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7.1 Introduction

The following. chapters carry the subject of continuum electromechanics to its third level. Not
only do the field sources assume distributions consistent with deformations of the support medium, the
medium is itself free to respond to the associated electromagnetic forces. For gases and liquids, as
well as fluid-like continua such as certain plasma models and electron beams, this response must be con-
sistent with the mechanical laws and relations now derived. The role of this chapter is the mechanical
analogue of the electromagnetic one played by Chap. 2.

The chapter is organized so that Secs. 7.2-7.9 are sufficient background in incompressible inviscid
fluid mechanics to proceed directly with related electromechanical studies. An even wider range of elec-
tromechanical coupling mechanisms than might be imagined at this point are tied to fluid interfaces.
This makes fluid interfaces (Sec. 7.5), surface tension (Sec. 7.6) and jump conditions (Sec. 7.7) ap-
propriate for early discussion.

Compressibility and related acoustic phenomena are taken up in Secs. 7.10-7.12. Then, contribu-
tions of fluid friction, the consequence of fluid viscosity, are taken up in Secs. 7.13-7.17. The
resulting Navier-Stokes's equations are summarized in Sec. 7.16.

Overlaying the derivation of the laws of fluid mechanics is the development of relations that play
a role in the following chapters for describing the continuum mechanics that is analogous to that for
the electric and magnetic transfer relations in the preceding chapters. Transfer relations describing
an incompressible and inviscid inertial continuum (Sec. 7.9) will be used many times. Also for future
reference are the relations of Sec. 7.11, which embody the acoustic phenomena associated with compres-
sibility, those of Sec. 7.19, which establish the interplay between viscous and inertial effects, and
of Sec. 7.20, which describe "creep flow," in which fluid friction overwhelms inertia.

Viscous diffusion, the diffusion of vorticity, has considerable analogy to magnetic diffusion.
Thus, the studies of Chap. 6 are a useful background for understanding the interplay of inertia and fluid
friction.

This chapter is largely concerned with general laws and relations. The chapters which follow make
extensive use of these results in specific case studies.

Chapter 2 begins with a discussion of the two quasistatic limits of the general laws of electro-
dynamics, identifying rate processes brought in by electrical dissipation in each of these approxima-
tions. This chapter ends with a similar discussion.

7.2 Conservation of Mass

With the mass per unit volume of a continuous medium defined as p, a statement of mass conservation
for a volume V of fixed identity is

d f pdV = 0 (1)

Here, the volume V is defined such that it always encloses the same material. The surface S enclosing
the materials therefore moves with the material, and the velocity v is the velocity of surface and mate-
rial alike.

With the integral theorem of Eq. 2.6.5, it is possible to express Eq. 1 as the integral form of
mass conservation:

t (2)dV + pv.nda = 0 
V S

Written in this form, the law applies for V and S either fixed or enclosing material of fixed identity.
Using Gauss' theorem, the surface integral can again be expressed as a volume integral, so that the equa-
tion involves one integral over the volume, V. Because V is arbitrary, it follows that the integrand
must vanish:

pV.~= Vp+ 0 (3)
Dt

This is the required differential law of mass conservation.

Incompressibility: If fluid motions are typified by times that are long compared to the transit
time of an acoustic wave through a length typifying the system, for important classes of flows the mass
density in the vicinity of a given fluid particle remains constant. In view of the definition of the

J
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convection derivative, Sec. 2.4, this means that

0

Dt

For incompressible motions, the mass density evolves much as the free charge density in an insulating

fluid (Sec. 5.10). If fluid particles of interest originate where the mass density is uniform, it

follows that the mass density in the region occupied by this same fluid at a later time is also uniform.

Thus, the solution to Eq. 4, p = constant, is a special "homogeneous" or "uniform" density case.

From Eqs. 3 and 4 it follows from conservation of mass that for an incompressible fluid

V*. = 0 (5)

whether the fluid is homogeneous or not.

The quasistatic nature of the incompressible model is investigated in Secs. 7.12 and 7.22.

7.3 Conservation of Momentum

Because momentum is a vector field, rather than a scalar one, it is convenient to deal with its
individual components in Cartesian coordinates. Of course, this in no way restricts the validity of
the resulting equation of motion.

Again, with the understanding that the volume V always encloses the same material, and hence that
its surface deforms with the local velocity of the material, conservation of momentum for the ith com-
ponent is

d vidV = FidV (1)

The integral on the right represents contributions to the total force acting on the volume that
come from the surrounding material (viscous and pressure forces) and from "external" sources, such as
gravity and electromagnetic fields.

Use of the integral theorem, Eq. 2.6.5, gives the integral law for conservation of momentum:

dV + pv.1vnda = FidV (2)
at S

Gauss' theorem, Eq. 2.6.2, makes possible a conversion of the surface integral to a volume integral:

Jv(- + V.pvi4)dV = FidV (3)
V at IfV i

Expansion of terms on the left gives

v[ ++ p .vi dV = vFidV (4)

Again, the integrand of the volume integrations collected together must vanish, but note that conservation

of mass, Eq. 7.2.3, requires that the first term in brackets vanish. Thus, the differential law repre-
senting conservation of momentum is

av 4.
p [ + v =Vv]V F (5)

On the left is the time-rate of change of v for an observer moving with the fluid, the convective deriva-
tive as discussed in Sec. 2.4. Even though the mass density appears "outside" the convective derivative,
this equation is valid even if p is a function of space and time.

7.4 Equations of Motion for an Inviscid Fluid

To complete the integral or differential force laws, Eqs. 7.3.2 and 7.3.5, it is necessary to take
account of how the surrounding fluid exerts a force-on the element of interest. This is naturally done
by considering the associated traction exerted on the surface S that encloses the fluid volume V.

In an inviscid (frictionless) fluid, this traction acts normal to the surface and is of the same
magnitude regardless of the local surface orientation. With ii.the local normal vector to the surface,
the traction due to the surrounding fluid is

Secs. 7.2, 7.3 & 7.4



= -pn (1)

where the minus sign is introduced so that the pressure, p, will be a positive quantity. That this
traction is consistent with a stress

Tij = -P6ij

can be seen by substituting Eq. 2 into the relation between stress and traction, Eq. 3.9.5.

The force density associated with this stress is found by taking the tensor divergence of Eq. 2
(Eq. 3.15.1),

F.P= (p6 ) = -
i x- ij xi

With forces such as due to gravity and of electric or magnetic origin represented by the external
force density Pex, the force equation, Eq. 7.3.5, becomes

-+
DV =By + - + ep[-+ v*~Vv] + Vp = Fx

By way of discussing what is required to complete the formulation of the fluid mechanics, suppose
that Fex is a given driving function. Then, the dependent variables are 4, p and p. For incompressible
fluid, Eqs. 7.2.4 and 7.2.5 are the two additional scalar laws required to describe the fluid mechanics.
Constitutive laws for compressible flows are introduced in Sec. 7.10. Contributions of viscosity to the
stress are taken up in Secs. 7.13-7.16.

7.5 Eulerian Description of the Fluid Interface

In electromagnetic theory, the boundary and the field are easily distinguished. In fluid mechan-
ics, the boundary of a given fluid region may be the interface between two fluids. Then, the boundary
is in fact a part of the fluid and flow is intrinsically linked to a deformation of the interface.

An interface can be represented analytically by

F(x,y,z,t) = 0

That is, of all possible spatial coordinates (x,y,z), at some time, t, only those that make F = 0 com-
prise an interface. Figure 7.5.1 illustrates a particular case where it is convenient to denote the
surface elevation above the y-z plane as C(y,z,t), and

F = - x= 0

In the language of electrostatics, F could be
tion is useful, because it is a reminder that
geometry of the interface alone, and is

+ VFn =
SVFJ

regarded as a surface of zero potential. This observa-
the normal vector n to the interface is given by the

Fig. 7.5.1. Fluid interface.
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The geometric relation between F and n is the same as that between the electric potential D and the

electric field intensity t. The normal to the interface is the gradient of F normalized to ensure unit
magnitude.

What is the relationship between the interface geometry and the velocity v of the fluid adjacent
to the interface? The interface is presumed to be a surface cut from the total fluid volume and always
composed of the same material particles. Thus, the interface could be distinguished from the remainder
of the fluid by dye markers. As the fluid deforms, it is presumed that the surface remains contiguous.
Dyed particles always have adjacent dyed neighbors within the plane of the interface, and undyed neigh-
bors in the adjacent regions of fluid bulk.

By definition, the convective derivative of Sec. 2.4 is the rate of change with respect to time
for an observer moving with a particle of fluid. By the definition of what is meant by the "interface,"
the rate of change of F for an observer on the interface must be zero. Hence, the required relationship
between the surface geometry and the fluid velocity is

DF DF +
D- = + v.VF = 0 (4)

on F = 0.

For the particular case illustrated by Eq. 2 and Fig. 7.5.1, this condition requires that on the
surface,

v + v + v (5)
x 9t yyy z 3z

The relation is seen to be physically reasonable by considering limiting situations such as: (a) a flat
interface that moves in the x direction in a time-varying fashion, E= ((t); (b) an interface that is
stationary but deformed, C = E(y,z).

7.6 Surface Tension Surface Force Density

If viewed on a millimeter scale, a liquid can take on many of the appearances of an elastic solid.

As if enclosed by an elastic "skin," drops of water suffer oscillations and capillary ripples have the

appearance of a liquid surface covered by an elastic membrane. Although similar in effect to a membrane

under tension, these attributes of the interface are a consequence of the difference between forces on a

molecule deep within the bulk of a fluid and near an interface. Because of this difference, energy is

required to make an interface between two fluids.

Energy Constitutive Law for a Clean Interface: A clean interface is one made up of molecules from

one or the other of the bulk phases. Thus, there are no molecules attributable to the interface itself

(as for example there are when an interface between water and air is covered by a film of oil). Because

the nature of the interface is therefore completely determined by the bulk phases, it follows that in-

creasing the interfacial area by the increment 6A results in a proportionate increase in the energy Ws
associated with the interface,

6W = y6A (1)

For a given pair of fluids, the surface tension is a constant physical property having the same units as

for the tension of a membrane, newton/m. Typical values are given in Table 7.6.1.

