
MITOCW | MITRES2_002S10linear_lec05_300k-mp4

The following content is provided under a Creative Commons license. Your support

will help MIT OpenCourseWare continue to offer high-quality educational resources

for free. To make a donation or view additional materials from hundreds of MIT

courses, visit MIT OpenCourseWare at MIT.edu.

PROFESSOR: Ladies and gentlemen, welcome to lecture number five. In the previous lectures we

talked about the formulation of the finite element method, and we derived already

some element matrices. I want to continue that discussion in the next lecture.

However, now I would like to spend some time with you and discuss with you the

implementation of the finite element method. I would like to present to you some

important aspect regarding the implementation of the procedures that we talked

about already.

We derived the equilibrium equations KU equals R in the earlier lectures, where R,

of course, contains various contributions due to body load, surface load, and so on.

And we particularly pointed out that that the total structural stiffness matrix is

obtained by summing the element stiffness matrices, as schematically shown here.

This we refer to as the direct stiffness procedure, and that direct stiffness procedure

is also applicable to the load contributions, where we sum the element load

contribution into a total nodal point load vector RB, and similarly for RS and so on,

which then together make up the total load vector R.

We pointed out that the stiffness matrix of a typical element M is obtained via this

relationship here. Notice in this integer, BM is the strain displacement

transformation matrix, CM is the stress-strain law, and here we have Bm

transposed. We're integrating this part over the total volume of the element. The RB

vector for element M was written as shown here, where FB are the body loads per

unit volume into the coordinate directions considered. Of course, these FB loads are

a function of the coordinate is the element, and HM is the displacement interpolation

matrix. We are once again integrating this product over the total volume of the

element.

1



In both of these equations, we have been dealing with the HM matrix and the BM

matrix. Of course, the BM matrix, as we discussed, is obtained from the HM matrix

by appropriate differentiations and so on. Now we pointed out that if we had N

number of degrees of freedom in the total structure, then our HM matrix is of order

k by N. Capital N, the same N that we're talking about here. k is equal to 1, 2, or 3,

depending on whether we are dealing with a 1, 2, or 3-dimensional analysis. The

BM matrix is of order l by N, where l is equal to the number of strain components

that we are including in the element. In a 3-dimensional element, for example, we

would have l being equal to 6, because there are 6 strain components.

It's important that we talk here about capital N being equal to the total number of

degrees of freedom. This way, this KM matrix here is a matrix of order capital N by

capital N. In other words, this is an N-by-N matrix, and this RB vector here is a

vector of length N. It's has N entries this way, and of course only one column.

Having here an N-by-N matrix and an N-by-1 vector here, we can directly assemble

the element contributions into the global structural matrices and vectors. We can do

this because this matrix here has the same order at that matrix here, or each of the

element matrices has the same order as the total structure matrix.

Well, in practice, this is, of course, not efficient. We are dealing with a very large

system. The capital N that we're talking about here might be 2,000, 3,000, 10,000,

and it is not efficient to calculate here in a capital N-by-N matrix for each element,

because we recognized already earlier that a large number of rows and columns

are simply zeros in this matrix here. In fact, only those rows and columns contain

non-zero contributions or non-zero elements which correspond to the element

degrees of freedom.

In practice, therefore, we calculate compacted element matrices. We are calculating

for element M or for typical element M matrix o order little n-by-n. Notice that I left

out the superscript here. And our RV vector would be an n-by-1, lower case n,

where n is now the number of element degrees of freedom.

The H matrix that we're using and the B matrix that we're using now is a k-by-little n,

2



l-by-little n, versus here, k-by-capital N, l-by-capital N. We talk here about the

compacted matrices, and these compacted matrices contain really all the

information of these, which we might call blown-up matrices. Because the non-zero

entries in these blown-up matrices are all contained in the K matrix that I talked

about here.

What we need, then, in practice is the K matrix, the compacted matrix, with

connectivity arrays, in order to be able to go through this process here. In order to

be able to assemble the compacted element matrices into a global structural

stiffness matrix. That is done by a connectivity array, as I will be discussing just now.

That is one of the important aspects that I would like to discuss with you in this

lecture.

