these blue elements corresponding to the second spring into degrees of freedom 1

and 2.

Next in the direct stiffness method we're adding the next spring element, and that is

spring element number 3. Again, it couples into u1 and u2. And the stiffness matrix

that we are now talking about is the following. We're going from this stiffness matrix

to that stiffness matrix here, adding the green k3 in there.

Now next we go from this system to add into the system the spring 4, spring 4 now.

Please notice that this is now a stable system. It is a stable system because if I want

to put u3 over here, then I have to do work on this spring. So this is now a stable

system.

In our mathematical formulation, or in our direct stiffness method rather, what this

then corresponds to is that we are going from this system here, or this stiffness
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matrix, to that stiffness matrix. Notice we have added a k4 into here. And that, in

fact, allows us now to solve at this level. We could solve the equations KU equals R.

Of course, this now is a stiffness matrix corresponding to this system.

We have not quite yet reached the system that we want to analyze. But we reach it

by adding the final spring in k5. k5 now is here. And that corresponds in our direct

stiffness method to adding this spring in there. These elements here, k5.

Notice that this spring now here couples into degrees of freedom 4 and five 5, and

that's why it appears in quadrant column 4 and 5 here. And this spring. I should've

have said, this spring here couples into column 2 and 3, column 2 and 3 meaning

u2 and u3. And here we see, of course, that the spring indeed goes into degree of

freedom u2 and u3, into degree of freedom u2 and u3.

So this then is to final system that we want to analyze, and this is the final stiffness

matrix that we had to obtain. Notice, once again, this matrix has been obtained by

taking the sum over all the element stiffness matrices. We are summing from i

equals 1 to 5.

And this mathematical process, once again, which we call the direct stiffness

method has a physical analog. You can understand it physically in the way I've

shown here. Namely you're starting off with a blank K matrix, no elements in it at all,

and you simply add one element after the other into that K matrix filling up the K

matrix that way. And the additions are carried out-- this is important-- by taking the

element matrices and adding them into the appropriate columns and rows of the K

matrix.

For example, this element here couples into degree of freedom 1 and 3. And if we

go once more back to the process that we have been carrying out here, notice our

k4 here corresponds to degree of freedom 1 and degree of freedom 3, the first row

and column and third row and column. That's where these elements appear. So

there's a neat physical explanation for the direct stiffness method which I wanted to

discuss with you here.
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Now as another approach, instead of using the direct formulation of the equations

KU equals R, the equilibrium equations of the system, we can also use a variational

approach. We will be talking about that variational approach in the second lecture.

And I would like to discuss it, or introduce it to you, now very briefly for the analysis

of this discrete system that we just looked at.

The basic process here is that we are constructing a functional pi which is equal to u

minus w where u is the strain energy of the system and w is the total potential of the

loads. The equilibrium equations that we just looked at, KU equals R in other words,

are obtained by invoking that del-pi shall be 0, the stationality condition on pi. And

this means that del-pi, del-ui, shall be 0 for all ui. This then gives three equations,

And these three questions are obtained as follows.

If we use u, the strain energy of the system is given right here, 1/2 U transpose KU.

If you were to multiply this out substituting for U and for K with the values that I've

given to you, you would find that this indeed is the strain energy in the system. The

potential of the total loads is given by U transposed R. Notice please that there is no

1/2 here in front. Simply U transpose R is the potential of the loads. Now if we

invoke this condition that del-pi, del-ui shall be 0, we directly obtain KU equals R.

Now there's one important point. To obtain u and w, u and w here, we again, can

add up the contributions from all the elements using the direct stiffness method. In

other words, this K here can be constructed as we have shown by summing over

the elements, by summing the contributions over all of the elements. And since this

is true, we can also write this total u as being the sum of the ui's, if you want to, the

strain energies of all of the individual elements.

So here too we could use the direct stiffness method. Of course, in actuality, in

actual practical analysis, we never form this u, we never form that w when we want

to calculate KU equals R. This is simply a theoretical concept that I wanted to

introduce to you, a theoretical concept that we will be using later on in the

construction of KU equals R. We never really calculate these measures if we only

want to calculate KU equals R.
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It might be of interest to us to calculate this in order to find out how much strain

energy is put into individual elements in finite element analysis. But this is only done

if you want to evaluate error bounds on the finite element solution and so on. If we

only want the calculate KU equals R and obtain the use in other words, to be able to

predict the displacements and the stresses in the elements, then we would not

calculate these two quantities.

Now this then were the essence of the analysis of a steady-state problem for

discrete systems. I pointed out already that if we have an extra finite element

system there, of course, many additional concepts that we have to talk about, a

selection of elements, the kinds of interpolations to be used, and, of course, we then

have to also talk about how do we solve these equations, and so on. We will

address these questions in the later lectures.

However, another class of problems that we will be talking about are propagation

problems. The main characteristics of propagation problems are that the response

changes with time. Therefore, we need to include the d'Alembert forces. Now

basically what we are saying then is that we're looking at static equilibrium as a

function of time but also taking into account the d'Alembert forces. And that,

together then, makes it a dynamic problem.