Table 7.6.1. Illustrative values of surface tension.1

Substances Temperature Surface tension
(o C ) (newton/m)

Water/air 18 7.30 x 10- 2

Acetone/air 20 2.37 x 10-2

Nitrobenzene/air 20 4.39 x 10- 2

Water/Carbon tetrachloride 20 4.5 x 10- 2

Water/mercury 20 3.75 x 10-1

1. Values taken from Handbook of Chemistry and Physics, College Edition, 49th ed., Robert C. West, ed.,

The Chemical Rubber Co., Cleveland, Ohio, pp. F-30-32.

Secs. 7.5 & 7.6



Surface Energy Conservation: With the objective a relationship between the geometry of an inter-
face and an effective force per unit area Ts acting on the interface, the procedure is now analogous to
that followed in Chap. 3. Instead of an electric or magnetic energy subsystem, energy conservation is
now written for the "surface subsystem." Some external agent used to put an increment of energy into
this system will either increase its stored energy by 6W,, or do work on the external mechanical sub-
system through the agent of a force per unit area Ts displacing an area A of the interface by an amount
6E. Thus,

incremental input of energy = 6Ws + TsA6 (2)

Inputs on the left might come from changing the chemical nature of the bulk fluids. For interfaces of
interest here, there are no such inputs of energy, and Eq. 2 is set equal to zero. The only way in which
W. can be altered is through the mechanical work done by displacing the interface. Thus for a clean
interface, 6Ws is given by Eq. 1,

y6A + TsA6 = 0 (3)

To deduce Ts from this expression, dA must be related to the surface geometry and hence to 6E.

Surface Force Density Related to Interfacial Curvature: In the
geometric construction of Fig. 7.6.1, the local curvature of the
elemental area A is represented by radii of curvature R1 and R2 , de-
fined for orthogonal directions within the local plane of the inter-
face. To find the change in area 6A, caused by the displacement
6&, note that

A + 6A = (x + 6x)(y + 6y) = xy + y6x + x6y (4)

In addition, the similarity of triangles requires that A

x+ 6x x y+ 6y (5)
R1 + 6E R1F R2 + 6 R2

which shows that

6x = X 6c; 6y = -L 6 (6)
1 2

From Eqs. 4 and 6, it follows that because xy = A

6A = y6x + x6y = A(6)[-+ -] (7)
R1 R2

In turn, this result can be substituted into Eq. 3 to give

1 1
[Y + -) + Ts]A = 0 (8) Fig. 7.6.1. Section of interface

1 R2 that suffers perpendicular
displacement 6ý to make new

Because 65 is arbitrary surface 6A.

S R1 2

This surface force density of Young and Laplace2 has been written as a vector which, if positive, acts
in the direction of the normal n. A radius of curvature has a sign that is positive if the associated
center of curvature is in the region from which i~is directed. If the center of curvature is in the
region into which n is directed, the associated radius is taken as negative.

The implications of Eq. 9 for the static equilibrium of a liquid are illustrated in Fig. 7.6.2.
The pair of glass plates are wetted by the liquid so that the radius of curvature of the interface is
essentially equal to half the local distance between the plates. Thus, where the plates are closest
together the radius of curvature is least and the surfage force density is accordingly largest. Note
that the radius of curvature is also negative, so that Ts acts from liquid to air with a net effect of
making the interface rise between the plates. The height of rise is greatest to the right, where the
plates are closest together. The height of rise, Q(r), is found in Sec. 7.8.

2. A. W. Adamson, Physical Chemistry of Surfaces, Interscience, New York, 1960, pp. 4-6.
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Fig. 7.6.2. Because of surface tension,
fluid wetting pair of glass plates
rises to a height ~(r) determined

.' . by the surface tension y and local

::... ' : ::.~: :',':' .. distance between plates •. Experi~

.: .: :', :.:' ",: :'... :. ~. ., ment from film "Surface Tension in
.' :.: :.: ':',' . Fluid Mechanics" (Reference 9,

Appendix C).

Surface Force Density Related to Interfacial Deformation: Three commonly encountered interfacial
configurations are shown in Table 7.6.2. In "equilibrium," these are respectively planar, circular
cylindrical and spherical in shape. To describe the dynamics of the interface, the surface force density
due to surface tension must be expressed in terms of the perturbation ~ from these equilibria. This
could be done by evaluating Eq. 9, but is more easily accomplished by returning to Eq. 3.

Consider the volume, shown in Fig. 7.6.3, that is "cut out" by the surface segment A as it dis.:;
places an amount c~. For this volume V, enclosed by the surface S having the outward normal vector n 's
Gauss' theorem states that

(10)

The vector Cis arbitrary, and now chosen to be the vector ~
~ ~

normal to the
~

interface (not to the surface.
S enclosing the volume element).

~
Thus, n = ns

~
on the upper surface but n = +

-ns on the lower surface.
On the remaining sides, n is perpendicular to ns ' ·It follows that the right-hand side of Eq. 10 is the
re~uired change in area, cA. Because the area A is itself elemental, the left-hand side of Eq. 10 is
V'nAC~ and Eq. 10 becomes

cA
~

= V'nAC~ (11)

n

...
. .: . ~ ... ' :

Fig. 7.6.3

Elemental volume V enclosed
by surface S intersecting
interface between fluids.
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Substitution of Eq. 11 into Eq. 3 gives an alternative expression for the surface tension surface
force density:

+ +4.
T = -y(V.n)n (12)

The use of this expression for relating Is to interfacial deformations, as summarized in
Table 7.6.2, is now illustrated for the cylindrical coordinate configuration. The interface is then
described by

F = r - R - ((6,z,t) = 0

If terms that are quadratic in the perturbation amplitude E are ignored, it follows from Eq. 7.5.3 that
1 is given by Eq. (e) of Table 7.6.2. In turn,

+ 1 1 a• a2 (1)
V.n -- - (13)r r2 82 8z2

Consistent with the small amplitude is the approximation r 1 R - E/R2 . Thus, I is as given by
Eq. (f) of Table 7.6.2. For E = 0, there is an equilibrium surface force density acting radially in-
ward, tending to compress what is inside the surface much as if it were enclosed by a membrane under
tension.

Also summarized in Table 7.6.2 are the complex amplitudes of %s. In the Cartesian and circular
cylindrical geometries these are found by straightforward substitution. However, in the spherical
case, Eq. (k) is obtained by using the fact that Pn is a solution to Eq. 2.16.31a.

7.7 Boundary and Jump Conditions

It can be taken as phenomenologically based fact that there is neither tangential nor normal ve-
locity of a fluid adjacent to a fixed rigid impermeable wall. Thus, boundary conditions for such a wall
are

n.v = 0 (1)

nxv - 0 (2)

where n is the normal to the boundary.

The condition on the tangential component of v results because of the friction between wall and
fluid, i.e., because of the fluid viscosity. If the fluid is modeled as inviscid, it is consistent to
ignore the tangential velocity boundary condition. An inviscid model pictures the fluid as slipping
adjacent to a fixed boundary. The extent of the error is investigated in Sec. 7.18.

The Jump conditions at an interface between fluids are deduced from the integral laws, much as in
Sec. 2.10 for the electromagnetic fields. But, before this can be done, it is necessary to specify the
order of the singularity in mass density, pressure and velocity that is included in the interfacial
model. It is assumed here that there is no surface mass density, that the density takes at most a step
discontinuity. So also does the pressure, and in fact mechanical stresses including viscosity (Sec. 7.15)
are assumed to be at most a step singularity. Because the viscous stresses depend on the spatial rates
of change of the velocity (the strain rates), a self-consistent model for the interface requires that
the velocity be continuous. But, in the inviscid limit, only the normal velocity must be continuous.
That this is all required if the fluids are to have a common surface of demarcation can be seen from the
relation between fluid velocity at the interface and interfacial geometry, Eq. 7.5.4. At a given loca-
tion on the interface, VF has a normal direction. Hence, Eq. 7.5.4 involves only the velocity normal to
the interface. Because the expression must hold whether v is evaluated on one or the other side of the
interface, it is clear that the normal component of v must be continuous:

n.0 = 0 (3)

Conditions implied by the integral laws f9llow by using the same incremental volume of fixed iden-
tity used for some of the jump conditions in Skc. 2.10 and shown in Fig. 2.10.1. Because there is no
surface mass density, mass conservation, Eq. 7.2.1, is automatically satisfied. Formally, this is seen
from Eqs. 2;10.14 and 2.10.15 by replacing'the free charge density with the mass density.

It is perhaps tempting to require that the mass flux p normal to the interface be continuous.
But, the interface considered here is composed of given fluid particles and deforms with the fluid.

The integral momentum-conservation law, expressed as Eq. 7.3.1, makes it clear that for similar
reasons there is no contribution of the inertia (represented by the left-hand side) to the interfacial

Secs. 7.6 & 7.7



boundary condition. On the right, those force densities that are spatial impulses (surface force den-
sities) make contributions in the limit A + 0. It is convenient to represent the mechanical and elec-
trical surface force densities by writing them as the divergence of stress tensors, T.j and Te. For
an inviscid fluid, Ti . is -p6ij given by Eq. 7.4.2 while Tý. is one of the tensors summarized n
Table 3.10.1. The coitribution of surface tension has already been written as a surface force density,
Eq. 7.6.9 or Eq. 7.6.12. With the use of the tensor form of Gauss' theorem, Eq. 3.9.4, the integral
momentum law therefore becomes

(Tmj + Te (in) da + (Ts)da = 0 (4)

In the limit where A is incremental, the force (or stress) jump condition results:

STj + Ti 0 nj + (Ts)i = 0 (5)

This expression will be used with viscous fluids as well, but consider its special form for inviscid
fluids and a clean interface so that TTj is given by Eq. 7.4.2 and T5 is given by Eq. 7.6.12:

e +UPo ni = 0 Tiij nj - y(V.n)n i (6)

This vector jump condition has three components. Note that the pressure and surface tension contribu-
tions are normal to the interface. This makes it clear that to be consistent with the inviscid and
clean interface model, the first term on the right, the surface force density of electric or magnetic
origin, must also have no shearing components. Electromagnetic properties of interfaces meeting this
requirement are taken up in Sec. 8.2.