Well, I have prepared here some view graphs as before, and let us look at the first

one here, in which I simply summarize one through three phases that we are going

through in a finite element analysis. The first phase consists of the calculation of the

structure matrices K, M, C, and R, whichever are applicable. Here I mean static

dynamic analysis, et cetera. The second phase, then, once we have established

these global structural stiffness matrices, consists of the solution of the equilibrium

equation. Of course, this solution is carried out differently in static analysis and in

dynamic analysis, and I will be discussing the solution procedures that we're using

in later lectures.

Once we have solid state equilibrium equations for the displacements, velocities,

accelerations, we can calculate the element stresses. The element stresses are

then obtained from the strain displacement matrices and the stress-strain law,

together with the displacement as a nodal point displacement that we have

evaluated. In this lecture, I really want to discuss with you only phase one. In other

words, how do we calculate the structure matrices whichever are applicable?

This phase one can be subdivided, again, into three different steps, and I

summarize these on this view graph. The nodal point on element information are

read and/or generated first. Notice that I also included generated here, because

3



there is much repetitiveness in many finite element analyses, and we want to take

advantage of that repetitiveness, therefore generate information data whenever is

possible.

Then once we had the nodal point in element information read into the computer

program, we calculate the element stiffness matrices. The mass and damping

matrices, if they are applicable, and equivalent node upon loads. Once we

calculated the element stiffness matrices, we can assemble math and damping

matrices, of course. Also, we can assemble all of these contributions here into the

global structure matrices, K, M, C, and R. And I would like to discuss this process in

detail with you.

Before going into the details, let me mention that the procedures which I will be

discussing this you are really the procedures that are used in the computer program

Sab and ADINA. But very similar procedures are also used in other computer

programs.

The first important aspect that I like to mention to you is that in a finite element

analysis, we have to define what degrees of freedom we want to admit at the nodal

point. In other words, if we have a finite element mesh such as this one here, I will

be talking about that mesh in more detail later. Then if this is a plane stress

analysis, in other words, here we have a cantilever plate, say, subjected to a load

there, if it's a plane stress analysis, I only want to admit certain degrees of freedom

at each of these nodes. We have nine nodes here. For example, at these nodes,

there shall be no degrees of freedom admitted, or else I want to knock out all of the

degrees of freedom to simulate the boundary condition along here, and at these

degrees of freedom here, away from the edge, I have two degrees of freedom to

correspond to a plane stress condition.

Well, if I want to do that for this analysis and similarly, of course, I proceed in other

analyses, then I want to deal with each nodal point in turn. And here I have a typical

nodal point i, say, at which we can have altogether a certain number of degrees of

freedom, the maximum that I might want to admit in a computer program. Now in

4



Sab and ADINA, we admit a maximum of 6 degrees of freedom, however, we might

have more. In piping analysis, we might have generalized organization degrees of

freedom, such as we are using in ADINA P, and then we would have more degrees

of freedom at the nodal point i.

But let's talk now only about 6 degrees of freedom and the maximum. I denote the

first degree of freedom as the U degree of freedom, the second degree of freedom

as the V degree of freedom, the third degree of freedom as the W degree of

freedom, the fourth one as the rotation about the x-axis, shown by this vector.

Notice that here I'm talking about a vector such as this one here shown. And theta Y

is the fifth degree of freedom, theta Z is the sixth degree of freedom.

What we are doing then is to define a matrix ID, or we call it the ID array,

identification array, which has a certain number of rows and a certain number also

columns. The number of rows is equal to the maximum number of degrees of

freedom that we can have in the analysis. Now in this particular case, we have 6 as

the maximum-- 1, 2, 3, 4, 5, 6. The number of nodal points, of course, vary from

analysis to analysis. They might be 1,000, 5,000, or even more.

For each nodal point, we have 1 column, therefore 6 entries. And for each nodal

point, we can use these 6 entries to define whether a degree of freedom is active or

non-active. A degree of freedom is active if stiffness is put into that degree of

freedom, if stiffness is defined in that degree of freedom.

Well, let us go through a specific example. Here we have a cantilever analysis,

cantilever plate analysis, and here we have a 2-by-2 elements idealization of that

plate, containing altogether 4 elements. It's a plane stress analysis. The loading on

this plate is while at temperature 100 degrees Celsius top, 70 degrees Celsius

bottom. And there might be a concentrated load, such as shown here. Et cetera.

But let us now focus our attention on, how do we generate the element matrices,

and how do we assemble these element matrices into the global structure matrix?

