Topic 12

Demonstrative Example Solutions in Static Analysis

Contents:

- Analysis of various problems to demonstrate, study, and evaluate solution methods in statics
- Example analysis: Snap-through of an arch
- Example analysis: Collapse analysis of an elastic-plastic cylinder
- Example analysis: Large displacement response of a shell
- Example analysis: Large displacements of a cantilever subjected to deformation-independent and deformationdependent loading
- Example analysis: Large displacement response of a diamond-shaped frame
- Computer-plotted animation: Diamond-shaped frame
- Example analysis: Failure and repair of a beam/cable structure

Textbook:

Sections 6.1, 6.5.2, 8.6, 8.6.1, 8.6.2, 8.6.3

IN THIS LECTURE, WE WANT TO STUDY SOME EXAMPLE SOLUTIONS EX.1 SNAP-THROUGH OF A TRUSS ARCH EX.2 COLLAPSE ANALYSIS OF AN ELASTO-PLASTIC CYLINDER EX.3 LARGE DISTLACE-MENT SOLUTION OF A SHPERICAL SHELL EX.4 CANTILEVER UNDER PRESSURE LOADING

EX.5 ANALYSIS OF DIAMOND-SHAPED FRAME

EX.6 FAILURE AND REPAIR OF A BEAM/CABLE STRUCTURE

> Markerboard 12-1

We now compare the solution times for these procedures. For the comparison, we end the analysis when the solution for P = 13.5 is obtained.

Method	Normalized time
Full Newton method with line searches	1.2
Full Newton method	1.0
BFGS method	0.9
Modified Newton method with line	
searches	1.1
Modified Newton method	1.1
Initial stress method	2.2

Computer Animation Diamond shaped frame

Comparison of solution algorithms:

Method	Results	
Full Newton with line searches	All load steps successful, normalized CPU time = 1.0.	
Full Newton	Stiffness matrix not positive definite in load step 2.	
BFGS	All load steps successful, normalized CPU time = 2.5.	
Modified Newton with or without line searches	No convergence in load step 2.	

Transparency 12-41

Results:

Load step	Disp. of tip	Stress in cable	Moment at built-in end
1	–.008 m	64 MPa	9.7 KN-m
2	—.63 m		38 KN-m
3	31 m	37 MPa	22 KN-m
4	– .008 m	72 MPa	6.2 KN-m

Note: The elastic limit moment at the built-in end of the beam is 33 KN-m.

Transparency 12-42

MIT OpenCourseWare http://ocw.mit.edu

Resource: Finite Element Procedures for Solids and Structures Klaus-Jürgen Bathe

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.