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PROFESSOR: Ladies and gentlemen, welcome to lecture number seven. In this lecture, I would

like to present to you the formulation of structural elements. We will be discussing

beam, plate, and shell elements, and I would like to introduce to you the

isoparametric approach for interpolations.

There are two approaches in the formulation that we can follow. The first one is a

strength of materials approach, in which case we look at a straight beam element,

we use a beam theory including shear effects. If you look at a plate element, we use

a plate theory including shear effects, also. The names associated with these

theories that we're using are the names of Reissner and Mindlin.

In the second approach, we have the continuum mechanics approach, in which we

use the general principle of virtual displacement, but we exclude the stress

components not applicable. For example, in a plate, we set the stress through the

thickness of the plate equal to zero. In addition, also, we have to impose in the use

of the principle of virtual displacement the kinematic constraints for particles on

sections or originally normal to the mid-surface. Namely, we have to put the

constraint into the structure that the particles remain on a straight line during

deformation.

Well, as examples, I've plotted here, I've shown here two structures, a beam and a

shell. Let's look first at a beam. In this case, we have that the original particles

normal to the mid-surface, or the neutral axis of the beam, are on this orange line.

I've shown here a large number of particles. The kinematic constraint that we're

talking about is that during deformations, these particles remain on a straight line.

They move over to the yellow line here. In other words, point A goes to point a

prime. Another particle here goes over to this particle here. This particles goes over
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to that particle, and so on, and these particles remain on a straight line. That is the

basic kinematic assumption. However,

We should also notice that there's a right angle between the mid-surface, or neutral

axis off the beam, and this line of particles initially. This right angle is not preserved

during deformation. In other words, this angle here is not a right angle after

deformations anymore. In the case of the shell, the kinematic constraint is quite

similar. Here, we have now the mid-surface of the shell shown as a dashed line.

The particles on a line normal to that mid-surface are shown here again in orange.

This is the initial line.

And during deformation, these particles remain on a straight line. Now they have

come to be the yellow line here, and we notice that, again, there's a right angle

initially here, but that right angle is not preserved during deformations because, in

each case, we are including shear effects. Here, we include shear effects, and

similarly here, we also include shear effects.

Well, I've prepared some view graphs to show these facts a little bit more distinct.

Here, we have a first view graph on which I show the assumptions of the basic

Bernoulli-Euler beam theory that is used in the development of conventional beam

elements. We have here the original beam element with its neutral axis in a dashed

line. And that beam element, during deformation, becomes this. It goes into this

shape here. We notice-- and this is important-- that this section here, which I now

mark in blue, goes over into that section, and that the displacement is w at the mid-

surface, and that the slope here at right angles to that section is nothing else than

dw dx. In other words, this angle here is really nothing else than that angle, dw dx.

This is the Bernoulli-Euler beam theory excluding shear deformations.

The important point is that when we use this beam theory, we have to match

between two elements, w, in other words, the displacement at the mid-surface has

to be the same for element one and element two. And in addition, this slope has to

be the same for both elements, dw dx for element one on the left-hand side must be

equal to dw dx on the right-hand side. This is the conventional beam theory that is
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used to develop the Hermitian beam elements. And what I'd like to introduce to you

now is the beam theory that we're using in the isoparametric formulation, namely in

the development of modern beam elements, pipe elements, shell elements, and

plate elements.

I should say at this point that the conventional Hermitian beam element that you're

probably familiar with is more effective in engineering analysis than the beam

element that I'm talking about here when we just look at a straight beam. However, I

want to look at the straight beam here as an example to introduce to you the

formulation of the structural elements that I'm talking about. The formulation is very

well displayed, very well demonstrated. The basic features are very well

demonstrated looking at the beam element, although the application of this

formulation to a straight beam element is not as effective as just the usage of a

Hermitian beam element.

However, if we talk about curved beam elements, pipe elements, then this

formulation is indeed very effective. And, of course, for plates and shells, it is really

very effective. Let me show to you, then, the basic points-- the basic important

points-- that are being used in the formulation. Here we have, again, our original

beam element. The neutral access is shown here, and this beam element now

moves over into this piece, into that shape, during deformations. We have a section

here, and as I pointed out earlier, that section has to remain straight during

deformations. In fact, it moves right to that section here.