7.8 Bernoulli's Equation and Irrotational Flow of Homogeneous Inviscid Fluids

In this section, external force densities take the form of the gradient of a scalar. Examples in-
clude the gravitational force density on a fluid having uniform density p. With g defined as the di-
rected gravitational acceleration and r xlx + yiy + Zz, this force density is

F = pg = V(pgr.) (1)

Note that p must be uniform, or the last equality does not hold.

In general, electric and magnetic force densities do not take the form of the gradient of a scalar
However, in many important situations, they are approximated by such a form. In fact, as illustrated in
Chap. 8, it is often desirable to design a system so that this is the case. Thus, looking forward to
such examples, the force densities of electric and magnetic origin are written as

Fe = -VC (2)

With these contributions to Fex , the force equation, Eq. 7.4.4, becomes

p(- + vV7)~ + Vp = V(pgr - ) (3)

A vector identity* makes it possible to rewrite Eq. 3 in a form that makes evident the contribu-
tion of vorticity V x v, to the dynamics:

av + + 1 ÷ ÷÷
p(-t + W X v) + V(p + I pv'v - pg.r + ) = 0 (4)

Bernoulli's equation is a statement of invariance for a combination of dynamical quantities that represent
the total energy. It is important to recognize that there are two essentially different circumstances
under which similar equations apply. b

(b)

First, consider points (a) and (b) in the flow, as sketched in
Fig. 7.8.1, that can be joined by a streamline (not a particle line C
but rather a line always tangent to the instantaneous velocity vector v). dt
Then, integration of Eq. 4 along the line C gives no contribution from
the second term, which must be perpendicular to the velocity V, and (a)
hence the direction of integration. Further, in view of Eq. 2.6.1,
the remaining terms integrate to Fig. 7.8.1. Points (a) and (b)

are joined by a streamline.

*v.V) +x + 1) v+

(v)v = (V x v) xv +2 (vv)

Secs. 7.7 & 7.8



b
p d + [p + 1 p*v - Pgr + ]ba = 0 (5)

a

This form of Bernoulli's equation applies to any two points joined by a streamline, regardless of the
flow. Reference 8 of Appendix C gives experimental demonstrations of Bernoulli's law.

Second, consider irrotational flows, defined as having no vorticity, w = 0. Then, it is appropriate
to define a velocity potential 0

v = -V7 (6)

and integration of Eq. 4 between fixed points a and b gives

a0 1 + + t b
[-P + p + 2 pv - pg.r +Ea (7)

This expression is restricted-to irrotational flows, but applies to arbitrary fixed points a and b.

The importance of irrotational flows stems from the theorem on vorticity of Helmholtz and Kelvin.
If at some instant fluid of fixed identity sustains an irrotational flow, then .for this same material the
irrotational condition prevails at a later instant. For example, if the flow was initiated from a static
(and hence irrotational) condition, it must be irrotational.

Proof of this theorem follows by taking the curl of Eq. 4 and observing that the curl of a gradient
is identically zero:

- + V x (wxv) = 0 (8)
4 4

If the vorticity, w, is replaced by the magnetic flux density, B, this expression is the same as that
governing the magnetic field in a deforming perfect conductor, Eq. 6.2.3 in the limit a + -. Thus, the
theorem on flux conservation for a perfectly conducting surface of fixed identity, Eq. 6.2.4, with
a + m, becomes the theorem

d f nda = 0 (9)

The vorticity linking a material surface S as it deforms with the flow is conserved. If there is no
initial vorticity in a given region, the same material will have no vorticity in whatever region it
occupies at a later time.

Conservation of mass requires that the flow be solenoidal (Eq. 7.2.5); this combines with the con-
dition for irrotational flow (Eq. 6) to show that the velocity potential is governed by Laplace's
equation

V20 = 0 (10)

If boundary conditions involve only v (and hence 0), this equation defines the flow distribution. With R.

defined as a function of time alone set by flow conditions at a reference point, the associated pressure
distribution follows from Eq. 7,

aO 1 4+ +-+
p = p -t 2 pv*v + pg*r - G +1 (11)

Although p is a nonlinear function of the velocity, it can be determined in such a problem "after
the fact," once v has been found by solving a linear problem. That is, Laplace's equation is linear, in
that superimposed solutions are also solutions. But, note that the pressure must be evaluated using the
total velocity. Because Eq. 11 is a nonlinear function of V, the pressure does not satisfy the condi-'
tions for superposition.

The flux potential relations derived in Sec. 2.16 for electric and magnetic cases are equally ap-
plicable here. With the identification Dn/E - vn and 1 - 0, the transfer relations and associated
bulk distributions of Sec. 2.16 summarize solutions to Eq. 10 in Cartesian, cylindrical and spherical
coordinates.

A Capillary Static Equilibrium: The static equilibrium illustrated in Fig. 7.6.2 is described by
combining Bernoulli's equation with the capillary surface force density discussed in Sec. 7.6. The
object is to find the interfacial profile, ý(r), of the water-air interface. Points (b) and (c) are
related by Eq. 7, evaluated with a/at = 0, ÷ = 0,g = -g and = 0:S=za

Sec. 7.8 7.10



(12)
PC 

= Pb 
+ pgc

where P is the mass density of water. The mass density of the air is 103 times less than that of the

water, so its contribution is ignored in connecting points (a) and (d) via Eq. 7 through the air:

Pa = Pd (13)

These two bulk relations are augmented by boundary conditions that relate the pressures on opposite sides
of the interface. At the bottom of the meniscois, the z component of Eq. 7.7.6 is evaluated. It is as-
sumed that the glass plates are perfectly wetted by the water and that the meniscus curvature is dominated
by variations of the interface in the azimuthal direction. With the shape of the meniscus over the gap
between plates approximated as being essentially circular, the local radius of curvature is approximately
ar/2 and Eq. 7.7.6 becomes

-(P - Pb ) = () (14)

The balance of surface force densities at (c-d), where the interface is flat, shows that

Pd - Pc = 0 (15)

The pressures can be eliminated by adding Eqs. 12-15 and the result solved for C:

S= ( 1)1 (16)
apg r

This is essentially the interfacial radial profile shown in Fig. 7.6.2.

7.9 Pressure-Velocity Relations for Inviscid, Incompressible Fluid

Just as the electrical transfer relations introduced in Sec. 2.16 are a convenient building block
for modeling complex systems, the mechanical relations derived in this section are useful in a variety
of mechanical and electromechanical situations. They are restricted to perturbations described by the
inviscid model of Sec. 7.8. The fluid is homogeneous and incompressible so that p is a constant. The
transfer relations relate dynamical perturbations from a stationary equilibrium. In making use of the
relations in a specific problem, it is important to first establish that the stationary (in special
cases, static) conditions are satisfied.

Streaming Planar Layer: Consider first the planar layer of fluid shown in Table 7.9.1, having as
a stationary state a uniform velocity in the z direction. Gravity acts in the -x direction, so g = -g x .The velocity takes the form

v = Ui - VO' (1)z

The equilibrium part has the velocity potential -Uz, which satisfies Laplace's equation, Eq. 7.8.10.
By superposition, the perturbation 0' must also satisfy this equation. Thus 0' is dpscribed by the
same derivation given in Sec. 2.16, Eqs. 2.16.11-2.16.16. With the identification Dx/ - vx and D + 0,
the transfer relations of Table 2.16.1, Eq. (b), become

1 -coth YA v0 sinh yA x
-= I (2)

sinh ya x

Here it is understood that the complex amplitudes represent the perturbation. Because the next
step brings in a time-rate of change, the time dependence has been specified in Eq. 2, as indicated by
replacing - with -. That is,

j(wt-k y-k z) j( t-k y-kzz)
0' = Re O(x)e = Re (x)e + Ue (3)

To linear terms in the perturbations, Bernoulli's equation (Eq. 7.8.11) gives the pressure

p = - U2 - + - pgx + + U )' (4)

In terms of complex amplitudes, this expression becomes

1 2 ^ j(wt-k y-kzz)
p = -. U2 _ +f - pgx + Re p(x)e (5)2 (5)

Secs. 7.8 & 7.97.11
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where

p(x) j( - kzU) pe(x) (6)

Note that the first four terms in Eq. 5, the "equilibrium" pressure, are independent of time; but, because
of the gravitational force, this pressure is a linearly decreasing function of altitude, x.

With the understanding that it is only the part of the pressure that is a function of time at a
fixed location (x,y,z) that is being described (the last term in Eq. 5), Eq. 6 is used to write Eq. 2 as
the pressure-velocity relations summarized in Table 7.9.1.

Streaming Cylindrical Annulus: In the cylindrical configuration of Table 7.9.1, the fluid again
assumes a stationary state of streaming in the z direction with the uniform velocity U. However, it is
assumed that the effects of gravity are negligible. The relations summarized in Table 7.9.1 follow by
exploiting the flux-potential relations of Table 2.16.2. The reasoning is identical to that for the
planar relations.

Static Spherical Shell: In the spherical configuration, it is assumed that the fluid equilibrium
is static, so that the perturbation velocity is the total velocity. Also, the effects of gravity are
ignored. Then, the relations summerized in Table 7.9.1 follow from those of Table 2.16.3 using the
reasoning already described.

7.10 Weak Compressibility

To specify the relationship between mass density and the other dynamical variables, it is helpful
to distinguish between those tied to the material and to a given position in space. Thus, a constitutive
law relating mass density to extensive variables, ai, and pressure, p, takes the form

P = P(cal'',am,p) (1)

One of the a's might be a concentration (perhaps of salt in water) or might be the entropy density. In
general, these variables are themselves described by still other laws that bring in additional rate
processes. For example, the molecular diffusion in the face of material convection governs the con-
centrations, while heat conduction and convection determines the distribution of entropy. Coupling to ad-
ditional subsystems is avoided (and hence closure of the laws needed to describe the dynamics obtained) by
taking the ai's as being conserved by fluid of fixed identity. Just as Eq. 7.2.1 then implies Eq. 3, it
follows that

8i . (2)
7-+ V.ai = 0

The pressure is not carried in this fashion by the material. Its role is simplified by confining the
discussion to excursions of pressure that can be described as linear perturbations from a reference
pressure Pr. Thus, Eq. 1 is specialized to

P - P(al,...,,Pr) + (p - pr ) (3)
a

where a, defined by

-1 P( (4)- = 's - constant

is taken as being independent of p, and is identified in the next section as the velocity of an acoustic
wave.