Well, this is a 2-by-2 element idealization . We notice the following. We notice that

we have altogether 9 nodal points-- and let me use the pointer here. 1, 2, 3, 4, 5, 6,

5



7, 8, 9 nodal points-- that with these 9 nodal points, we have defined 4 elements--

element 1, 2, 3, 4-- that element 1 and 2 have the same material properties, and

element 3 and 4 have the same material properties. Notice the Young's modulus is

here 2 times 10 to the sixth, whereas it is 1 times 10 to the sixth for element 1 and

2. Therefore, we will have to define two sets of material properties-- one set for

these elements, and one set for these elements.

We also notice that since we have 9 nodal points altogether, we could have a

maximum of 18 degrees of freedom in a plane stress analysis, because there are

two degrees of freedom in a plane stress analysis for each nodal point. However,

these 18, of course, represent the absolute maximum, which in a static analysis, we

could not use, because we would have to also constrain the element mesh

sufficiently to obtain a solution, to have a stable structure, in other words, while the

constraints here are that at these nodal points, that all displacement shall be equal

to 0.

Now let us look at our ID array, the ID array which I mentioned right here. We will

have, in other words, 9 columns here, because we have 9 nodal points, and we

have our 6 rows here, because we have a maximum of 6 degrees of freedom. An

active degree of freedom we denote by a 0 in this matrix. A non-active degree of

freedom we denote by 1 in this ID matrix.

We notice the following. If I put here the number of nodal points along, we have 1,

2, 3, 4, 5, 6, 7, 8, 9. Of course, the degrees of freedom here are U, V, W, theta X,

theta Y, theta Z.

Now, notice that what we are saying is that only for nodal points 4, 5, 6, 7, 8, and 9,

we have these as active degrees of freedom. In other words, At nodal point 4, 5, 6,

7, 8, 9, we have active degrees of freedom. These will be active degrees of

freedom. And let me finish these here too on this side. So we have these as active

degrees of freedom.

These degrees of freedom and on this side are interactive, because their constraint.

They are no displacement. Of course, stiffness is coming into these degrees of

6



freedom through, yes. So we could have made these active degrees of freedom.

However, in addition, we also know that the displacements are 0 there, so we make

them inactive on that basis.

The result, then, is that we have to read into the ID array as shown here. This is the

typical reading that you would use in the ADINA computer program. Once in all of

those entries here, and zeros there. Now the program knows that corresponding to

these zeros here, we will have to set up element equations. In other words, actually,

we have to set up for each zero one equation, one global degree of freedom. And

the program that goes through this process as follows. It searches through-- let me

go once more back-- through these elements of the ID matrix product that you have

been feeding into the program. It searches through it, and replaces each one by a

zero, going down column-wise, and each zero by a number. It starts with 1 and

goes on consecutively to the maximum number of zeros that it encounters.

The final result, then, is this one. Maybe I can just put it on top, only to signify here

that we had all of these now zeros which we are ones before, and some numbers in

this corner here where we had zeros before.

Let me take the bottom view graph out, and so now we see what has happened. We

have 0s everywhere here and equation numbers up here, which have been

generated by going through the original columns of the ID array from top to bottom,

and replacing the zeros by numbers-- 1, 2-- these were all ones, we put zeros here-

- 3, 4-- put zeros here-- 5, 6-- put zeros here-- et cetera.

Now, these are the degrees of freedom that the structure will actually have, and

they are defined because stiffness is coming into each of these degrees of freedom

from the plane stress element, and we know them to be non-zero. In other words, if

we look at our final element idealization again, we find that these vectors here are

active degrees of freedom, which I pointed out earlier. In fact, this is here degree of

freedom 1, this is degree of freedom 2, which is at nodal point 4, and here we have

degree of freedom 3, and then 4, at nodal point 5. And those entries are just those

here. At nodal point 4, remember nodal points along here. So this is nodal point 4.

7



We have the first and second degree of freedom of the structural model. At nodal

point 5, we have the third and fourth degree of freedom of the total structural model.

Et cetera.

Well, this is an important aspect. Let us now go on to some further aspects of the

analyses. We will use this later on, once again, when we set up the connectivity

arrays of the element.

Here is our finite element idealization, once again. And the next step now is to read

in also the coordinates of all the elements and the temperatures at the nodal points.