Now notice that what we're talking about is a slope, dw dx here, which is this angle

here, plus a shear deformation angle, gamma, and dw dx minus gamma is this

angle. And that is the angle beta. In fact, this is the rotation of this line of particles.

In other words, we are not talking just about one state variable, w, as we do in the

Hermitian formulation, but we talk about two state variables now, beta and w. Beta

and w both are independent, and we will see that, later on, we will interpolate them

as independent quantities.

The important point, then, that if you look at two elements, if you do interpolate w
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and beta independently, then we need, between two elements, continuity in w and

continuity in beta. We do not talk about continuity in dw dx. We do not talk about

that, and that is the important point, particularly when we talk about the formulation

of plate elements and shell elements. The fact that we'll talk about independent

interpolations of w and beta, including shear effects, of course, in an approximate

way, but including shear affects, that fact alleviates us of many difficulties that we

encounter otherwise. In other words, that we encounter if we use a classical plate

theory excluding shear deformations.

A good starting point for the development of the elements is the use of the total

potential, pi, of an element. That total potential I've written down here, and we have

set pi is equal to a contribution from the bending part plus a contribution from the

shearing part, or the shearing deformations, and, of course, there is the external

work due to distributed pressure, p, on a beam element, and moments, externally

applied moments, m, onto the beam element.

Now, notice the quantities that I'm using here. The bending part is given by dw dx

squared, of course with the flex or rigidity in front, and this part here is given only in

terms of the section rotation beta, which is independent of the translation of the

neutral axes, w. Here, we have the shearing part, dw dx, minus beta As, the shear

strength. And they have been written down here once more. If we look at this

equation, here we get dw dx minus beta is equal to gamma.

The other quantities, of course, that I used in the derivation of this-- pi, the stress

being equal to v over as, v being the shear force on the section, As is the shear

area. Notice that we are assuming the shear strength through the thickness of the

beam element to be constant. They are constant because of this equation here,

basically. w, of course, varies along the length of the beam. Beta varies along the

length of the beam, but that means gamma is constant through to the thickness of

the beam.

Now, since gamma is constant through the thickness of the beam, we have to say,

of course, that also our shear stress is constant through the thickness of the beam,
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and we have to introduce a shear correction factor, k, which is equal to As over A,

where As is an equivalent shear area. Using these quantities we obtain this pi

functional, where, once again, we simply add the bending contribution, bending

strain energy to the shear strain energy, and we subtract the total potential of the

external loads. If we invoke the stationarity of this functional, in other words, we

invoke that delta pi is equal to zero, we obtain the principle of virtual work, or

principle of virtual displacement, which I have discussed with you in an earlier

lecture.

The result of invoking that del pi is equal to zero, or invoking the stationarity of pi is

this equation here. Now notice that in this equation we have, if we want to interpret it

once physically here, basically the real stress part, here, the virtual strain part.

Similarly here, the real stress part and the virtual strain part, and, of course, the

virtual work of the external loads. The important point is that we only integrate along

the length of the beam, and not through the thickness anymore, because we talk

about quantities stress resultants over the thickness. Well, once we have arrived at

this equation, we can proceed in much the same way as we have been proceeding

in the development of continuum isoparametric elements.

Here, we look at a particular case. Let us say we have a beam elements such as

shown here. Of course, this is the loading applied, P. The bending moment that

they're talking about here is shown here. It is a distributed bending moment over

any part of the beam. Similarly, P is only applied over a certain part of the beam.

The depth of the beam is b, the width of the beam is a. As a shear factor for a

rectangular beam, the sheer fact k that I introduced to you briefly is 5/6. Of course,

I, the moment of inertia, is ab cubed divided by 12.

The interpolations that we would use for such a beam element are one dimensional

interpolations. We only integrate along the length, x. And the one dimension

interpolations we discussed already earlier. We simply use the same that we have

been using already in the formulation of truss elements. Two point interpolation

would be this element here. Here, we use a three point interpolation. Notice-- and

this is important-- that we're talking about w and beta, the section rotations, as
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independent quantities. So for a three point, or three nodal point beam, we would

have, in just a plane analysis, we would have six degrees of freedom. For a cubic

element, we have eight degrees of freedom.