If coupling to the thermodynamic subsystem were self-consistently included in the model (Sec. 7.23),
it would be found that for processes having rates typical of acoustic applications, it is the entropy
density that is held fixed (possibly along with other a i's) in Eq. 4.

7.11 Acoustic Waves and Transfer Relations

Compressibility gives rise to time delays associated with the propagation of acoustic waves. For
many purposes, acoustic phenomena can be represented in terms of small perturbations from an equilibrium
of uniform density po and pressure po. In most acoustic applications, the equilibrium is also static,
but to be able to represent doppler-related phenomena, included in this section is the possibility that
the fluid streams with a uniform z-directed velocity, U.

The equations of motion that relate perturbations v', p', and p' in the velocity, density, and

Secs. 7.9, 7.10 & 7.117.13



pressure, respectively, are conservation of mass and momentum, Eqs. 7.2.3 and 7.4.4 with P =e
to linear terms in the perturbation quantities, these are

0. Written

p- + U -)V' + Vp' = 0

(- + U -- )p' + p V-v' = 0tt 3z 0

The equation of state, Eq. 7.10.3, provides the third relation. It follows that

p' = a
2 ,

Typical values of the acoustic velocity, a, as well as the
(to be defined in Sec. 7.13) are given in Table 7.11.1.

Table 7.11.1.

The operators in
can be eliminated as a
Eq. 2, to obtain

mass density and the acoustic impedance

Sound velocity, mass density and acoustic impedance for common fluids. 1

Eqs. 1 and 2 are linear, and have constant coefficients. Thus, the velocity
variable between the divergence of Eq. 1 and the convective derivative of

(- + U -)2 ' = a2V2p'
(tt zt

The second convective derivative on the left is the second derivative with respect to time for an ob-
server moving with the velocity U in the z direction. Hence, in that moving frame, Eq. 4 is the wave
equation and shows that waves have the velocity, a, relative to the fluid.

Pressure-Velocity Relations for Planar Layer: In the prototype configuration of Fig. 7.11.1, a
layer of compressible but inviscid fluid fills the planar region between the a and 8 planes.

a 
a)

PV̂ \ - - 7

* . .. .. .....

... .. . . .

-b 7 7 7- 7 77 7 7 7 7.7.7·:;~:·:6::
------ -

P1 x,,8

Fig. 7.11.1.

A layer of compressible fluid is bounded
from above and below by surfaces having
the perturbation deflections (a and SB.
The pressures just inside the fluids d-
jacent to these surfaces are pa and pP,
respectively.

Sec. 7.11
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j(ct-k y-kzz)
Solutions to Eqs. 1-4 take the form p' - Re ^(x)e From Eq. 4, it follows that

d _ 2 =
dx2

2 2 ( -
k zU )2

Y + ka
y a 2a

The p ogram is now the same as in Sec. 2.16. With perturbation pressures at x = a and x
(p ,p ), the solution to Eq. 5 is

(x) = sinh yA • a sinh y(x - 8) - p sinh y(x - a)]Thex >copnn ofE.1tengvsPa

The x component of Eq. 1 then gives Vx as

x Po ( - kzU) dx

= B denoted by

(7)

S( - kU) sin cosh y(x - 8) - # cosh y(x - a)}
po( - kzU) sinh Yd

Evaluation of this expression at x = a gives vx(p ,p ) and at x = B gives v (p p ). This pair of equa-
tions is then inverted to give transfer relations (c) of Table 7.9.1, but wfth y as defined by Eq. 6.

Pressure-Velocity Relations for Cylindrical Annulus: The same arguments as just outlined extend
the cylindrical relations of Table 7.9.1 to include acoustic phenomena. With the substitution
p' = Re A(r) exp j(wt - me - kz), Eq. 4 reduces to Bessel's equation, Eq. 2.16.19, with $-÷P and k2 -Wy2
where

2 . k2 (W- kz) 2

2
a

Thus, solutions for p(r) take the form of Eq. 2.16.25. From the radial component of Eq. 1, ^r is then
evaluated at the a and 8 surfaces. The resulting transfer relations are the same as Eq. (f) of
Table 7.9.1 if the functions Fm and Gm are evaluated replacing k - Y. Because y depends on the layer
properties, these functions are now designated by three arguments. For example Fm(x,y,y) is Fm as sum-
marized in Table 2.16.2 with k + Y.

7.12 Acoustic Waves, Guides and Transmission Lines

In the configuration shown in Fig. 7.12.1, fluid having a static equilibrium is confined between
a rigid wall at x = 0 and a deformable one at x = d + 5. In addition to this transverse drive, a
longitudinal excitation can be imposed at z = 0 and an acoustic load attached at z = £. In this section
it is assumed that all excitations have the same real frequency W and that sinusoidal steady-state con-
ditions are established.

In specific terms, the acoustic response
to the transverse drive demonstrates effects
of compressibility on interactions across a
layer of fluid. The compressible and inertial
quasistatic limits discussed in general terms
in Sec. 7.22, are exemplified by this response.

The eigenmodes of the response to the
transverse drive represent fluid motions
between rigid plates.' The structure is then
a planar acoustic waveguide. In a typical
guide, a source having the frequency w excites
the system at one longitudinal boundary (z = 0)
and a load exists at another (z = £). Both
source and load are often electromechanical.
If the frequency is lower than cutoff fre-
quency determined in the following, inter-
actions between longitudinal boundaries

•-Z . . . . . . . .- R0

Fig. 7.12.1. Planar region is excited from trans-
verse boundary at x = d + C. Longitudinal
boundary conditions typically represent a
load at z = £ and a source at z = 0.

Secs. 7.11 & 7.12
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k_2 k., ko k, k2 k3
kz

Fig. 7.12.2. Regions of w-kz plane characterize x dependence of response to
transverse drive of each Fourier mode as driving frequency is raised.

can be represented in terms of the principal mode. This section carries the associated subject of
acoustic transmission lines far enough to make clear the analogy with electromagnetic transmission
lines.

Response to Transverse Drive: It follows from Eq. 7.5.5 that to linear terms the deformation of
the upper boundary stipulates the velocity in the plane x = d. So, transverse boundary conditions are

a = jA , b = 0 (1)X X
A A

Here, ý is any one of the Fourier amplitudes, ým, specified in Fig. 7.12.1. It follows from Eq. (c) of
Table 7.9.1 (with Y defined by Eq. 7.11.6) that the pressure amplitudes at the upper and lower boundaries
are

Aa 2 1
a] 2po cosh Yd

bJ= y sinh yd I (2)

These in turn are substituted into Eq. 7.11.7 to show that the pressure distribution over the duct cross
section is

S 2 cosh y x (wt-kmz)
p = Re E 2 m e (3)

m=- m0 sinh ymd m

where
2

ym=Vk2 W2
Ym =m -m2

a

For the moment, consider that the system extends to "infinity" in the z direction, or alternatively
that it closes on itself, so that the additional response from the longitudinal boundary conditions is
absent. With the expression for Ym given with Eq. 3 in view, the x dependence of each Fourier component
can be pictured with the help of Fig. 7.12.2. At very low frequency, and for Fourier components other
than m = 0, Ym - k. Thus, the x distribution is the decaying function familiar from the incompressible
case. These low-frequency m 0 0 components are termed the inertial (or incompressible) quasistatic
(IQS) response. Note that they are the result of the part of the excitation that automatically conserves
volume. The m = 0 part results from the "d-c" component of the surface displacement and so does not con-
serve volume. Nevertheless, at low frequencies the m = 0 component has a quasistatic nature. For this
component, Eq. 3 takes the limiting form

A

Po +-a 2 

(4)

At low frequencies, this compressible quasistatic (CQS) response has a pressure that is uniformly dis-
tributed over the layer cross section. It is just what would be expeqted as the pressure distribution

Sec. 7.12 7.16



k., k-2 k-1 k o k2 k3

Fig. 7.12.3. Dispersion relation showing complex kz for real W. At the fre-
quency shown, all but the n=O modes are evanescent (cutoff).

in a fluid region slowly driven by vertical displacement of a horizontal piston.

As the frequency is
I = al km (and hence y
becomes oscillatory. The
from Eq. 3 as

W= a k+ (-)m d

raised, each m 0 0 component takes on a uniform distribution at the frequency
= 0). For higher frequencies, Ym is purely imaginary and the distribution
curves shown in Fig. 7.12.2 are for ymd = jnw, where the frequency follows

(5)

and the transverse pressure distribution is n half-wavelengths. These curves also denote resonances in
the driven response, as is evident from the fact that the denominator of Eq. 2 vanishes as the fre-
quency meets the condition of Eq. 5, so that Ymd = jnr.

Spatial Eigenmodes: Longitudinal conditions are satisfied by adding to the transverse driven
response the eigenmodes consistent with both transverse boundaries being rigid (with ý = 0). From Eq. 2,

yd = jn'I

where now kz is a complex eigenvalue determined by combining Eq. 6 with the definition of Yi

2
k -+ nr-2
n - 2 d

a

Thus, the spatial transient response to the longitudinal boundary conditions is composed of two or more
propagating modes (real longitudinal wavenumbers) and an infinite number of evanescent modes. These
wavenumbers are shown graphically in Fig. 7.12.3, where complex values of kz are drawn for real values
of w. The nth mode is evanescent or cut off below the frequency.

=a(•)
WC =5a 0d

These spatial evanescent plus propagating eigenmodes form an orthogonal set that can be used to satisfy
longitudinal boundary conditions having an arbitrary dependence on x.