Of course, if the displacement varies very slow, in other words, the load varies very

slow, then the inertia forces can be neglected, and we would simply have this set of

equations where R of t is a function of time and U of t would be a function of time.

However, when R of t acts rapidly or suddenly inertia conditions are applied to the

system, then the inertia forces can be very important. We have to include their

effect. And then we have a true propagation problem, a truly dynamic problem that

has to be solved.

For our example, the M matrix here would be this 3 by 3 matrix where m1 is simply

the mass of the cart 1, m2 is the mass of the cart 2, m3 is the mass of the cart 3. Of

course these masses would have to be given. And notice that we would evaluate

them by basically saying that this total mass here can be evaluated by taking the
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mass per unit volume times the volume. And that would be the mass that we're

talking about when we accelerate that cart into this direction.

So these masses here are very simply evaluated. When we talk later on about

actually finite elements, we will be talking about similar mass matrices where we

simply take the total volume of an element and lump that volume of the element to

its nodes. We will also talk about consistent mass matrices where this mass matrix

is a little bit more complicated. In other words, some of these off-diagonal elements

are not 0.

Finally, we will also talk about eigenvalue problems. In the solution of eigenvalue

problems, we will be talking about generalized eigenvalue problems, in particular,

which are Av equals lambda Bv, which can be written down in this form where A and

B are symmetric matrices of order n, v is a vector of order n, and lambda is a scalar.

As an example, for example here in dynamic analysis, what we will see there is K

phi equals omega squared M phi where K is the stiffness matrix that I talked about

already. This which would be for the cart system here simply as 3 by 3, this 3 by 3

stiffness matrix that I introduced to you. And it's a mass matrix that we just had here

on this viewgraph. That is the mass matrix. And phi is the vector.

If we find a solution, in other words, if this equation is satisfied, we put an i on there

and satisfy for phi i and omega i squared. Omega i squared will be a frequency. I

will be discussing it just now a little more. And then we're talking about an eigenpair.

But notice that is a typical problem that we will be discussing which arises, in other

words, in dynamic analysis.

Notice also that what we're really saying here is that the right-hand side is a load

vector. And if we know v, if we know lambda, then we know the load vector. What

we would calculate then is the same v that we have substituted here. In other

words, if we consider this to be a set of loads where v is now known, lambda is

known, then we could evaluate R. In solving Av equals R, we would get back our v

that we substituted into here. And that is the main characteristic of an eigenvalue

problem.
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Well, they arise in dynamic and buckling analysis, and let us look at one example

where we actually obtain this eigenvalue problem. And the example is simply the

system of rigid carts that we considered already earlier. We obtain the eigenvalue

problem by looking at the equilibrium equations when no loads are applied. And we

call these the free vibration conditions, free because there are no loads applied,

free of loads.

If we let U be equal to phi times sine omega t minus tau where the time dependency

now in the response is in this function here, in the sine function only, and if we take

the second derivative of U, meaning that we get a cosine and then a minus sign in

here, and, of course, this omega twice outside, so we have a sign change here. We

have a minus omega squared M phi sine omega t minus tau for this part here. And

for this part KU we obtain K phi sine omega t minus tau by simply substituting from

here into there. And, of course, the sum of these two must be equal to 0.

Now this equation must hold for any time, t. So we can simply cancel out this part

and that part. And the resulting set of equations that we are obtaining then are

given on the last viewgraph, namely those equations being K phi equals omega

squared M phi.

So that is the generalized eigenvalue problem which we obtain in dynamic analysis.

We will be later on talking about how we solve this generalized eigenvalue problem

for the eigenvalues and eigenvectors.

In the case of of the 3 by 3 system that we are considering here, in other words, the

analysis of the cart system, we only have three solutions, omega 1 phi 1, omega2

phi2, omega3 phi3. And we call each of the solutions an eigenpair. So there are

three eigenpairs that satisfy this particular equation.

Notice that this is, in other words, the equation that I talked about here earlier. And

the eigenpairs, phi i, omega i squared are the solutions to this equation. We are

really interested in omega i because that is the frequency in radians per second,

and the eigenvalue, however, being omega squared.
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In general when we have an n by n system-- and I have already written down here

the n by n, let me put it bigger once more here-- and we have a general n by n

system, in other words, and not being equal to 3 just as we have in our cart system,

then we have n solutions. And, however, we will find that in finite element analysis

we do not necessarily need to calculate all n solutions.

In fact, when we consider large eigensystems where n is equal to 1,000 or even

more, then certainly we do not want to calculate all eigenvalues. It would be

exorbitantly expensive, much too expensive to calculate all of the eigenvalues and

eigenvectors. We don't need to have them all in analysis.

And, therefore, we will talk about eigenvalue solution methods that only calculate

the eigenvalues and eigenvectors that we are actually interested in. We also, of

course, have to, before we actually get to that topic which is the topic of the last

lecture, we will talk about how we actually construct these K matrices, how we

calculate them, construct them for different finite element systems.

Well, this then does complete what I wanted to say in this lecture. Thank you very

much for your attention.
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