Of course, for a Hermitian beam element, we would have only these degrees of

freedom and those degrees of freedom, w and dw dx here, and w, dw dx here. So,

that is the reason why the Hermitian beam element is more effective. However, we

can use these interpolations directly to develop curved beam elements, pipe

elements, and then, of course, this approach is-- even for beam elements-- more

effective, as I mentioned earlier.

Well, let us then write down the basic interpolations that we are using. Here, we

have w being the sum of hi wi. hi, we discussed earlier already. And these, of

course, are nodal point transverse displacement. These are the nodal point

rotations of the sections, beta. In other words, I could have used here, as a

notation, beta i, but I chose to use theta i. If you write these equations in matrix

form, we directly obtain this relation here, where hw simply list hi, u lists the

displacements and section rotations, and similar here, beta is given in terms of an h

beta matrix. We take the differentiations of hw and h beta, and we get dw dx equal

to Bw times u d beta dx equal beta times u.

Once we have the principle virtual work established for the element that we're

considering and have chosen our interpolations, the approach of developing the

stiffness matrices, the load vectors, is exactly the same as in the development of

continuum elements.

Well here, I have written down the various quantities. U transposed lists, as I said

earlier, the displacement vector nodal points and the rotation vector nodal points.

Hw simply gives the interpolation functions, q, of course, being equal to the number

of nodal points we are using. And here, we have H beta. The Bw is given right here.

Notice our J inverse comes in there because we have to transform from r to x, x

being the actual physical coordinate along the length. Similarly, B beta being given

here. Again, the J inverse here to transform from r to x coordinates.

6



Once we have written down these, we can directly substitute into the principal of

virtual work, and we come up with the stiffness matrix, given here, and the load

vector given here. Let me point out a few important things here. Of course, this B

beta matrix here-- just to remind you-- comes from d beta dx. It's in fact, really, d

beta dr, but because we're integrating from -1 to plus 1, however, we have our

determinant J there to take into account the volume transformation. Here, of course,

we have d beta dx transposed. This comes from the virtual strains, and that comes

from the real strains. Of course, we have the stresses. Here, so these strains times

the stress strain law, E, being the Young's modulus, gives us the stresses.

Here, we talk about shearing deformations. Notice that we have here dw dx, that is,

the Bw minus the beta. So we have the derivative in here of w, but no derivative in H

beta because we are simply interpolating here the beta values. Again, of course, a

transformation to x, and therefore we have a determine J in there. The load vector

looks just the same way as in the development of continuum elements. This is the

transverse loading applied P. This is, of course, interpolating-- this

[UNINTELLIGIBLE] interpolates the virtual transverse displacements.

Here, we have the moment loads, the real moment loads, and this interpolates here

the section rotations, beta, along the lengths of the beam. Of course, again, the

volume transformation from r to x. This is really a straightforward application of what

we discussed earlier.

There is one important point, however, now, that I have to point out to you. If we

consider the functional pi, as I mentioned earlier, there's a bending part here and

there's a shearing part here. Notice that in this development I have divided through

by EI over 2, so that I introduce a value alpha there, and that alpha is really GAK

divided by EI. Now, if we look at that alpha value, and let's look at the value for a

rectangular section, we would see that the a value, of course, is a times b, and the I

value gives us really an ab cubed, if this is, here, b, and that is a. An ab cubed over

12, of course. And we have, also, the GK that gives us these, and of course an E in

front here.
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But the important point that I want to now concentrate on is really this b over b

cubed. We can see that as the element gets thinner and thinner, as the element

gets thinner and thinner, that alpha gets larger and larger. If alpha gets larger and

larger, this term here will be predominant. This term will be predominant. Now this

means, however, that if we want to finally converge to a beam in which the shear

strengths are negligible, in other words, in which the shear strengths are extremely

small, what we would have to be able to represent in the formulation is that this

value here goes to zero. And what happens in the formulation, really, is that as this

value gets larger and larger, any error introduced in the formulation, due to the fact

that this is not exactly zero in the finite element interpolation, that error is largely

magnified. Is magnified and, in fact, can introduce a very large error if this value is

not zero due to the fact that alpha becomes larger and larger if the element

becomes thinner and thinner.