Acoustic Transmission Lines: The n - 0 mode has no
sion at the velocity a, regardless of frequency. Such a
tinguished by having a pressure and velocity independent
of velocity anywhere. The principal mode is independent
of arbitrary geometry and is comprised of the same fluid
principal modes are the most common in acoustic systems,
mission line theory analogous to that used for TEM waves

cutoff frequency and propagates without disper-
mode is termed the "principal" mode. It is dis-
of x and y, and hence no transverse components
of the tube cross section. It exists in tubes
motion as for a plane wave in free space. These
and are conveniently pictured in terms of trans-
on electromagnetic transmission lines.

1

Sec. 7.12
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A few further steps show how impedance concepts apply to the principal mode. With the under-

$o standing that k1 = k,

p = RePeJ t = Re[ e- jk +-ejkZ]e jW t (9)

From Eq. 7.11.1 it follows that

vz = ReVejt = Re 1 [e -jkz p-eJkZ ejt (10)
o

where the characteristic acoustic impedance is defined as

Zo apo (11)

The (specific) acoustic impedance is defined as the ratio P/V, and is given by taking the ratio of complex
amplitudes given by Eqs. 9 and 10, and then dividing through by $+:

Z == Zo 2jkz (12)
V .- z

The reflection coefficient r has been defined as the ratio of reflected to forward wave amplitudes

A+
f = (13)

In terms of the impedance function, the analysis of a system proceeds by specifying the load im-
pedance at z = k. For example, if thpry is a rigid wall at z = £,vz = 0 and the impedance is infinite.
Or, if the load is an absorber, then P/V is a real Rumber. Given the load impedance at z = £, Eq. 12
can be inverted to find the reflection coefficient r. Then, the impedance at any other point on the line
can be determined by using Eq. 12 evaluated using the appropriate values of z and the previously deter-
mined value of reflection coefficient. The Smith chart, familiar in the theory of electromagnetic trans-
mission lines,, is a graphical representation of the calculation outlined here.

From Eq. 12, it is clear that if the reflection coefficient is to vanish, so that there is only a
forward wave, then the load impedance must be Zo . This live is then "matched." If there is no re-
flected wave, Zo has the physical significance of being P/V at any position z. Typical values of the
characteristic (specific) acoustic impedance are given in Table 7.11.1. For a given velocity response,
Zo typifies the required pressure excursion. Values of Zo in liquids are typically 3000 times greater
than in gases.

7.13 Experimental Motivation for Viscous Stress Dependence on Strain Rate

Shear stress is exhibited by common fluids in motion, but not at rest. For most static fluids,
the isotropic pressure of Sec. 7.4 is all that remains of the mechanical stress exerted on an element
of fluid by its surroundings.

AX

(b)
Fig. 7.13.1. (a) Cross section of viscometer. The

outer cylinder rotates relative to the inner
one. (b) Element of fluid subject to shear
stresPse in nplne flonw Fnr d << R~ the flot
(a), isapproximately as sketched in (b)."~ / (a), is' approximately as sketched in (b).

Secs. 7.12 & 7.13 7.18



Typical of experiments that establish how a shear stress is transmitted across fluid layers
suffering finite rate deformations is the Couette viscometer shown in Fig. 7.13.1a. The pair of con-
centric cylinders is arranged with the inside cylinder fixed and the outside one rotating at a constant
peripheral velocity U. With the inner cylinder mounted on a torsion spring, static azimuthal deflec-
tions are a measure of the torque, and hence the shear stress, exerted by the surrounding fluid.

If the spacing d is small compared to the radius, a section of the annular region filled by fluid
and bounded by the cylinders assumes the planar appearance of Fig. 7.13.1b. For common fluids, it is
experimentally observed that the force per unit area, T,, transmitted to the fixed inner plate by the
moving outer one has the dependence on U and d,

Tz = 1 (t

with n a constant defined as the absolute viscosity or the first coefficient of viscosity. Typical
values of n and the kinematic viscosity V 2 n/p are given in Table 7.13.1.

Table 7.13.1. Typical viscosities of liquids and gases at 20 C and atmospheric pressure.

Absolute viscosity Mass density Kinematic viscosity
n (kg/sec m) p (kg/m3 ) v(m 2/sec)

Water 1.002 x 10- 3 1.00 x 103 1.002 x 10- 6

Mercury 1.55 x 10- 3 13.6 x 103 1.14 x 10- 7

Heptane 0.409 x 10- 3 0.684 x 103 5.99 x 10-7

Glycerin 1.49 1.26 x 103 1.18 x 10-3

Carbon tetrachloride 0.969 x 10- 3 1.59 x 103 6.09 x 10- 7

Corn oil 5.5 x 10- 2 0.914 x 103 6.02 x 10- 5

Cerelow-117 alloy N 5 x 10" 4 8.8 x 103 e 6 x 10- 8

Olive oil 0.138 0.918 x 103 1.51 x 10- 4

Turpentine 1.487 x 10- 3 0.87 x 103 1.71 x 10- 6

Air 1.83 x 10- 5 1.20 1.53 x 10- 5

Carbon dioxide 1.48 x 10- 5 1.98 7.47 x 10- 6

Hydrogen 0.87 x 10- 5 0.09 9.67 x 10- 5

Oxygen 2.02 x 10- 5 1.43 1.41 x 10- 5

Conversion: nmks (kg/sec m) = 0.1 ncgs (Poise); Poise E gm/sec cm
2 -4 2

mk (m /sec) = 10- 4 cgs (Stoke); Stoke R cm /sec
mks cgs

Even with common fluids, at sufficiently large rotational velocities, Eq. 1 no longer holds. The
planar motions are replaced by two- and three-dimensional ones, and eventually turbulence (motions that
are never steady). The postulated viscometer flow is unstable at high velocities. The result is a
complex flow, not the one postulated here.

The inverse dependence of Tz on d in Eq. 1 suggests that any pair of planes in the fluid are equi-
valent to the plates. Instead of d, the spacing is Ax, and instead of U, the relative velocity is the
difference vz(x + Ax) - v,(x). With Tzx the shear stress transmitted to the layer from the fluid above,
Eq. 1 suggests that

Vz(x + Ax) - vz (x)

Tzx = x

The incremental layer must itself be in force equilibrium. For the incremental volume shown in
Fig. 7.13.1b this means that the shear stress exerted on the layer by the fluid below is equal in mag-
nitude to that given by Eq. 2 and that normal stresses acting in the z direction on the right and left
surfaces cancel. In the viscometer, this is assured by the rotational symmetry of the flow, which
excludes variations in the z direction.

Sec. 7.137.19



In the limit Ax - 0, Eq. 2 becomes

av
Tzx x"--

This simple but important example supports the postulate that viscous stresses are linear functions of
spatial velocity derivatives.

It also illustrates the steps involved in finding the stresses on an arbitrary volume of fluid.
First, the particular spatial derivatives that can reasonably give rise to mechanical stresses are
defined as the components of the strain-rate tensor. Then, appeal is made to conditions of isotropy and
experiments like the Couette viscometer to relate the strain-rate tensor to the stress. To carry the
derivation one step further, the divergence of the viscous stress tensor finally gives the required
viscous force density. These three steps are carried out in the next three sections.

7.14 Strain-Rate Tensor

Consider the difference in fluid velocity at two points separated by the incremental distance Ar,
as shown in Fig. 7.14.1. The ith component, expanded in a Taylor expansion about the position r, is

av
vi(+Af ,t)-vi(,t ) = vi(,t ) + ax ,t)x - vi(f,t) (1)

As Ax + 0, all that remains in this expression is the second term, which can be written identically asJ

rav av 1
vi( +A",t) - vi(~,t) = I - i Ax + eijAx

i1 2 Lax ax - j ijij

0
where eij is the strain-rate tensor, defined as

ij a2xx axi

Just as translational fluid motions cannot
give rise to a viscous stress, neither can combina-
tions of the spatial velocity derivatives that re-
present a pure rotation. Note that the first term
in Eq. 2 is composed of a sum on products of Axj and
components of the curl v. Thus, it represents
relative fluid motion in the neighborhood of r that
is circulating about the point. This combination of
spatial derivatives is not expected to be propor-
tional to the viscous stress. Thus the strain rate,
Eq. 3, is identified as that combination of the
spatial derivatives that should be proportional to
the stress components.

r(r + r,t)

Fig. 7.14.1. Positions in the flow sepa-
rated by an incremental distance Ar.

The components of the strain rate take on physical
significance if associated with the types of flow shown
in Fig. 7.14.2. The diagonal components i = j represent dilatational motion, while the components i Z j
stand for relative motions such that fluid particles located on initially perpendicular lines are found
an instant later on lines at an acute angle.

S0

xey

6~YY

normal
II

4 kI(V 9VY)

, 5y ax

V

"shear"

Fig. 7.14.2. Illustration of the geometric significance of "normal" and "shear" strain rates.
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The viscous force density is a mechanism for introducing vorticity and hence local circulation to
a flow. This point is developed in Sec. 7.18. That the viscous stress is here postulated to be in-
dependent of local rotation is a seeming contradiction. The stress tensor must be distinguished from
its tensor divergence, the force density. Even though the vorticity is not linked to the local viscous
stress by linear constitutive laws, its spatial rates of change are an essential part of the force
density.

Fluid Deformation Example: The plane flow shown in Fig. 7.13.1b is v = U(x/d)iz . That the flow
has translational, rotational and strain-rate parts is illustrated by following the same procedure of
adding and subtracting equal parts used in going from Eq. 1 to Eq. 2:

Ut U 2x 2z -+ U[ 2x + 2zU =i + 1)iz - (=)[i + 1)i + (4)i (4)
Therespective terms have the physicald significance shown in Fig. 7.14.3.

The respective terms have the physical significance shown in Fig. 7.14.3.

U U/2 U/4 U/4

- +

S-------
*,l-

,4II.---

-. t

Fig. 7.14.3. Plane shear flow divided into translation, rotation and strain-rate flow.

Strain Rate as a Tensor: A discussion of the tensor character of the stress is given in Sec. 3.9.
To similarly prove that eij transforms from one coordinate system to another in accordance with

eij =aikajk (5)

the vector nature of v is exploited:

v' = a v (6)

It follows from this relation and the definition of the direction cosines aij (Eq. 3.9.7 and discussion
following Eq. 3.9.11) that

av vk avk axxv k
i = k= k= ka 7)ax ik 8x ik ax ax' j nax

From this expression, the definition of eij , Eq. 3 written in the primed frame of reference, becomes

S= + = aik \ + (8)
x, ax2 L(j 2 3xI axk

and Eq. 5 follows. The tensor nature of 2ij is exploited in the next section.

