Topic 13

Solution of Nonlinear Dynamic Response—Part I

Contents:	Basic procedure of direct integration
	The explicit central difference method, basic equations, details of computations performed, stability considerations, time step selection, relation of critical time step size to wave speed, modeling of problems
	Practical observations regarding use of the central difference method
	The implicit trapezoidal rule, basic equations, details of computations performed, time step selection, convergence of iterations, modeling of problems
	Practical observations regarding use of trapezoidal rule
	Combination of explicit and implicit integrations
Textbook:	Sections 9.1, 9.2.1, 9.2.4, 9.2.5, 9.4.1, 9.4.2, 9.4.3, 9.4.4, 9.5.1, 9.5.2

Examples:

Sections 9.1, 9.2.1, 9.2.4, 9.2.5, 9.4.1, 9.4.2, 9.4.3, 9.4.4, 9.5.1, 9.5.2 9.1, 9.4, 9.5, 9.12

$$\left(\frac{1}{\Delta t^2}\,\underline{M}\,+\,\frac{1}{2\Delta t}\,\underline{C}\right)^{t+\Delta t}\underline{U}\,=\,{}^t\underline{\hat{R}}$$

where

$${}^{t}\underline{\hat{\mathbf{R}}} = {}^{t}\underline{\mathbf{R}} - {}^{t}\underline{\mathbf{F}} + \frac{2}{\left(\Delta t\right)^{2}}\underline{\mathbf{M}} {}^{t}\underline{\mathbf{U}} - \left(\frac{1}{\Delta t^{2}}\underline{\mathbf{M}} - \frac{1}{2\Delta t}\underline{\mathbf{C}}\right) {}^{t-\Delta t}\underline{\mathbf{U}}$$

• The method is used when <u>M</u> and <u>C</u> are diagonal:

$$^{t+\Delta t}U_{i} = \left(\frac{1}{\frac{1}{\Delta t^{2}}m_{ii} + \frac{1}{2\Delta t}c_{ii}}\right)^{t}\hat{R}_{i}$$

and, most frequently, $c_{ii} = 0$.

Transparency 13-5

Note:

- We need $m_{ii} > 0$! (assuming $c_{ii} \, = \, 0)$
- ${}^{t}\underline{F} = \sum_{m} {}^{t}\underline{F}^{(m)}$ where m denotes an element.
- To start the solution, we use $\Delta t^2 \circ t$

$${}^{-\Delta t}\underline{U} = {}^{0}\underline{U} - \Delta t {}^{0}\underline{\dot{U}} + \frac{\Delta t^{2}}{2} {}^{0}\underline{\ddot{U}}$$

Transparency 13-6

Transparency 13-23 Trapezoidal rule:

$${}^{t+\Delta t}\underline{U} = {}^{t}\underline{U} + \frac{\Delta t}{2} \left({}^{t}\underline{\dot{U}} + {}^{t+\Delta t}\underline{\dot{U}} \right)$$

$${}^{t+\Delta t}\underline{\dot{U}} = {}^{t}\underline{\dot{U}} + \frac{\Delta t}{2} \left({}^{t}\underline{\ddot{U}} + {}^{t+\Delta t}\underline{\ddot{U}} \right)$$

Hence

$${}^{t+\Delta t}\underline{\dot{U}} = \frac{2}{\Delta t} \left({}^{t+\Delta t}\underline{U} - {}^{t}\underline{U} \right) - {}^{t}\underline{\dot{U}}$$
$${}^{t+\Delta t}\underline{\ddot{U}} = \frac{4}{\left(\Delta t\right)^{2}} \left({}^{t+\Delta t}\underline{U} - {}^{t}\underline{U} \right) - \frac{4}{\Delta t} {}^{t}\underline{\dot{U}} - {}^{t}\underline{\ddot{U}}$$

Transparency 13-24

In our incremental analysis, we write ${}^{t+\Delta t}\underline{\dot{U}}^{(k)} = \frac{2}{\Delta t} \left({}^{t+\Delta t}\underline{U}^{(k-1)} + \Delta \underline{U}^{(k)} - {}^{t}\underline{U} \right) - {}^{t}\underline{\dot{U}}$ ${}^{t+\Delta t}\underline{\ddot{U}}^{(k)} = \frac{4}{(\Delta t)^2} \left({}^{t+\Delta t}\underline{U}^{(k-1)} + \Delta \underline{U}^{(k)} - {}^{t}\underline{U} \right)$

$$\frac{\Delta \underline{U}^{(k)}}{(\Delta t)^2} \underbrace{(\Delta \underline{U}^{(k)} + \Delta \underline{U}^{(k)} - \underline{U}^{(k)}}_{-\frac{4}{\Delta t}} \underbrace{(\Delta \underline{U}^{(k)} - \underline{U}^{(k)})}_{-\frac{1}{\Delta t}}$$

and the governing equilibrium equation is

$$\underbrace{\begin{pmatrix} {}^{t}\underline{\mathsf{K}} + \frac{\mathbf{4}}{\Delta t^{2}}\underline{\mathsf{M}} + \frac{\mathbf{2}}{\Delta t}\underline{\mathsf{C}} \end{pmatrix}}_{t\underline{\mathsf{K}}} \Delta \underline{\mathsf{U}}^{(k)}$$

$$= {}^{t+\Delta t}\underline{\mathsf{R}} - {}^{t+\Delta t}\underline{\mathsf{E}}^{(k-1)}$$

$$- \underline{\mathsf{M}} \left[\frac{\mathbf{4}}{\Delta t^{2}} \left({}^{t+\Delta t}\underline{\mathsf{U}}^{(k-1)} - {}^{t}\underline{\mathsf{U}} \right) - \frac{\mathbf{4}}{\Delta t} {}^{t}\underline{\mathsf{U}} - \right]$$

$$- \underline{\mathsf{C}} \left[\frac{\mathbf{2}}{\Delta t} \left({}^{t+\Delta t}\underline{\mathsf{U}}^{(k-1)} - {}^{t}\underline{\mathsf{U}} \right) - {}^{t}\underline{\mathsf{U}} \right]$$

۲Ü

Transparency 13-25

Some observations:

- 1) As Δt gets smaller, entries in ${}^{t}\underline{\hat{K}}$ increase.
- 2) The convergence characteristics of the equilibrium iterations are better than in static analysis.
- 3) The trapezoidal rule is <u>unconditionally stable</u> in linear analysis. For nonlinear analysis,
 - select Δt for accuracy
 - select Δt for convergence of iteration

Transparency 13-26

Transparency **Displacements:** 13-29 $\frac{\|\underline{\Delta \underline{U}}^{(i)}\|_2}{\text{DNORM}} \leq \text{DTOL}$ (considering only translational degrees of freedom, for rotational degrees of freedom, use DMNORM). Modeling: Transparency · Identify frequencies contained in the 13-30 loading. · Choose a finite element mesh that can accurately represent the static response and all important frequencies. · Perform direct integration with $\Delta t \doteq \frac{1}{20} T_{co}$ $(T_{co}$ is the smallest period (secs) to be integrated).

MIT OpenCourseWare http://ocw.mit.edu

Resource: Finite Element Procedures for Solids and Structures Klaus-Jürgen Bathe

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.