In other words, in summary once more, if we are talking about a beam element that

gets thinner and thinner for which we know the shear strengths should becomes

smaller and smaller, our finite element interpolation must be able to represent this

fact. Now, if we look at the shear strengths, and this is, of course here, nothing else

then basically the shear strength squared, we now identify that dw dx minus beta,

when interpolated using our interpolation functions, must be able to be very, very,

very small. And that is a restriction on the formulation. So what we have to do,

really, is use high enough order interpolations so that dw dx minus beta can be

smaller for thin elements.

Of course for thick beam elements, that is not really a constraint because we know

that there are shearing deformations, and the shear deformations can be quite

significant. However, for thin elements, we must be able to represent the fact that

gamma is small, and therefore, we have to use high order interpolations. In fact, the

parabolic interpolation is really the lowest interpolation that one can recommend. It

would be better to use cubic interpolation. In fact, we use the cubic interpolation in

practice. In that case, this gamma value can be small, and we run into no difficulties

and the element can be very, very, very thin.
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Another approach would be to use a discrete Kirchhoff theory or reduced numerical

integration. These approaches have been developed for low order elements. The

discrete Kirchhoff theory approach is very effective. The reduced numerical

integration can also be effective, but has to be used with care. In particular, as I will

point out in the next lecture, we have to be careful that we do not introduce spurious

rigid body modes into the system.

The development that I just talked about really is applicable to an element that has

a rectangular section and the element was also lying in a plane. We looked at a

straight element. Let us now see how we can generalize these concepts directly to

the formulation of general curved beam elements. And for that purpose I've shown

here-- I'm showing here-- a more general beam element that lies in a three-

dimensional space. It's still rectangular, however, we could also have a circular

section instead. In fact, when we look at a pipe element, we do talk about-- we

have, of course, a circular section.

Well, in this particular beam element, notice I'm looking at node one here, node two

there, and generally node three here and node four here, because we want to pick

up the curvature of the element. I have this element lying in a three dimensional

space, x, y, z. Notice that that element has local coordinates r, s, t. These are the

isoparametric coordinates. And psi, eta, zeta, these are the actual continuous

physical coordinates in the beam element.

We define normals at each nodal point. The normal in the t direction here is 0 Vt 1.

The normal into the s direction is 0 Vs 1. And similarly, we have two normals at each

nodal point. Notice that for this particular rectangular beam element, I have the

thickness, a1, here and b1, there, and a2 here, b2 there. These thicknesses can be

different. Now what I want to use are the same basic assumptions that we have

familiarize ourselves already with when we looked at the special case of a straight

beam element in planar deformations. I want to use those basic assumption now in

the development of this more general beam element. And I want to use a continuum

approach.
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Well, what we are doing, then, is the following. We interpolate the coordinates, x, y,

and z, along the beam element in terms the nodal point coordinates of the nodes

that lie on the neutral axes of the beam plus an effect that comes in due to the

thickness of the beam. Now let us go and look in detail at the x interpolations. The L

denotes 0 or 1, 0 being the initial configuration, 1 being the final configuration. So

let's put simply a 0 in there, think in terms of a 0 there, and let's look at the initial

configuration first.

Well, here we have the initial x-coordinates of the nodal points, and there are q of

them. These are the one dimensional interpolation functions, just the same that we

use for a truss element, for example. Here, we have the t-axis. This is the t-axis into

the direction of the normal into the t direction. In other words, this is a t-axis here.

Notice that that t-axis here corresponds to this normal here. That s axis here

corresponds to this normal here. So here, we have t/2, and ak being the total

thickness of the beam corresponding to that t direction, hk being the one

dimensional interpolation functions again, and these are the direction cosines of the

normal in the t direction. Here, I should really say, this is a direction cosine

corresponding to the x-axis, corresponding to the x-axis. When we talk later about

the y and z-axis, then we use the y direction cosine and the z direction cosine.

