
Split-Operator Fourier Transform Algorithm

Often, we are interested in the time evolution of system. Especially in quantum mechan-
ics it is not trivial to study the time evolution of a system. In the following, I’ll sketch
the full derivation of the algorithm which I outlined in the video.

As in the video, we start with the time dependent Schrödinger equation, which
reads

∂ |Ψ (t)〉
∂t

= Ĥ |Ψ (t)〉 . (1)

Here we used the D irac notation. If you’re not familiar with this, I encourage you
to read the corresponding wikipedia article (https://en.wikipedia.org/wiki/Bra%E2%
80%93ket_notation, in a nutshell it is some way to write down inner products) and the
Hamiltonian Ĥ which is the operator that gives us the energy and which is built out
of two parts

Ĥ = T̂ + V̂ , (2)

namely one for the kinetic energy (T̂) and another one for the potential energy (V̂).
Note, that we did not specify a basis yet. We represent the state of the system in a
complete abstract way with the ket |Ψ (t)〉.

If we assume that our Hamilonian is time independent, equation 1 is easy to
integrate and gives rise to the following solution

|Ψ (t)〉 = exp

(
− iĤ

h̄

)
|Ψ (0)〉 , (3)

which tells us that we arrive at the system at time t by applying the exponential of the
Hamilonian onto the initial state at t = 0. We call this exponential operator which
propagates our system from t = 0 to t propagator.

Unfortunately, we have no idea what the result of the action of this propagator onto
your system yields for some arbitrary Hamiltonian.

In the following, we will use to approximation to get to an controllable approximation.
I.e. an approximation where we know how large the error is and where we introduce it.
We do this with two steps:

1

https://en.wikipedia.org/wiki/Bra%E2%80%93ket_notation
https://en.wikipedia.org/wiki/Bra%E2%80%93ket_notation

1. We use the time composition property to write propagation as a sequence of small
time steps

2. We introduce the trotter approximation, where we know how large the error with
different operator split-ups is.

To do this, we write your equation for the propagation (eq. 3) in a less abstract way,
i.e. we chose the coordinate representation. To to this we project our state |Ψ (t)〉 onto
the coordinate basis xt:

〈x0 |Ψ (t)〉 =
〈

xt

∣∣∣∣∣ exp

(
− iĤ

h̄

) ∣∣∣∣∣Ψ (x0)

〉

=
∫

dx0

〈
xt

∣∣∣∣∣ exp

(
− iĤ

h̄

) ∣∣∣∣∣ x0

〉
︸ ︷︷ ︸

K(xt,x0)

〈x0 |Ψ (0)〉︸ ︷︷ ︸
Ψ(x0;0)

(4)

Where we introduced a resolution of the identity∫
dx0 |x0〉 〈x0| = 1 (5)

to get an expression for the propagator in the coordinate representation, K (xt, x0),
which we can identically rewrite as follows

K (xt, x0) =

〈
xt

∣∣∣∣∣ exp

(
− iĤt

h̄

) ∣∣∣∣∣ x0

〉

=

〈
xN+1

∣∣∣∣∣ exp

(
− iĤ

h̄
t
N

)
exp

(
− iĤ

h̄
t
N

)
· · · exp

(
− iĤ

h̄
t
N

) ∣∣∣∣∣ x0

〉
.

(6)

We can now introduce a resolution of the identity (eq. 5) for each step:

K (xt, x0) =
∫

dxN · · ·dx1

〈
xN+1

∣∣∣∣∣ exp

(
− iĤ

h̄
t
N

) ∣∣∣∣∣ xN

〉

·
〈

xN

∣∣∣∣∣ exp

(
− iĤ

h̄
t
N

) ∣∣∣∣∣ xN−1

〉

· · ·
〈

x1

∣∣∣∣∣ exp

(
− iĤ

h̄
t
N

) ∣∣∣∣∣ x0

〉
.

(7)

We can use this knowledge in eq. 4:

2

〈
xN+1

∣∣∣∣∣ exp

(
− iĤ

h̄
t
N

) ∣∣∣∣∣Ψ(0)

〉
= Ψ(x, t)

=
∫

dxNdxN−1 · · ·dx1

〈
xN+1

∣∣∣∣∣ exp

(
− iĤ

h̄
t
N

) ∣∣∣∣∣ xN

〉

·
〈

xN

∣∣∣∣∣ exp

(
− iĤ

h̄
t
N

) ∣∣∣∣∣ xN−1

〉

· · ·
〈

x1

∣∣∣∣∣ exp

(
− iĤ

h̄
t
N

) ∣∣∣∣∣ x0

〉
Ψ (x0, 0) .

(8)

Especially if we just look at one step

∫
dx1

〈
x1

∣∣∣∣∣ exp

(
− iĤ

h̄
t
N

) ∣∣∣∣∣ x0

〉
Ψ (x0) = Ψ (x1, ε) , (9)

we notice that this gives rise to a time-stepping algorithm. If we introduce the time-
step

t
N

= ε, (10)

we can write the single step as

〈x1 |Ψ (ε)〉 = Ψ (x1, ε) =
∫

dx0

〈
x1

∣∣∣∣∣ exp

(
− iĤ

h̄
ε

) ∣∣∣∣∣ x0

〉
Ψ (x0, 0) . (11)

This was the first step of our journey to the algorithm. Next, we are going to introduce
the Trotter split-up formula, which tells us that for infinitesimally small time steps ε

we can write

exp
[
i
(
Ĥ1 + Ĥ2

)]
= lim

N→∞

[
exp

(
iĤ2

t
2N

)
exp

(
iĤ1

t
N

)
exp

(
iĤ2

t
2N

)]N

, (12)

where in our case Ĥ1 = T̂ and Ĥ2 = V̂ .