Now with this coordinate system, x, y, and z, as shown here, the coordinate of all of

these nodal points can be read indirectly. You can read them up. if you know the

length from here to there, being 60 centimeters and being from here to there 40

centimeters, surely all the coordinates can be defined. And knowing that the

temperature is given here at 70 degrees Celsius and 100 degrees Celsius there,

and there's a linear variation from top to bottom in temperature, we directly also

define the temperature array, as shown here. These are the temperatures at nodal

point 1 to 9, x, y, z coordinates at nodal point 1 to 9.

Of course, this is input. You have to input this to the computer program, just the

same way as you have to input to the computer program the ID array. But then the

computer program figures out what coordinates of these arrays pertain to the

specific elements. And that is done in the following way. Once again, here is our

element idealization. Now we have read in the fact that we want to have this as the

first 2 degrees of freedom, then this degree of freedom. That we have already all

established, that we have these degrees of freedom in the finite element mesh. The

program knows that already. That it does know via the reading of the information in

the ID array. We also have all the coordinates of the nodal points, and we also have

the temperatures of all the nodal points. What we still have to now read in is how an

element is connected to the various nodal points given in the structure. And that is

the next important reading.

Here for element 1, we know that the node numbers are 5, 2, 1, and 4, and the

8



material property is number 1. Let's go back once more. For element 1, that is, this

element here, I want to use this material property set, and I call that property set

number 1. Property set number 1, also, for element 2. But property set number 2 for

elements 3 and for element 4, because these element properties are different from

these.

Well, so element one has nodal points-- I use the following convention-- 5, 2, 1, 4. I

go counterclockwise around. So locally, I'm thinking of a coordinate system lying in

the elements, such as shown here. And this one here being in the positive quadrant

is my first nodal point that I assign to the element. This is, therefore, the local nodal

point 1. Let's put another little picture here. This is a local nodal point 1. That's local

nodal point 2. That's local nodal point 3. That's local nodal point 4 for any one of

these elements. The local nodal point 1 corresponds to the global nodal point 5. 2

corresponds to 2. 3 here corresponds to 1 there, 4 here corresponds to 4 there. I

say, therefore, that the node numbers of the element are 5, 2, 1, 4.

The element number 2, then, with this convention that I'm using, has nodal point 6,

3, 2, 5. Well, let's look here. We have here 6, 3, 2, 5. Also properties at 1.

Let's go on to element number 3. Here with this convention, once again, we have 8,

5, 4, 7. And now, however, the material property set number 2. Et cetera.

Now, once the program knows these nodal point numbers, it can figure out a

connectivity array. And that is done using the ID array that the program has already

established. It's being done in the following way. Remember that, once again, nodal

point 1, 2, 3, 4, 5, 6, 7, 8, and 9 correspond to these columns? Now, we know from

this information here that element 1 couples into nodal point 5, 2, 1, 4. Let's keep

that in mind, now, 5, 2, 1, 4, and circle here 5, 2, 1, and 4, where this one here is

the first local nodal point, this is the second local nodal point, this is the third local

nodal point, and that is the fourth local nodal point. That's important.

Well, if we look at that information, then, recognizing that the local nodal point 1

corresponds to the global nodal point 5, we have to use these two equation

numbers corresponding to the first nodal points. Let's put a little picture up here.

9



You see what I'm saying here is the following. If this is local nodal point 1, that's 2,

that's 3, and that's 4, and if I know that this local nodal point with degrees of

freedom, let's call them little u and little v, corresponds really to the global point 5

with degrees of freedom 3 and 4, then this u must correspond to 3 here, and that v

must correspond to that 4 here. In other words, our connectivity array which we will

be using is established as follows. For our compact matrix, we have 8 rows and

columns, and for our actual matrix that we want to add into the structure matrix, we

notice that what we want to do is take the first row and column here, and add it into

the third row and column of the structure matrix.

The first one here, u here, corresponds to 3 here. The second one here, which is

the v, corresponds to the 4 here. In other words, the first degree of freedom of the

element corresponds to the third in the structure. The second degree of freedom of

the element corresponds to the fourth in the structure. And that is shown right here.

The first one corresponds to the third in the structure. The second one in the

compact element stiffness matrix corresponds to the fourth degree of freedom in

the structure.

