Topic 20

Beam, Plate, and Shell Elements— Part II

Contents:

- Formulation of isoparametric (degenerate) beam elements for large displacements and rotations
- A rectangular cross-section beam element of variable thickness; coordinate and displacement interpolations
- Use of the nodal director vectors
- The stress-strain law
- Introduction of warping displacements
- Example analysis: 180 degrees, large displacement twisting of a ring
- Example analysis: Torsion of an elastic-plastic crosssection
- Recommendations for the use of isoparametric beam and shell elements
- The phenomena of shear and membrane locking as observed for certain elements
- Study of solutions of straight and curved cantilevers modeled using various elements
- An effective 4-node shell element (the MITC4 element) for analysis of general shells
- The patch test, theoretical and practical considerations
- Example analysis: Solution of a three-dimensional spherical shell
- Example analysis: Solution of an open box
- Example analysis: Solution of a square plate, including use of distorted elements
- Example analysis: Solution of a 30-degree skew plate
- Example analysis: Large displacement solution of a cantilever

Example analysis: Collapse analysis of an I-beam in torsion		
Example analysis: Collapse analysis of a cylindrical shell		
Sections 6.3.4, 6.3.5		
6.18		
The displacement functions to account for warping in the rectangular cross-section beam are introduced in		
Bathe, K. J., and A. Chaudhary, "On the Displacement Formulation of Torsion of Shafts with Rectangular Cross-Sections," <i>International</i> <i>Journal for Numerical Methods in Engineering</i> , 18, 1565–1568, 1982.		
The 4-node and 8-node shell elements based on mixed interpolation (i.e., the MITC4 and MITC8 elements) are developed and discussed in		
Dvorkin, E., and K. J. Bathe, "A Continuum Mechanics Based Four- Node Shell Element for General Nonlinear Analysis," <i>Engineering</i> <i>Computations</i> , 1, 77–88, 1984.		
Bathe, K. J., and E. Dvorkin, "A Four-Node Plate Bending Element Based on Mindlin/Reissner Plate Theory and a Mixed Interpolation," International Journal for Numerical Methods in Engineering, 21, 367– 383, 1985.		
Bathe, K. J., and E. Dvorkin, "A Formulation of General Shell Ele- ments—The Use of Mixed Interpolation of Tensorial Components," <i>International Journal for Numerical Methods in Engineering</i> , in press		
The I-beam analysis is reported in		
Bathe, K. J., and P. M. Wiener, "On Elastic-Plastic Analysis of I-Beams in Bending and Torsion," <i>Computers & Structures</i> , <i>17</i> , 711–718, 1983.		
The beam formulation is extended to a pipe element, including ovali- zation effects, in		
Bathe, K. J., C. A. Almeida, and L. W. Ho, "A Simple and Effective Pipe Elbow Element—Some Nonlinear Capabilities," <i>Computers & Struc-</i> <i>tures</i> , 17, 659–667, 1983.		

Also
$$\begin{split} & \mathsf{u}_i = {}^{t+\Delta t} \mathsf{X}_i - {}^t \mathsf{X}_i \\ & = \sum_{k=1}^N h_k \, \mathsf{u}_i^k + \frac{t}{2} \sum_{k=1}^N a_k \, h_k \, \mathsf{V}_{ti}^k + \frac{s}{2} \sum_{k=1}^N b_k \, h_k \, \mathsf{V}_{si}^k \end{split}$$
where V_{ti}^k and V_{si}^k are increments in the direction cosines of the vectors ${}^t \underline{\mathsf{V}}_t^k$ and ${}^t \underline{\mathsf{V}}_s^k$. These increments are given in terms of the incremental rotations $\underline{\theta}_k$, about the Cartesian axes, as $\underline{\mathsf{V}}_t^k = \underline{\theta}_k \times {}^t \underline{\mathsf{V}}_t^k$; $\underline{\mathsf{V}}_s^k = \underline{\theta}_k \times {}^t \underline{\mathsf{V}}_s^k$

Transparency 20-9

Transparency 20-10

Demonstration Photograph 20-1 Close-up of ring deformations

A remedy for the 2-node beam element is to use only 1-point Gauss integration (along the beam axis).