7.15 Stress-Strain-Rate Relations

It is a postulate that the fluids of interest can be described by a linear relationship between
viscous stress and strain rate. With cijkt coefficients defined as properties of the fluid, the most
general linear constitutive relation is

T = k (1)ij ' Cijk.ek£(

Even though these properties must be deduced in the laboratory, the number that must actually be measured
can be greatly reduced by exploiting the isotropy of the fluid.
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All arguments in this section pertain to relations at a given fixed location in the fluid. The
coordinate systems (primed and unprimed) have a common origin at this point, as suggested by Fig. 3.9.3.
The fluid is in general not necessarily homogeneous. The properties cijkk can be functions of position.

At any given point in an isotropic material, the properties do not depend on the coordinates.
Hence, in a primed frame of reference, the constitutive law of Eq. 1 is

T' = Cijk• (2)

and isotropy requires that the properties are the same:

cijk2 =R jkC (3)

For example, if shear stress and shear strain rate (Ti1,ei ) are related by a viscosity coefficient in
one coordinate system, the same components (Tjj,81 ) w ll e related by the same coefficient in the
primed frame of reference.

Principal Axes: For any tensor there is a coordinate system in which it has only normal components.
To see this first observe that the stress, having components Tij in the unprimed frame of reference,
gives rise to the traction Ti = Ti nj on a surface having the normal vector ýi(Eq. 3.9.5). Suppose that
a plane is defined such that the traction is in the normal direction, and has magnitude T. Then

Tijnj = Tni = Tnj ij (4)

With the components of i regarded as the unknowns, by setting i = 1,2 and 3, this expression is three
equations:

11- T T12 T13 n1

21 T22 - T T23 n2 0 (5)

31 T32 T33 - T n

These homogeneous relations have a solution if the determinant of the coefficients vanishes. This con-
dition gives three eigenvalues, T = T1 ,T2 ,T3, which are the normal components of stress in three direc-
tions.

To actually find one of these directions, the associated eigenvalue T is inserted into Eqs. 5, a
value of n1 is assumed and any pair of the expressions then.solved for n2 and n3. The magnitudes of
these components of itare then adjusted so that Jif = i.

That the three directions found in this way are orthogonal follows from Eq. 4, which gives the
traction associated with each of the eigenvalues. Suppose that the eigenvalues Ta and Tb, respectively,
give the normal vectors n = a and t = h. Then, from Eq. 4

Tijaj =Ta i (6)

Tijb =Tbbi (7)

Multiplication of Eq. 6 by bi and of Eq. 7 by ai and subtraction gives

b Tija j - aiTijb = (Ta - Tb)aibi (8)

Each of the indices is summed, so they are dummy variables which can be relabeled. In the first term on

the left, i and j can be interchanged. Then, so long as Tij is symmetric, it is clear that the terms on
the left cancel. Provided that the eigenvalues Ta and Ti are distinct, it follows that aibi = Aa = 0.
These axes, shown here to be orthogonal, are called the principal axes.

Strain-Rate Principal Axes the Saie as for Stress: The strain rate, like the stress, is a sym-
metric tensor. This is shown in Sec. 7.14. Suppose that the unprimed coordinates are the principal
axes for the strain rate. Then, according to Eq. 1, the shear stress Tyz is

T yzxc + c + c eyzzz (9)
yz yzxx xx yzyy yy yzzz zz
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The axes in a primed coordinate system gotten from this one by rotating it 1800 about the z axis must
also be principal axes. Hence, hence Eq. 2 becomes

T' = c' o' + c' ' + c 8z• (10)
yz yzxx xx yzyy yy yzzz zz

Formally, the transformation of the stress and strain rate tensors between these coordinates is T' =
aikajTkT (Eq. 3.9.11) and oij aaika yky (Eq. 7.14.6), whereeij = aikajek (Eq. 7.14.6),k

-1 0 0

aij = 0 -1 0 (11)

0 0 1

so with the use of the isotropy cofdition, Eq. 3, Eq. 10 becomes

-T =c e + c e +c e (12)
yz yzxx-xx yzyy yy yzzz zz

Comparison of this expression with Eq. 9 shows that T = 0. Similar arguments show that the other
shear stress components are zero.

It is concluded that in a coordinate system where the strain rate has only normal components, the
stress must also be normal.

Principal Coordinate Relations: That the stress and strain rate have the same principal axes
effectively reduces the number of independent coefficients to nine, because in such a coordinate system

(now the primed system) Eq. 1 reduces to

T' = c c c [oiJ (13)
yy y y x x YYYY yyzz yy

T' c c c e
Lzz zzxx zzyy zzzz zz

But, the isotropy requires a further reduction in this number. For the x axis, it is clear that either

eyy or ezz must have the same effect on Txx. Hence, the first of Eqs. 13 reduces to the first of the

following relations

T' k k k exx
xx 1 2 2 xx

T;J =k k k e (14)

zz 2 2 1 zz
Because of the isotropy there is no distinction between the x axis and the other two. The same coef-

ficient relates T' to e, as relates Txx to ex, for example. To complete the last step in the deduc-

tion of the stres Ystrain rate relations, observe that Eq. 14 can also be written as

T' =kk2 + (k - k )elxx 2nn 1 2xx

T' = k2 n + (k I - k+2 ) (15)
yy 2 nn 1 2 yy

S k nn + (k - k )zz

where n V.-v is the same number regardless of the coordinates used in the evaluation.nn

Isotropic Relations: The constitutive laws expressed in the form of Eq. 15 are now transformed to
the arbitrary unprimed frame by using the transformation law Tij = akiagjTk (Eq. 3.9.11 and subsequent
discussion):

Tij axiaxj[k2 On + (k - k212

ayiy j [k2 nn + (k1 - k2 )ey] (16)

ziazj [k2 °S + (k1 - k2)ezz]
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Because akiakj = 6 ij (Eq. 3.9.14 and discussion following Eq. 3.9.11) and eij = akiaj kV.it follows
from Eq. 16 that

Tij = k 2 enn6j + (k1 - k 2 ).ij (17)

To be consistent with the coefficient of viscosity defined with Eq. 7.13.3, it is observed that for that
plane flow situation, all components of = 0, exceptx)/2. Thus, Eq. 7.13.3 is
Tzx = 2nex, and Eq. 17 reduces to this exiression if

k1 - k2 = 2n (18)

By convention, a second coefficient of viscosity, X, is defined such that

k 2 = X (19)

Thus, the viscous stress-strain-rate relations for an isotropic fluid are

2 o
ij X )6ijkk + 2rij (20)

In general, the viscosities n and X are functions of position.

7.16 Viscous Force Density and the Navier-Stokes Equation

The total mechanical stress, , is the sum of the viscous stress given by Eq. 7.15.20 and
the isotropic pressure stress remainfig with strain rate absent (Eq. 7.4.2). In terms of the
strain rate

Sj = -P6ij + 2nlj + (X -)6ij ekk (1)

while substitution for eij from Eq. 7.14.3 gives

Si( -pij + n( + ) + (X n)2 6ij (2)Sij -X-i xj x( -1-J)3 Txi

The tensor divergence of this expression (Eq. 3.9.1) is the force density required for writing the
force balance equation. In taking this divergence, n and X are for'the first time taken as constants.
The ith component is

Fi = 3 -ix + rl + (X + ) (3)
i ax 3xi 8ax ax3 iTx k(

and translated into vector notation

22++ V +-vpo +(2•+)(V v.) (4)
With the use of a vector identity (p2v = V(V.) - V x V x ), the essential role of vorticity becomes
apparent:

F = -Vp - nV x (v x ) + (x + n)V(vBv) (5)

Note that in an incompressible fluid, the last term in both Eqs. 4 and 5 vanishes.

With Fex denoting the sum of all force densities other than the internal ones due to pressure
and viscosity, the force equation, Eq. 7.4.4, becomes

Dv + 2+ 1(6
p T + Vp = F +e nV v + (Xa + - n)V(Vlv) (6)

This form of the momentum conservation law is termed the Navier-Stokes equation.
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7.17 Kinetic Energy Storage, Power Flow and Viscous Dissipation

A statement of kinetic energy conservation is made by starting with the ith component of the force
equation, written using a vector identity

avi 4- a 1 a
p{-- + [(Vx• Yv]i + " vjj} = (Fex)i + (Sl) (1)

Dot multiplication of this expression by i eliminates the second term on the left, and mass conserva-
tion, Eq. 7.2.3, makes it possible to manipulate the remaining inertial terms so that they take the
form required for a conservation statement (for example, the form of Eq. 3.13.13):

8v
va1 a 1(i a - i (2)

7t 2 1 1 _9X-i 2 1 J i ex ivi + ax (iSij) - Sij ax(2)

The viscous stress and pressure term on the right has also been written as a perfect divergence minus
what is required to make it agree with the original expression. Integration of Eq. 2 over an arbitrary
volume V then results in perfect divergence terms on the left and right that, by virtue of the tensor
form of Gauss' theorem, Eq. 9.6.2, can be converted to surface integrals:

1 F+V (3)
t1 p-'vdV + S2 p.)v.da F=IF vdV + • S viSijnjda - Si dV (3)

The volume V can either be fixed in space, or be one of fixed identity. In the latter case,
where the surface S moves with the material itself, what is on the left in Eq. 3 will be recognized
as the rate of change with respect to time of the volume integral of the kinetic energy density
p.4-/2 (see the scalar form of the generalized Leibnitz rule, Eq. 2.6.5).