If we no assume a less abstract form of our Hamiltonian, e.g.

Ĥ = T̂ + V̂ (x̂) =
p̂2

2m
+ V̂ (x̂) (13)

we can use the symmetrical Trotter split up to write

3

〈
x1

∣∣∣∣ exp
[
− i

h̄

(
p̂2

2m
+ V(x̂)

)
ε

] ∣∣∣∣ x0

〉
≈
〈

x1

∣∣∣∣ exp
[
− i

h̄
V(x̂)

ε

2

]
exp

[
− i

h̄

(
p̂2

2m

)
ε

]
exp

[
− i

h̄
V(x̂)

ε

2

] ∣∣∣∣ x0

〉
= exp

[
− i

h̄
V(x1)

ε

2

]〈
x1

∣∣∣∣ exp
[
− i

h̄

(
p̂2

2m

)
ε

] ∣∣∣∣ x0

〉
exp

[
− i

h̄
V(x0)

ε

2

]
= exp

[
− i

h̄
V(x1)

ε

2

] ∫
dp
〈

x1

∣∣∣∣ exp
[
− i

h̄

(
p̂2

2m

)
ε

] ∣∣∣∣ p
〉
〈p | x0〉 exp

[
− i

h̄
V(x0)

ε

2

]
(14)

Note that we multiple times introduce the resolution of the identity (e.g. it is not ex-
plicitely written in line 2 for the projection of the second exponential on x0).

Now, it is useful to know, what 〈p | x0〉 is, following argument shall rationalize the
well-known result:

p̂ |p〉 = p |p〉 (15)

〈x | p̂ | p〉 = p 〈x | p〉 (16)

−i
∂

∂x
〈x | p〉 =

p
h̄
〈x | p〉 (17)

since
p̂ = −ih̄

∂

∂x
, (18)

solving this differential equation for 〈x | p〉 yields

〈x | p〉 = 1√
2πh̄

exp
(

i
h̄

px
)

(19)

Thus, we can write

〈
x1

∣∣∣∣ exp
[
− i

h̄

(
p̂2

2m
+ V(x̂)

)
ε

] ∣∣∣∣ x0

〉
=

exp
[
− i

h̄
V(x1)

ε

2

] ∫ dp
2πh̄

exp
(

i
h̄

px1

)
exp

(
− i

h̄
p2

2m
ε

)
· exp

(
− i

h̄
px0

)
exp

[
− i

h̄
V(x0)

ε

2

] (20)

Note that via the projections we transformed the operators x̂ and p̂ into c-numbers.

4

Now, let’s use this result in eq. 11:

Ψ (x1, ε) = exp
[
− i

h̄
V(x1)

ε

2

] ∫ dp√
2πh̄

exp
(

i
h̄

px1

)
exp

(
− i

h̄
p2

2m
ε

)
·
∫ dx0√

2πh̄
exp

(
− i

h̄
px0

)
exp

[
− i

h̄
V(x0)

ε

2

]
Ψ(x0, 0)︸ ︷︷ ︸

Φ ε
2
(x0)︸ ︷︷ ︸

Φ̃ ε
2
(p)

(21)

Continue our Fourier transform game

Ψ (x1, ε) = exp
[
− i

h̄
V(x1)

ε

2

] ∫ dp√
2πh̄

exp
(

i
h̄

px1

)
exp

(
− i

h̄
p2

2m
ε

)
Φ̃ ε

2
(p)︸ ︷︷ ︸

Φ̃ε(p)︸ ︷︷ ︸
Φε(x1)

= exp
[
− i

h̄
V(x1)

ε

2

]
Φε(x1)

(22)

Iterate N times to get Ψ (xN+1) , t = (N + 1)ε.

In summary we start in x-representation, propagate a half-step of our potential-
propagator, transform to p-representation apply there our kinetic energy operator and
transform then back to x-representation where we conveniently can apply our potential
propagator.

Numerically, this is implemented via a discrete Fourier transform (integration over
a grid). Doing Fourier transforms is computationally cheap, it scales with N lg N,
where N is the number of grid points. But, if one goes to multiply dimensions Nn,
where n is the number of dimensions, one hits the exponential wall. Nevertheless, the
algorithm is used as benchmark for other approximations – as we exactly now how
large the error of our trotter approximation is (i.e. it depends on the commutator).

The calculation can be made a bit less expensive with adaptive grids or soft grids.

I mentioned that this technique can also be used to derive algorithms for molecular
dynamics simulation. In fact, this can be done starting with the L iouville operator
as e.g. shown in J. Chem. Phys. 1992, 97, 1990-2001.

5

Recommended literature to the sections of the video

• free wave packet: https://www.colorado.edu/physics/phys2170/phys2170_sp07/
downloads/Gaussian.pdf

• spreading of wave packets: Quantum Mechanics: Concepts and Applications by
Nouredine Zettili, Chapter 1 (Wiley, 2009).

• SOFT algorithm: Time-Dependent Quantum Molecular Dynamics by Broeckhove
and Lathouwers (Springer, 1992).

6 ,

https://www.colorado.edu/physics/phys2170/phys2170_sp07/downloads/Gaussian.pdf
https://www.colorado.edu/physics/phys2170/phys2170_sp07/downloads/Gaussian.pdf