Now if we go onto the second local nodal point, we see zeros here, and these zeros

go directly into the connectivity array. The third one has also zeros here, and the

fourth one has 1 and 2. So our connectivity array, then, proceeding in the same

way, is shown as given here. These are the degrees of freedom at the first nodal

point, this first local nodal point. These are the degrees of freedom at the second

local nodal point. These are the degrees of freedom at the third local nodal point,

and these are the degrees of freedom at the fourth local nodal point.

In other words, what I'm saying here really is the following. You see this here is the

third degree of freedom in the structure. This is the fourth degree of freedom in the

structure. There is no degree of freedom here because we have a support there.

That is that zero and that zero. There is no degree of freedom here because we

have a support here. 0, 0. At this node, we are talking about the first degree of

freedom here and the second degree of freedom here of this structure, and that is

given here. So if I have established the 8-by-8 stiffness matrix of the element, I can

10



directly use that 8-by-8 stiffness matrix with this connectivity array, and assemble

the appropriate contributions from that 8-by-8 matrix into the global structure

stiffness matrix.

The same process that is applied to all of the other elements-- let's look at one

more element here. And element 2, as we pointed out earlier, has nodal point 6, 3,

2, 5. Well, what we then have to do is look at our ID array. 6, 3, 2, 5. And what we

are seeing immediately is that we have a 5, 6 here and a 3, 4 here. So the first two

entries in the element array should be 5, 6, and the last two entries should be 3, 4,

because we have all these zeros there. And indeed, if we look at our LM vector

here, that's what we obtain.

Similarly, we proceed for the other elements. This is the connectivity array for

element 2, for element 3, and for element 4. We can use that now to assemble the

element stiffness matrices into the global structural stiffness matrix. Of course, the

program figures these out automatically from the ID array and from you having put

into the program the nodal points of each element.

Let us look now at how do we actually deal with the stiffness matrix? Well, if we look

at a typical stiffness matrix-- this might be a typical one here-- we have this pattern.

Of course the matrix is symmetric, and what we have are some non-zero elements

clustered to the diagonal, and some 0 elements out there.

It is convenient at this point to define a half bandwidth of the stiffness matrix. That

half bandwidth is defined in the following way. We ignore, first of all, the diagonal

element, and then we identify the furthest off diagonal element from that diagonal

element. The furthest one from the diagonal element defines the half bandwidth of

the matrix. mK is the half bandwidth of the matrix. In some literature, we also refer

to the half bandwidth of the matrix as mK plus 1. But then remember that the total

bandwidth off the matrix is simply 2 mK plus 1, because the diagonal element only

occurs once.

Another way of looking at the definition of the half bandwidth is as follows. If we go

from the diagonal up in each column, we will come to an element above which only

11



zeros are. Like in this case, for example, there are only zeros above K 4, 5. And we

do the same for each all of the columns, and we define the last non-zero element,

this one here, above which all elements are zero, as the skyline. So the skyline is

defined as shown here. This is the skyline of the matrix.

The half bandwidth, then, is equal to the maximum column height minus 1. In this

particular case, you see the maximum column height is 1, 2, 3, 4, which we have

here also-- 1, 2, 3, 4. We subtract 1 and we get mK equal to 3. So this is the pattern

that we observe in an actual finite element analysis. What we would like to achieve

is that the half bandwidth is as small as possible, because then we know that our

numerical operations is a solution of KU equals R are small.

Well, the actual storage that we're using, however, is a little different. Namely, it is

effective to store the total information as a one-dimensional array. And the storage,

then, is carried out as follows. Notice that in a one-dimensional array, I am using

now the following convention. This here is the first element in the one-dimensional

array. The second element is this k22, which is a2. The third element is k12. The

fourth element is k33, and so on. In other words, the A vector here, being a one-

dimensional vector, stores all of the information here in a one-dimensional order,

where we simply go from the diagonal upwards to store all of the elements. So a6 is

the diagonal element that is the fourth column here, a6 corresponds to k44, and a7

then stores this one, a8 stores that one, a9 stores that one.

Notice that we do carry along these zeros. And the reason for it is that when we do

perform our solution of the equation, in general, but not always, in general, this zero

becomes a non-zero element, and therefore it is effective to just carry it along,

because we will have to later on store some non-zero information in it.

Notice that this is the total array, and we have altogether, in this particular case, 21

entries here, in addition to storing the stiffness matrix in this one-dimensional array.