According to Eq. 3, the rate of increase of the total kinetic energy in V is equal to the rate
at which the external force density does work through the volume, plus the rate at which stresses
(that balance the viscous and pressure stresses) do work on the volume through the surface S, minus
the last term. That this last term apparently represents a part of the input power that does not go
into kinetic energy suggests that it is power leaving the kinetic energy subsystem in the form of heat

(viscous dissipation) to be stored in the internal energy of the fluid. To support this interpreta-

tion, note that reindexing and then exploiting the symmetry of Sij gives

avv v
vIV, S j (4)

ij ax ji ixi ij axi

Thus,
avi av aiv

S - - + L) = S e (5)
ij ax ij2 x xi ijeij

With use made of Eq. 7.16.1 to write S in terms of the strain rate, it follows from some algebraic

manipulation that

Sijej = -pV.v+ (6)

where the positive definite quantity

o22 o2 o2 2 0 0 2 o2 2](7)-(ek) + 4n(e + e + e ) +-n[(e e ) + (e - ez ) + (e - ex)2](7)
v kk xy yz zz 3 xx yy yy zz zz xx

is identified as the viscous dissipation density. In terms of this density, the integral statement of

kinetic power flow (Eq. 3) becomes the statement that the rate of doing work on the fluid is equal to

the rate of increase of kinetic energy (the first two terms on the right), plus the rate of increase of

energy stored internally by compressing the fluid (the third term on the right), plus the viscous dis-

sipation:

V ex S iV S V V

In general, by mechanisms such as heat conduction, some of the internal energy can be dissipated. But
according to the "weak compressibility" model introduced in Sec. 7.10, dilatations result in energy

*+. 1 ) +_+
v.Vv= (V x v) x + V(vV)2-Vvv
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storage. This is clarified by first using mass cons
and 7.10.3 to write the compressibility energy stora

ervation, Eq. 7.2.3, and then using Eqs. 7.10.2
ge term as

p Dt p ap Dt

Given the constitutive law of Eq. 7.10.3, an energy density WC can be defined:

W dp = (ppr) - [a2p(al,.am Pr)_Pr]ln + 2 -prS r p - [a2p( r a2p(a 1 ,*.*mpr

such that Eq. 9 is

DW

Dtc

Hence, what is added up by the volume integration of Eq. 11, called for in Eq. 8,
change of an energy density Wc as measured by a fluid particle of fixed identity.

(10)

(11)

is the time-rate of

7.18 Viscous Diffusion

The theme of this section is the interplay between inertial and viscous forces. Approximations
underlying relations derived in Secs. 7.19 - 7.21 are established here.

Throughout, the fluid is presumed incompressible, so that

V.v = 0 (1)

Even more, the mass density is uniform, as is also the viscosity.

External forces are represented by scalar and vector potentials:

F = -V +Vx G
ex

and the Navier-Stokes's equation, Eq. 7.t.6 (written using 7.ý.5 rather than 716.4), becomes

3 '+ 1 + + +p.a~T+ (Vx v) x v] + V(2 pv-v + p +8)= -nV x (Vxv) + x G

Convective Diffusion of Vorticity: It is shown in Sec.
vorticity linking a surface of fixed identity is conserved.
the force equation written in terms of the vorticity Z E V x
viscous stresses and other rotational forces (represented by
of Eq. 3 is

a- + V x (x v) - - X (Vx -) + 4Vx (Vxp G)
at P P

7.8 that in an inviscid fluid, the net
The basis for proving that this is so,
I (Eq. 7.8.3), is now examined to identify
t) as generators of vorticity. The curl

Without the external force, comparison of this expression to that governing magnetic diffusion in a
deforming conductor (Eq. 6.2.6) shows a complete analogy. The role of the vorticity, 1, is played by
the magnetic flux density. Just as the magnetic flux linking a surface of fixed identity is dis-
sipated by joule heating, viscous losses tend to dissipate the net vorticity. This is stated
formally by integrating Eq. 4 over a surface of fixed identity and exploiting the generalized Leibnitz
rule for surface integrals, Eq. 2.6.4:

w.nda = - . (V xGd
P C PC

In the neighborhood of a fixed wall, for example, an inviscid fluid can slip. In a real fluid, the
tangential velocity must vanish. The modification of velocity in the neighborhood of the boundary
enters through the viscosity term on the right in Eq. 5 to generate vorticity.

In Chap. 6, the material deformation represented by v is given, and so the magnetic analogue to
Eq. 4 is linear. In the vorticity equati6n, w really represents the unknown 4, and so Eq. 4 is not
linear. But, two important approximations are now identified in which linear differential equations
do describe flows. Because v is solenoidal, it is first convenient to represent it in terms of a vector
potential, familiar from Sec. 2.18,

v x A;V-A= o
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Substitution into Eq. 3 then gives

VTr + V x C + pV x (V x ) x (V x ) = 0 (7)

where
1 +

S= p + pvv ++

3A
C p V2 A G-

Perturbations from Static Equilibria: In the equilibrium state, 1 = 0. For incremental flows,
the third term in Eq. 7, which is proportional to the product of perturbation quantities, can be ig-
nored. The curl of the remaining terms gives a fourth order expression for "I:

VxVx [ n--=0(
Stv

Given A , and hence C, fris determined by integrating the first two terms of Eq. 7 between some refer-
ence poYnt 1o and the position 2 of interest,

Vwr.d = (,r) - T(ro = - Vx *.d. (9)

r r
o o

Thus, the relation between pressure and the vector potential is

p = p(r ) + (r ) - 9(r) - V x C.id (10)

r
o

where the dynamic pressure term, pv•·/2, is dropped from T because it is the square of a perturbatio,.

Equations 8 and 10 are used in Sec. 7.19 to derive general relations that are used extensively
in the following chapters.. Further physical insights are the objective of Sec. 7.20.

Low Reynolds Number Flows: The terms that make Eq. 7 nonlinear arise because of the inertial force
density. For flows that are slow enough that viscous diffusion is complete, this force density has a
negligible effect. The third term in Eq. 7 is then ignorable for a reason other than its nonlinearity.
Indeed, the terms in I and C involving the mass density are also negligible.

To clarify what is meant by this "creep-flow" approximation, external forces are not considered.
The Navier-Stokes's equation, Eq. 7.16.6, is written in terms of normalized variables:

(xy,z) = (x, ,z)£, t = t_, v = vu, p = p (11)

Tv v + Ry*Vv = -Vp + V2 (12)
r at y

where 2

T '--= viscous diffusion time
v fl

R . put = Reynolds number
y fn

Shear stresses set a fluid into motion in spite of its inertia at a rate typified by the viscous dif-
fusion time. If processes of interest occur on a time scale T that is long compared to this time,
then the effect of the first inertial term in Eq. 12 is ignorable. The Reynolds number, which is the
ratio of Tv to a residence time R/u, represents the importance of inertia relative to viscosity for
processes that are typified by a velocity rather than a time. Examples are flows in the steady state.
Alternatively, R typifies the ratio of an inertial force density to a viscous force density.

In the "low Reynolds number approximation," the terms on the left in Eq. 12 are neglected. This
expression is equivalent to the curl of Eq. 7 without its inertial terms:

Vx V x (nV 2 + G) - 0 (13)
W
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The pressure then follows from Eq. 10 with the inertial terms omitted:

P = p(r ) + o +9( (r) (14v
r

o

Without compromise concerning the amplitude of the flow, these linear expressions are used to predict
flows that are extremely viscous, that involve extremely small dimensions or that occur over long
periods of time. They are applied in Secs. 7.20 and 7.21.

7.19 Perturbation Viscous Diffusion Transfer Relations

Co sider small-amplitude motions in the x-y plane of a viscous fluid with no external rotational
forces (G - 0). Then, in Cartesian coordinates, the vector potential reduces to just the z component,
with amplitude Av, and Eq. 7.18.8 reduces to the single scalar equation

2 A
0V2 v A ) 0 (1)at v

Here, a vector identity and the solenoidal character of Av have been used (Eq. 7.18.6). This is the
first of the four symmetric configurations summarized by Table 2.18.1 that are represented by a single
component of the vector potential. The others are handled as illustrated by the Cartesian case con-
sidered now.

With the objective of obtaining relations that can be adapted to a variety of physical situations,
consider the motions within a planar region having thickness A, as shown in Fig. 7.19.1.

a a

.S . Ai<ý

Fig. 7.19.1

Planar region filled by
viscous fluid with stress
components (Sxx,Syx) and
velocity components (vx,vy)
in the a and 8 planes re-
lated by Eq. 13.

For perturbations having the form Re Av(x) exp j(wt - ky), Eq. 1 requires that the complex ampli-

tude, Av(x), satisfy a fourth-order differential equation that has two solutions familiar from the in-
compressible inviscid fluid model of Sec. 7.9,

2 d2 2
( - k2)(- - y2)A = 0 (2)
dx dx

where

y2 = k
2 + j n

The other two are solutions to the diffusion equation, familiar from magnetic diffusion as discussed in
Sec. 6.5. Thus,

Av A sinh kx + s12inh k(x - A) + A3 sinh yx + ;4 sinh y(x -A) (3)

The two lengths that typify the interactions between a and 0 surfaces are evident in this equation.
For the first two solutions, which represent pressure attenuation across the layer, the length is
27/k. Identification of these components in Eq. 3 with the pressure follows from taking the gradient
and then the divergence of Eq. 7.18.10 to show that p satisfies Laplace's equation. The last two
terms bring in the second length scale, 27//yl, which is at most 2w/k and at least the viscous skin
depth defined (analogous to the magnetic skin depth, Eq. 6.2.10) as

V =2( (4)

V x V x = V(V.ý) - V2 F; V'• E 0
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This length, which represents the transmission of shear stress across the layer through the action
of viscosity inhibited by the fluid inertia, is shown as a function of frequency for some typical fluids
in Fig. 7.19.2. The viscosity and mass density are taken from Table 7.13.1. Even with relatively
modest frequencies, the viscous skin depth can be quite short.

Fig. 7.19.2

Viscous
tion of

skin depth as func-
frequency.

f(Hz)

In the remainder of this section, the relationships between the velocities in the a and 0 planes
and the stress components in these planes are determined. First, this is done without further approxi-
mations. Then, the interaction between boundary layers is illustrated by taking the limit 6 << A, so
that the transmission of stresses across the layer is through the pressure modes alone. Finally, use-
ful relations are derived between stress and velocity with not only 6 << A, but kA << 1, so that the
surfaces are uncoupled.