This part comes in because the beam basically has a thickness into the t direction.

Now, we have also to introduce the s direction part, and here we s/2, the thickness

into s direction, the one dimensional interpolation functions, and the direction cosine

in the x direction of the normal in the s direction. Well, if we want to find, in other

words, the coordinates of any point in the beam element, and let us look, once

more, back at the beam element. If I want to find the coordinate of a point, p, lying

in that beam element here-- there's, say, point p-- what I have to do is I have to

identify the r, s, and t coordinates of that point, p, and then substitute these r, s, and

t-coordinates into this part here. And I would get the corresponding x-coordinate.

I proceed similarly with the y and z-coordinates. Notice, as I pointed out earlier, we

are talking still about the thickness ak hk here, here, and here, but we're using the x

direction cosines, the y direction cosines, and the z direction cosines here. And
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similarly for the s direction, we are using similar quantities.

So this is the interpolation of the beam element, and using these three formerly, we

can directly obtain-- we can directly obtain-- the x, y, and z-coordinates in this

system of axes of any point in the beam element. This is the most important fact.

The interpolations that I've listed here are the starting point of the development of

the strain displacement matrices and displacement interpolation matrices.

Now, let us identify that if these are the original coordinates for L being 0, then we

can also apply, of course, after the deformation, the same interpolation, and we put

L equal to 1. If we subtract the x1 minus zero x, we should get the displacements, u.

Notice that the displacements, u, are in the directions of the x-axis. Well, this is

exactly how we proceed. We use these interpolations for before deformation and

after deformation. And we subtract these interpolations as shown here and directly

obtain the u, v, and w displacements, of course, as a functional of r, s, and t.

Notice that if I proceed this way-- notice that if I proceed this way, I have used the

basic assumption that plane sections remain plane during deformation. This was the

assumption that I pointed out to your earlier. And we are using it in this general

information just in the same way as in the special application that I showed you

earlier. Well, having then-- just to refresh your memory, the u, v, and w, in terms of

r, s, and t, of course, via these subtractions, we obtain directly these equations

here. Notice that here we have, now, the nodal point displacements, uk, vk, wk, and

we have the change in the direction cosines. These are the changes in the direction

cosines.

Well, these changes in the direction cosines we want to express in terms nodal

points rotations. And that is achieved as shown on this view graph. We can express

these changes in the direction cosines directly by taking the cross product of a

vector of nodal points rotations, and I've listed here this vector, this is a nodal point

rotation about the x, y, and z-axis at nodal point, k. You're taking the cross product

of this vector times the original normal. Time the original normal. And we get, then,

the change in the normal, of course, for the t direction and for the s direction.
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If we substitute this relation here, of course, remember that these quantities are

known. They are given. So the unknowns now are theta k. If you substitute from

here into our relation here that I developed earlier, we directly obtain the

displacements of any point, p, in the beam in terms of nodal point displacements

and nodal points rotations. Because these quantities here now have been

eliminated and have been expressed in terms of nodal point rotations.

Well, now we have all the quantities that we need to develop our strain

displacement matrix for the beam element. Remember, all we need are the

coordinate interpolations, which I have developed already, and the displacement

interpolations. With those two quantities, we can immediately calculate, via the

procedures that I discussed with you earlier, the strain displacement transformation

matrix. And here it is given. Notice that we are now talking about strain into the eta

directions. In other words, the eta, psy, and zeta directions. These are the directions

that I pointed out to you earlier, which are the physical coordinate directions along

the beam.

Let me show it to you once more, the picture. The r, s, and t-coordinates are the

isoparametric coordinates. The eta, psy, and zeta coordinates are the physical

coordinates along the beam. In other words, for the one dimensional beam that we

looked at, this eta axis was, in fact, the x-axis. Of course, our x, y, and z-axes are

now global Cartesian axes.

Well then, with that information, we can directly calculate the strain displacement

matrix here. This is done effectively using numerical integration, as I will be

discussing in the next lecture. The transformations that are necessary are also done

on the integration point level. Notice that the uk here lists the nodal point

displacements and the nodal point rotations, and, of course, we have to also

remember one important fact, that for the beam we are talking about stresses into

the eta, psy, and zeta directions, normal stresses, shear stresses here, that are

related via this stress strain law to the normal strains and shear strains.