However, we also have to have an identification array that tells us which elements in

this one-dimensional array are diagonal elements. Of course, here from this picture,

we see immediately that these are the diagonal elements of the stiffness matrix.

12



However, imagine that we simply store A as a one-dimensional array [? alone, ?]

then we would have to know that a2 corresponds to the second diagonal element,

a6 corresponds to the fourth diagonal element, and so on.

And that is done by as a MAXA array. You see, MAXA here stores the addresses of

the diagonal elements. Having MAXA, the array MAXA, and having the one-

dimensional array that contains all the elements of the stiffness matrix strung out in

one dimension, we can access any element in here during the solution of the

equation as is required.

Let me mention one more point-- that the length of this array here is not equal to n,

but it's n plus 1, because this last element here gives us a diagonal element that

would occur out here. So 22 really is this diagonal element, which we really don't

have, of course. But when we subtract 1 from it, we get this element here, or the

address of this element here, and then we know how long this column is. We have

to know how long this column is. And for that reason, we need this last entry here.

In practice, of course, what we might find is that we cannot store this total matrix in

[? core, ?] because it's just too big. There are just too many elements in the matrix.

If we talk about a 5,000 degree of freedom model with a bandwidth of 1,000, then

we have 5 million elements in that matrix. And even on the very large-scale

computers now, you have to somehow block that information in order to be able to

deal with it.

And that we do in the following way. If a certain amount of high-speed storage is

available, then based on that high-speed storage available, we simply block the total

stiffness matrix. Once again, shown here. Here is the skyline, or the column heights

are given by that skyline. We block it as shown here. This is here block 1, this is

here block 2, this is here block 3, and that is block 4. In fact we will see, later on,

when we talk about the solution of equations, it is necessary that we can keep two

blocks at a time in the high-speed storage. In other words, if we have a total high-

speed storage of 40,000 elements, then 20,000 elements would be this, and 20,000

elements would be this. Or in practice, of course, these might be slightly less than

13



20,000, and these might also be slightly less than 20,000. But we have to be able to

keep two blocks in core, and that is our criteria to determine the block size.

Of course, the computer program, once again, does all that automatically. It just

knows how much storage there is available, because you have a specified amount

of storage that is available, and then it allocates the appropriate amount for each

block and calculates the block size, the column heights in each block, and so on.

Once again, I'm showing here zero elements in a column. When we actually

decompose the matrix as we do in Gauss elimination into an LDA transport form-- I

will be discussing that later-- we fill up these zero elements in general, and that is

the reason why we carry them along in the solution phase.

Let me make a few remarks on the bandwidth, the use of an effective bandwidth.

Here we have a finite element model of a cantilever, a plane stress finite element

model of a cantilever. At each node, we have two degrees of freedom, just as in this

earlier model that we considered. Notice these are now 8-node elements,

isoparametric elements that I will be discussing later. We have constraint, of course,

at this end, all degrees of freedom, because the cantilever is 6 there. In this

particular layout, notice we have used the following element or nodal point

numbering. 1, 2, 3, 4, 5, 6 up to 13, then from 14 to 20, then from 21 to 33. Well,

this then means that our bandwidth here, or half-bandwidth, I should rather say, and

now let's simply include the diagonal. It doesn't make much difference. We are

talking, in practical analysis, about a bandwidth, or half bandwidth, of 300. So

having 300 or 301, really, in a practical analysis, makes very little difference. Our

half bandwidth, including the diagonal element here, would be 46. How would we

obtain that? Well, if we look at the coupling between nodal points that is due to the

element stiffnesses, we recognize that for a typical element, let's look at this

element, we have a maximum nodal 25 here, a minimum nodal point 3. Now, 25

minus 3 is equal to 22.

However, we now have to add 1 on because all of the diagonal part, and that

together, then, gives 23. This 1 I'm adding on because of the diagonal element--

14



and if you where to look at the stiffness matrix in its assembled form-- of this

element in its assembled form, you would see that this part here is to be added on,

because you had also the diagonal contribution.

So the maximum difference between the nodal points plus 1 gives us 23. Now, that

23 is a maximum if 1 degree of freedom were at 1 nodal point. However, we take

that 23 and we have to multiply it by 2, because we have 2 degrees of freedom per

nodal point, and that then gives us 46. So the half bandwidth, including the

diagonal, is 46.