This corresponds to assuming a constant transverse shear strain, (since the shear strain is only evaluated at the mid-point of the beam).

The bending energy is still integrated accurately

(since $\frac{\partial \beta}{\partial r}$ is correctly evaluated).

h/L		finite element solution		
L = 100	$\theta_{analytical}$	(1-point integration)		
0.50	9.6×10^{-7}	9.6×10^{-7}		
0.10	1.2×10^{-4}	1.2×10^{-4}		
0.01	1.2×10^{-1}	1.2×10^{-1}		

Transparency 20-33

- The 3- and 4-node beam elements evaluated using 2- and 3-point integration are similarly effective.
- We should note that these beam elements based on "reduced" integration are reliable because they do not possess any spurious zero energy modes. (They have only 6 zero eigenvalues in 3-D analysis corresponding to the 6 physical rigid body modes).
- The formulation can be interpreted as a mixed interpolation of displacements and transverse shear strains.

Transparency 20-34

The exactly integrated 3-node beam element, when curved, does contain erroneous shear strains and erroneous mid-surface membrane strains. As a result, when h becomes small, the element becomes very stiff.

h/R R = 100	$\theta_{analytical}$ ($\alpha = 45^{\circ}$)	finite element solution: 3-node element, 3-point integration	finite element solution: 3-node element, 2-point integration
0.50	7.5×10^{-7}	6.8 × 10 ⁻⁷	7.4 × 10 ⁻⁷
0.10	9.4 × 10^{-5}	2.9 × 10 ⁻⁵	9.4 × 10 ⁻⁵
0.01	9.4 × 10^{-2}	4.1 × 10 ⁻⁴	9.4 × 10 ⁻²

Transparency 20-37

• Similarly, we can study the use of the 4-node cubic beam element:

h/R R = 100	$ heta_{ ext{analytical}} \ (lpha = 45^\circ)$	finite element solution: 4-node element, 4-point integration	finite element solution: 4-node element, 3-point integration
0.50	7.5×10^{-7}	7.4×10^{-7}	7.4 × 10 ⁻⁷
0.10	9.4 × 10^{-5}	9.4 × 10^{-5}	9.4 × 10 ⁻⁵
0.01	9.4 × 10^{-2}	9.4 × 10^{-2}	9.4 × 10 ⁻²

We note that the cubic beam element performs well even when using full integration. Transparency 20-38

Note added in preparation of study-guide

In the new version of ADINA (ADINA 84 with an update inserted, or ADINA 86) the use of the 5 or 6 shell degree of freedom option has been considerably automatized:

- The user specifies whether the program is to use 5 or 6 degrees of freedom at each shell mid-surface node N
 - IGL(N).EQ.0 \rightarrow 6 d.o.f. with the translations and rotations corresponding to the global (or nodal skew) system
 - IGL(N).EQ.1 \rightarrow 5 d.o.f. with the translations corresponding to the global (or nodal skew) system but the rotations corresponding to the vectors V_1 and V_2
- The user (usually) does not input any mid-surface normal or director vectors. The program calculates these automatically from the element mid-surface geometries.
- The user recognizes that a shell element has no nodal stiffness corresponding to the rotation about the mid-surface normal or director vector. Hence, a shell mid-surface node is assigned 5 d.o.f. unless
 - a shell intersection is considered
 - a beam with 6 d.o.f. is coupled to the shell node
 - a rotational boundary condition corresponding to a global (or skew) axis is to be imposed
 - a rigid link is coupled to the shell node

For further explanations, see the ADINA 86 users manual.

20-3

MIT OpenCourseWare http://ocw.mit.edu

Resource: Finite Element Procedures for Solids and Structures Klaus-Jürgen Bathe

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.