Notice that there's again the shear correction factor, k, which we want to also
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include in the formulation because we have assumed constant shearing strains

through the thickness of the beam, whereas we know that for a rectangular beam,

for example, we have parabolic shear strain distributions if the beam is straight.

I'd like to now go on with the development of plate elements. Here, we are talking

basically about the same approach. As I mentioned already once, the beam

element that I'm talking about here-- that I have been talking about-- is really only

an effective formulation when we talk about, and we want to develop, a curved

beam element. For pipe elements also, in the case of pipe elements, I should briefly

mention that, of course, we have to introduce, also, an ovalization degree of

freedom. That ovalization degree of freedom interpolates basically the ovalization

along the curved pipe. That is an additional degree of freedom that has to be

introduced in the curved beam element formulation.

So, the beam element formulation is effective for curved beams, pipes. However, it

does show the basic procedure that we are following also in the development of

plate and shell elements. And here, we have a typical plate element. In other words,

a flat shell. The u, v, and w displacements are now interpolated in this way. Notice u

be the displacement into the x direction, v the displacement into the y direction, w

being the transverse displacement, and again, we're talking about section rotations.

Beta x being the section rotation about the y-axis. That is, the beta x section

rotation. Beta y is a section rotation about the x-axis. So that our v, measuring z

positive upwards. Notice, our [? v4 ?] point here is negative, and that's why we have

a negative sign there.

Well, with that then given, we can immediately develop our strains by using the

strength of material equations that tell us epsilon xx is del u del x, epsilon yy is del v

del y, et cetera. And, of course, we're getting also our shear strengths. Having

developed the strains, we also recognize that our stresses are given in terms of

these formulae, where we have now the stress strain law for planed stress analysis,

because we are looking at the plate as an assemblage of thin elements, plane

stress elements, lying on top of each other. The stress through the plate, of course,

is 0, and this is, therefore, the plane stress [? material ?] that we have been putting
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in here. And the z times this vector here gives us the strains. The shearing stresses

are given here, and our functional pi that I used also for the beam element already

is given here.

Notice that we now have to integrate through this thickness of the plate element.

Here's our shear correction factor again, which is introduced just the same way as

in the beam element. Notice here we have the work, or the total potential of the

external loads, I should say. It is convenient now to integrate through the thickness

because we can integrate prior to interpolating the quantities, and that then yields

this value for pi, where our Cb parts and Cs part here, these two matrices, embody

the fact that we have integrated through the thickness, so we have the following

definitions here.

Kappa simply lists basically the bending strains, or I should say the rotations of the

sections. Of course here, we have the shearing strains. Gamma lists the shearing

strains. Cb now is a function of h cubed, just like in classic plate theory. Of course,

we also have an h cubed entering into the formulation. And this Cb matrix embodies

the fact that we have integrated through the thickness. Here is our Cs. Of course, in

the Cs, we also have the k part. Notice that, again, we have an h cubed here and an

h there. Therefore, to use our interpolation for plate and shell elements, we will

have to use high enough shell interpolations to be able to represent the fact that the

shear strains go to 0 for thin plates if we want to use this formulation for thin plates

and shells.

Well, invoking now the fact that pi shall be stationary, we directly obtain this

equation here. And this, of course, is nothing else than the principal of virtual

displacement for the plate element. Notice that from this point onwards, we simply

need to substitute only our interpolations. The interpolations that we are using are

now interpolations for w, beta x, and beta y. And, of course, we also interpolate x

and y. These interpolations, beta x and beta y, are independent from the

interpolations of w, and that is the important points, as I mentioned in the

development of the beam element. The fact that we are dealing, here, with three

interpolations of course means that an each nodal point, we have three unknowns,
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w's, and section rotations.

Let us now look very briefly at shell elements. The same concept that we used to

develop the general beam element after having discussed the special beam

element is also employed now in the development of what you might call a general

shell element, versus the special plate element that I just discussed, or the special

shell element that I just discussed, because a flat shell is of course nothing else

than a plate, if we also don't have membrane forces.