Well, that is a very large bandwidth, in this particular case. And let us now try to

rearrange the nodal point numbering to come up with a smaller bandwidth. And the

better nodal point numbering here is shown in layout. 1, 2, 3, 4, 5, 6, 7, 8, and so

on, down this way. If we now look at the same element again, the maximum

difference in nodal points is 7. We add 1 again to get 8, and we have 2 degrees of

freedom per nodal point. That gives us a half bandwidth of 16. And therefore, we

have reduced the bandwidth by almost a factor of 3.

Now this means that the solution effort will go down, in the equation solution phase,

will go down by a factor of 9. Because he would see that our solution effort is

proportional to the half bandwidth squared. So if there's a factor of 3 here, the

solution will actually be reduced by a factor of 9. Therefore, it is very important to

use minimum bandwidth in the finite element mesh, or rather number the nodal

point in such a way as to obtain a minimum half bandwidth.

If we actually deal with column solvers, we will see that in some cases we quite don't

want to have the minimum bandwidth because we have a column solver, about but

these are details that we will be addressing in a little bit. In general, we want to have

really a minimum bandwidth.

Let us look now at the overall solution phase once more. This is a solution phase in

the computer program STAP, which is in the textbook that you are using in this

course. You might look at the description of this computer program in more detail,

but the overall solution set is as shown here. We start the program, and we have to

15



read a nodal point data, which involves coordinates, boundary conditions, and we

established the equation numbers in an ID array. I'll discuss that with you. We then

would calculate and store load vectors for our load cases. We write these on tape. If

we have a typical analysis, three, four load cases, we calculate all of these load

vectors and store them on tape. Then we continue to read, generate, and store

element data the way I've been discussing this with you, and in the actual analysis,

we loop over element groups.

By that I mean that the total elements are subdivided into element groups. This is

an effective concept because in an actual structural analysis, we deal with plane

stress elements, beam elements, truss elements, three-dimensional shell elements,

and so on. And it is effective to just group all of these elements together into specific

groups. In other words, put the shell elements together in one group, the beam

elements together in another group, and so on. In fact, this is a very effective way of

proceeding also in non-linear analysis, in a more complicated analysis. If you're

familiar a little bit with ADINA, what we do there is that we are grouping elements

not just together according to the kinds of kinematics that they're representing, but

also the material models they are containing, the kind of descriptions we want to

use for non-linearities, et cetera.

Well, having then generated and stored the element data, we can read it and

calculate the element stiffness matrices, and assemble these in a global structural

stiffness matrix. Here we loop over all element groups once again. And this means

generally we are storing this element data on tape, and then we are reading it and

going over all of the element group data, as shown here.

Then next we can factorize the stiffness matrix. This is a basic step in the Gauss

elimination procedure, as I will be discussing with you later. And now we loop over

the load vectors for each load case, read the load vector, and calculate the nodal

point displacement. We then read the element group data and calculate the element

stresses. Print out the element stresses, and if there is another load case to be

considered, we go back from here into there.

16



So the LDA transport factorization of the stiffness matrix which was outside this loop

is only done once. A forward reduction and back substitution of the load vector is

done for each load case, as shown here. I will be discussing those aspects in more

detail later.

Let us now look at some typical effective elements. We have been discussing so far

some simple elements, just to expose you to the basic concepts that are being

used. And for that reason, we discussed some very simple elements in the earlier

lectures. What I want to do now in the next lectures is to discuss this you modern,

effective isoparametric elements. These are also the elements that we are using in

the ADINA computer program.

Here we have a one-dimensional truss element which can be used as a cable

element. As a simplest element, it would be 2-noded element. We would only assign

this node and that node. And then it would be, of course, a simple 2-noded truss, a

very common element, 2-node truss.

However, as shown here, we can also have a third note, which is this one. And we

can have a fourth note. In other words, what we will be dealing with, really, are

variable number node elements, which have two nodes, three nodes, or four nodes

for the one-dimensional truss element. A ring element is obtained from the truss

element in this very simple way. It's really an axis-symmetric truss, you might call it

an axis-symmetric truss, with only one degree of freedom. It has only stiffness in its

circumferential direction.

