
MITOCW | Student Video: Modeling & Energy Analysis of Liquid Crystals

ATIF JAVED: Hey, 3016. Welcome to my final video project for the class. My presentation will be on

Modeling and Energy Analysis of Liquid Crystals using Mathematica.

So liquid crystals pervade many areas of technology in our world today, including the screen

you may be watching this on. They're used in LCD displays, thermometers, surfactants,

polymers, detergents, and even Kevlar. So the versatility of this phase of matter is what

definitely piqued my interest and made me especially enthusiastic about this project as an

opportunity also to explore this subject as a scientist would, imposing my own questions and

then finding ways to answer them.

So let's move on to the subject matter. Liquid crystals are the state of matter which retains

properties from the conventional crystalline solid and the isotropic liquid state. So here you see

an example of the crystalline solid.

LC molecules are anisotropic, meaning that they exhibit properties with different effects when

oriented in varied directions. And that orientation implies a certain free energy. And that allows

for a structure with interesting properties, such as let's say birefringence.

So here we see the entire disorder of an isotropic liquid. And as we move right, we're

removing degrees of freedom to eventually form nematic LCs that have orientational order,

and eventually smectic LCs, which have both orientational and translational layering order,

which, by the way, is growing as a tool in research, especially in nanotechnology and high-

performance materials, which I thought was pretty cool.

Everything ultimately references back to structure. And here we can see the increasing

degrees of freedom and the characteristic decreasing order parameter value as we transition

to a liquid. So the transitional degree of freedom but restricted rotational freedom is what will

guide our assumptions in developing a strong model.

All three subdivisions of the liquid crystal phase can exhibit phase transitions, because of

temperature fluctuations. So this will motivate my analysis of the energy and entropy, which

are directly based on the order of the system, and whose order is different based on the

temperature. So I will be using calamitic, or rod-shaped, liquid crystals, and finish my analysis

with a statistical modeling of the energy and entropy over 100,000 trials, and examine the

graphical representation.



So since the molecules are calamitic, I can think of them basically as straight rods. Thus, the

orientation is only based on the beginning and the end of the rod. So because we'll be looking

at trends, we can simplify the problem by first approaching it in two dimensions.

And after a ton of trial and error, I was able to put together a graphic of these rods to shape

the order of our liquid crystal system, and demonstrate the type of phase that we're in. And it's

defined by the average theta angle from the order director. And this is the random generator

for our LC system, where we can change the theta value for our director. And from this, we

can work on extrapolating energies in them.

So here, we show three primary energy scenarios for non-polar crystals. And what can be

considered their relative energy is given by this equation at the top. So by setting these

conditions, when molecules are parallel that gives a relative interaction energy of negative 1;

and when perpendicular, a net energy of 0l and when angled 45 degrees to the director, yields

an energy of about negative 0.5.

So we can keep the negative sign as we take the dot product of the two directions to represent

the fact that a lower free energy corresponds to greater stability in either translation or

orientation. But we'll keep things positive for our graphics in the future.

So we can consider the molecules to be on average equidistant from one another. And so we

can grid our liquid crystals in 2D space, like so. Then we can visualize how the nearest

neighbors, particularly the ones in directly adjacent cells, affect the energy of the system. The

energy effects of molecules farther than these adjacent ones can be considered negligible in

comparison to these closer ones.

So we further our model by taking the summation of energies in the necessary locations,

ultimately assigning a total energy to each crystal that encompasses the energy of that crystal

resulting from orientation. Or other energy contributions could exist, let's say, such as

magnetic. But we'll focus on the energy of order and the results from bonding and lowering of

entropy.

Now subsequently, we can create a collection of data angles produced from 100,000 trials of

our random liquid crystal generator, and obtain their energies from the relationships described

earlier. So from this, we can develop a histogram, as shown here in the top right-- in the top

left. And we clearly see it is relatively uniform Gaussian distribution, as expected.



So moving forward, we want to look to the third law of thermodynamics to relate what we are

seeing to entropy using a fundamental law. And so we'll graph our energy against entropy

using the natural level omega multiplied by the Boltzmann constant. Omega is the number of

microstates, i.e., the number of configurations, basically, that are still macroscopically a liquid

crystal.

So by taking the log of our first graph, we can obtain the second one plotting energy versus

entropy. And we see the curve flattens by taking the natural log of the states. And so after

normalizing, we get the same graph, except slightly wider and flatter. And we can see this

contrast in the lowest picture.

But now for the most interesting part of the problem, we know from the Gibbs free energy

equation and the first law of thermodynamics that for an isolated system such as this, that dU

equals TdS, where dU is the internal energy. And so rewriting this, we see the relationship

between temperature and changing energy and entropy. And since we have developed this

information from our previous graph, all we have to do is rotate the axes of S against E,

making the slope of the curve equal to our temperature for whatever generated liquid crystal.

Although I was unable to create the manipulate command that would demonstrate the slope of

dE versus dS as the temperature was decreased, we would expect a narrower distribution of

beta angles, in other words an increase of the order of the system by being more aligned with

the director, to compress the histogram and result in a lower slope for T.

And this is pretty cool. In my mind, it's a pretty cool thermodynamic proof, that the narrower

distribution of rods equates to a lower temperature, and conversely, a wider distribution of

rods around energies represents greater randomness, and thus higher temperature. And so

with confidence, we can say that the order and temperature are mutually dependent.

And so I think the beauty of this problem really stems from the simplicity derived from taking

appropriate steps and realizing where the need for comparison and trend study supersedes

an unnecessarily complex setup. I'm certain that that kind of technique I'll be applying this in

the future in DMSC courses. And hopefully, I can continue that in my track, in studying

nanomaterials as well.

So to me, that's pretty awesome. And my thanks go out to all of you, 3016 Fall 2012, for

making the class like quite an experience, granted in retrospect. But nonetheless, a really cool



endeavor. And my greatest appreciations go out to Ray, Esther, and of course Professor

Carter for their tireless efforts. So thank you, guys.