Well here, I'm showing a shell element, a nine-noded shell element. And notice that

in this case, now, we are talking about this normal only. In the beam, we had two

normals, vt and vs. Now we only have one normal. At a nodal point, we are defining

the membrane displacements, uk, vk, wk, being a transverse displacement, and the

rotations, alpha k and beta k. These rotations are defined about the axis v1 k and

v2 k. Now notice that these two rotations, alpha k and beta k, will give us the change

in vn during deformations. And this is really how we use alpha k and beta k. We

express a change in vn in terms of alpha k and beta k. The procedure is the same

as in the case of the beam element.

First, we express our x, y, and z-coordinates. And we're using here the original

normal, vn, the x, y and z direction cosines. These are, here, the x, y and z-

coordinates of the nodal point, k. We have our two dimensional interpolation

functions, hk, now here, because we talk about a two dimensional surface, the mid-

surface of the shell. Of course, at each nodal point, the shell can have a different

thickness, and that is denoted by using a different ak value at each nodal point.

Applying this interpolation here to the initial configuration and the final configuration

and subtracting 0x from 1x, and similar for y and z, we directly obtain the

displacements u, v, and w. Notice that the displacements now are involving the

nodal point displacements and the change in the direction cosines of the normal,

denoted here. These changes in the direction cosines of the normal can directly be

expressed in terms of the rotations, alpha k and beta k.

Now, notice here that once we have done this, of course here we involve now, as I
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mentioned earlier, the v1 and v2 directions. And these v1 and v2 directions are

arbitrarily selected. In fact, they are-- for our shell element here-- selected as shown

here. But once we have selected v1 and v2 at each nodal point, and they can vary

from nodal point to nodal point, then we can use this relation to attain directly the

change in the direction cosines of the normal during deformations, when the

deformations are alpha k and beta k.

So with this equation, then, and the earlier equation that I've given to you, we can

directly obtain the displacement interpolation matrix and the strain interpolation

matrix. One important point that I should briefly mention is that, of course, for the

shell, we have 0 stresses through the thickness. So, we have to use this stress

strain law here. Notice there are 0's in this row and column. And this is, here, the

plane stress part for the bending, and that is the shear part here. This is the stress

strain law defined in a local convected coordinate system where we are talking

about the stresses through the thickness being this direction here. And these other

stresses are aligned with the coordinate system. We have to transform this one

here to the global coordinate system in order to be able to use it directly in our

formulation. And that transformation is achieved via these transformation matrices.

Now, this element has been effectively implemented in the ADINA computer

program, and we want to use it using high order interpolation, as I mentioned

earlier, as the basic element that therefore is very useful, which can be used as a

flat element, a curved element, all curved element, or it can have curvature in both

directions. Also, this is the basic element that is being used. We can also collapse

nodes and derive other elements. As I pointed out earlier, the low order elements

should only be used in very special cases. I would not recommend these elements.

Although they can be used in principle, the element that is really useful is this one

and that one. Both, of course, can be used as curved elements as I pointed out.

Another feature, and this is the final view graph that I wanted to show in this lecture,

is that we can use these elements also in transition regions. Namely, here we have

the shell element, now being flat-- that I discussed-- and we can directly couple this

element into another element, which we call a transition element, which has the
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shell degrees of freedom at these nodes, but translational degrees of freedom only

here. In other words, a continuum element degrees of freedom right here. Notice,

three degrees of freedom at this node, only translations, whereas here, we would

have five degrees of freedom-- three translations, two rotations.

Similarly, here we have a curved shell going into a solid, and again here, we have a

transition element. Here, we show the five degrees of freedom at a shell node and

the three degrees of freedom at a continuum element node. This is an effective

approach to be able to couple director shell elements into solid elements.

I have not talked, of course, about the actual derivation of the matrices used in the

formulation of the transition element. That is a little bit beyond what I wanted to

present in this lecture. But the basic concepts are those that we discussed already

in the earlier lecture for continuum element and in this lecture for structural

elements. Thank you very much for your attention.
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