So this is a truss element. And the basic concept that we are using is that we can

have a variable number of nodes. Similarly for this element, this is a plane stress,

plane strain, or axis-symmetric element. Notice that the only displacement that we

are talking about in this particular case are two displacements, u and v, or in ADINA,

we call this the V and W degree of freedom, corresponding to the y- and z-axis. The

z-axis is, in an axis-symmetric case, the axis of revolution. And with this degree of

freedom, the kinematics of the element are defined when we talk about a specific

number of nodes. And then the element can be used for plane stress, plane strain,

17



and axis-symmetric analysis, depending on which stress-strain law you're using,

and which strain components and stress components you're dealing with.

Here, too, we can use the element simply with 4 nodes, so we would have this 4-

noded element. We can also add another note, make it a 5-noded element. We can

add this node, we have a 6-noded element, now a 7-noded element, and finally an

8-noded element. The variable number node concept is a very effective way of

formulating elements, because the same basic sub-protein basic element can be

used for all sorts of different applications.

The same holds for three-dimensional analysis. There's also a bit of a number node

3-dimensional element where we have a basic number of nodes being 8, and then

we would have this brick element here-- let me just quickly sketch it out. This is the

basic brick element. And now we can simply add additional nodes in to obtain

higher-order elements. And the 21-noded element here is a very effective element

for general three-dimensional analysis. However, in some other applications, even

the 8-noded element is quite effective, effectiveness, of course, being always

measured by the computational effort involved in dealing with such an element, and

the accuracy that the element can give us in actual analysis. So this being one

element, again, that can contain from 8 up to 21 notes, being a variable number

node element, and being very effectively formulated using the isoparametric

concept that I will be discussing in the next lecture. Notice that in that concept, we

can have curved element sides, as shown here, for the higher order elements.

Finally there is, of course, our beam element. The beam element, which I'm sure

you are quite familiar with, a simple 2-noded element which might not be referred to

as a finite element, but on the other side, we might also call it a finite element.

Originally, it was not called a finite element, but now if we look at the basic

interpolation procedures that we are employing, we may very well refer to it at a

finite element.

Then the shell element that I also will be discussing. Here we have a basic shell

element that is shown here, having 16 nodes. At each nodal point, we have now 5

18



degrees of freedom. The 5 degrees of freedom being 3 translations, as shown here.

And in addition, 2 rotations, these being the 2 rotations. The 16-node element is the

highest order element that I can recommend for practical analysis. It's a quite

expensive element, but very accurate, because it admits curvature into all

directions. So for curvatures, it can be a very effective element to use.

Notice that at each node, we have 5 degrees of freedom where these translations

are defined in the xyz global coordinate system, whereas the rotations are not

necessarily aligned with the x- and y-axes. I will be discussing that later on in detail.

But then with 16 notes and 5 degrees of freedom, we are talking about 80 degrees

of freedom altogether, a very considerable number for a single element. In practice,

therefore, we want to possibly use less nodes on the element, and an effective

element that directly is obtained from this one is simply the 9-noded element. I will

be discussing that element. And of course, this element and other elements from

this one are directly obtained by simply assigning certain nodes to the element. We

use here again the variable number node concept as we use it for the truss

element, the 2-dimensional, and the 3-dimensional element.

Another important feature that I like to also just mention to you is the fact that this

element can be used as a transition element. You might have a shell here, and you

might have a solid here to be idealized, and there's a transition region. The solid

element here would have, in general, 3 degrees of freedom at a node. The shell

element here has 5 degrees of freedom at this node, 5 degrees of freedom at this

node, and here we have a transition element that has shell degrees of freedom at

these nodes, and solid degrees of freedom at these top and bottom nodes. Here

altogether at this line, 6 degrees of freedom, 3 here, 3 there, whereas at this line, 5

degrees of freedom.

So this is an effective way of modeling a transition region between a shell and a

solid in a compatible way. In other words, preserving full compatibility between the

elements, and not using any constraint equations. I will be also talking further about

this element later.

19



In this lecture, then, what I wanted to discuss with you were some basic concepts

regarding the formulation of the finite element methods, in particular regarding the

implementation of the finite element method. In other words, how do we actually

implement what we formulated in the earlier lectures? Some of these concepts are

very important concepts when it comes to actual practical implementation of the

finite element method, particularly the one that I discussed regarding the

connectivity arrays that are formulated, and so on.

This is all I wanted to say. Thank you for your attention.

20