Layer of Arbitrary Thickness: The velocity components are written in terms of the coefficients
Ai by taking the curl of 1, Eq. 3 (Eq. (b), Table 2.18.1). Evaluated at the respective planes x = A
and x = 0, these are

-jk sinh kA 0 -jk sinh yA

0 jk sinh kA

-k cosh kA

-k -k cosh kA

Inversion of these equations is the first chore in determining the transfer relations. Cramer's rule

gives

--1 = [M Il
where [ii and V9] are the column matrices and [M] is the inverse of the 4 x 4 matrix appearing in Eq. 5.
Even though it is the velocity and stress amplitudes that are usually used when the transfer functions

represent a piece of a more complex system, the entries in M are worth saving so that the distribu-

tion with x can be reconstructed from the velocity amplitudes:

Sec. 7.19
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-Y

-y cosh yA

Xosh yA
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M11 = 22 = jky sinh YA[Y sinh kA sinh YA + k(1 - cosh kA cosh yA)]/D

2M12 = -M21 = jk2y sinh yA(cosh kA - cosh YA)/D
M13 = M24 = k2 sinh yA(y sinh kA cosh YA - k cosh kA sinh yA)/D

M14 23 = k2 sinh yA(k sinh yA - y sinh kA)/D (7)

M31 = -M42 = jk2 sinh kA[y(1l - cosh yA cosh kA) + k sinh yA sinh kA]/D

M32 = -M41 = jk2Y sinh kA(cosh yA - cosh kA)/D

M33 = M44 = k2 sinh kA(k cosh kA sinh yA - y sinh kA cosh yA)/D

M43 = M34 =ksinh kA(k sinh A - 7 sinh kA)/D

whereD k4 sinh kA sinh YA (1 - cosh YA cosh kA) + sinh kA sinh A +k2+

The stress components are written in terms of the velocity components and the pressure using Eq. 2
(with the last term omitted because V.4 = 0):

Sxx = -p + 2n x (8)
(dO

S =x -- - jk~ (9)
yx dx 

(

With the objective of evaluating these in terms of the A's, (v 0,), found earlier from Eq. 3, are sub-
stituted into these expressions. But, the pressure must also be Xxpressed in terms of the A's by using
Eq. 3 to evaluate Eq. 7.18.10. With p defined as Ho at (x,y) = (0,0), the line integration results in

p = 1 + Re wp(AI + A2 cosh kA)e j wt + Re p(x)e j (Wt - k y ) (10)

where the complex amplitude representing the part of p that depends on (x,y,t) is

p =-wp[A 1 cosh kx + A2 cosh k(x - A)] (11)

Note that the definition of 6,Eq. 7.18.7, insures that the Laplacian solutions contribute to p, to the
exclusion of the diffusion solutions.

With the stress components expressed as functions of x in terms of the A's, they are evaluated at
the respective planes, to obtain

Sxx -j(k 2 + y2)cosh kA -j(k2 + 2) -2jyk cosh yA -2j yk A1

SB -j(k + ) -j(k + Y )cosh kA -2j Yk -2j yk cosh yA A2
a = 2 2 (12)
S -2k sinh kA 0 -(y + k2)sinh yA 0 3

S 0 2k sinh kA 0 ( + k )sinh yA A
yx 4

In compact notation, this expression is equivalent to [(]N] (A].[ inally, the transfer relations
are obtained by substituting Eq. 6 for the column matrix EA] in Eq. 12 and performing the multiplication
[N] [M] Er D[P:

A a
S v
xx x

S v
xx x (13)

yx Vy

S v
yx y
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where

F =T (1 - cosh yA cosh kA) + sinh yA sinh kA +1]

P11 -P 22 = k[1 - ( )2] cosh YA sinh kA - ()2 cosh kA sinh yA]/F

P12 -P 21 = - () sinh YA - sinh kA] /F

These transfer relations are used to describe a variety of problems, not only of a fluid-mechanical
nature, but involving electromechanical coupling that can be relegated to deformable interfaces.
Examples are given in Chaps. 8 and 9.

Short Skin-Depth Limit: By way of illustrating the two lengths typifying the dynamics of the
viscous layer, suppose that the viscous skin depth is small so that 6 << A and hence yA! >> i, but that
kA is arbitrary. Then, viscous diffusion is confined to boundary layers adjacent to the a and 8 planes.
Instead of Eq. 3, solutions exploiting the approximation would conveniently take the form

A = A5 sinh kx + A6 sinh k(x - A)+ 7e- + e ( (14)

where it is understood that y is defined such that Rey > 0. The diffusion terms are respectively negli-
gible when evaluated in the a and 8 planes. This could be exploited in simplifying a derivation of the
transfer relations for this limiting case, one that parallels that begun with Eq. 3. Because the result
is easily found by taking the appropriate limit of Eq. 13, it suffices to draw attention to the apparent
role of the pressure in coupling one viscous boundary layer to the other. Even though the viscous skin
depth is short compared to the layer thickness, the coupling between planes afforded by the pressure
results in diffusion motions at one plane caused by exci~tions at the other. For example, the shear
stress S in the a plane caused by a shearing velocity v~ in the 8 plane is proportional to lP34. From
Eq. 13, even in the limit AI>> i, but kAc 1,

P3 4 = nk/sinh kA (15)

It is only in the limit kA >> i, so that the pressure perturbations cannot penetrate the layer, that the
shearing interactions across the layer cease.

Infviite Half-Space of Fluid: With both YA >> 1 and kA >> 1, motions in one plane are uncoupled
from those in the other. With the understanding that Rey > 0, and that upper signs refer to a lower
half space bounded from above by the a plane while lower signs are for an upper half space bounded from
below by the 8 plane, appropriate solutions to Eq. 2 are

+kx _+yx
A = A5e + A2e (16)

Transfer relations are determined following the same steps just outlined. First, the velocity amplitudes
are written in terms of (A1,A2) and then these relations are inverted to obtain

Ai

A2

1
k-y -j ±+1

j +_1 v
y

(17)

In terms of the potential amplitudes, the respective stress components are
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a
^8S
xx

a

S
yx

+jn(k2 + y 2 ) +2jJnyk

-2Ik 2 -n( 2 + k )

A

A2

(18)

Finally, the transfer relations follow by combining Eqs. 17 and 18:

S + 2 (y + k) -jn(y-k) v
xx k x

(19)

jSln(- k) +n(y + k) v
yx y

Remember that k has been assumed positive. If a wave propagating in the -y direction is to be
represented, the derivation can be repeated with k + -k. For this negative traveling wave, Eq. 19 is
altered by a sign reversal of the two off-diagonal terms.

7.20 Low Reynolds Number Transfer Relations

In terms defined with Eq. 7.18.12, the inertial force density is negligible compared to that due
to viscosity if the viscous diffusion time is short compared to times of interest, or equivalently, if
the Reynolds number is small:

T = p 2/n <<1; R = pua/n <<l (1)

In this extreme, the dynamic response is a sequence of stationary states. The governing volume equation,
Eq. 7.18.13, is written as the biharmonic equation using a vector identity,*

Vm2 (v2 + G) = 0 (2)

It involves no time rates of change. The flow is therefore an arbitrary function of time determined by
boundary conditions and the external rotational force density. The flow at any instant can adjust itself
throughout the volume without the time delays associated with viscous diffusion. A consequence is flow
reversibility. For a graphic demonstration, see Reference 6, Appendix C. Moreover, so long as the con-
ditions of Eq. 1 prevail, the amplitude of the response is also arbitrary. There is no implied linear-
ization. Finally, because Eq. 2 is linear, a superposition of solutions is also a solution.

The vector potential reduces to a single scalar component for the configurations of Table 2.18.1.
In the following subsections, two of these are considered. First, the dynamics of a planar layer is
revisited and then the transfer relations for axisymmetric flows in spherical geometry are derived.

Planar Layer: With 0= 0 and A = ReA (x,t)e-jky1, Eq. 2 requires that the x dependence satisfy

d 2 k2 = 0 (3)

Formally, this is the limit wp/n << k 2 and hence y - k of Eq. 7.19.2 (but of course the underlying
approximations do not limit the solution to small amplitudes). Because the viscous and Laplacian roots
of Eq. 3 have now degenerated into the same roots, two solutions are linear combinations of exp(+kx)
and the other two are combinations of x exp(+kx):

Av = Al sinh kx ± A2 (t) sinh kx + A3 sinh k(x-A) + A4 () sinh k(x-A) (4)

By contrast with the amplitudes of Sec. 7.19, the Ai's are arbitrary functions of time.

The outline for finding the transfer relations for the planar layer shown in Fig. 7.19.1 is now
the same as illustrated in Sec. 7.19. With the caveat that the result does not have the same limita-
tions as the viscous diffusion relations, it is possible to obtain the transfer relations as a limit of

* -- 2-VxVxF = V(V.F) - V F; V.F 0
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the results of Sec. 7.19 in which wp/n + 0. As a practical matter, it is perhaps easier to repeat the
derivation.

For reference, the potential amplitudes of Eq. 4 are related to the velocity amplitudes by

= [Qj ]

where

H = [sinh 2 (kA) - (kA) 2]/4k

Q11 = j[sinh(kA) + kA cosh(kA)]/4k2H

Q21 = 42 = -jA[cosh(kA)sinh(kA) + kA]/4k sinh(kA)H

Q41 = -Q1 2 =22 = jA[sinh(kA) + kA cosh(kA)]/4k 
sinh(kA)H

Q3 2 =
j[(kA) 2 - sinh2(kA)]/4k 2 sinh(kA)H

Q13 = -Q23 = Q44 = A sinh kA/4kH

Q14 = Q24 = Q43 = A2/4H

Q3 1 
= Q33 = Q34 = 0

The stress-velocity transfer relations are then

S
xx

xx

S
yx

S
yx

= n[Pij ]

where

1 kA
P1 = -P = [1 sinh(2kA) + k- /H

11 22 4 2

P33 = -P44 [I sinh(2kA) - /H

P21 =-P 
= [ cosh(kA) + 1 sinh(kA)]/H

21 12 2 2

P31 = 1-P3= -P24 = 42 =
(kA) 2/2H

P14 23 32 41 -j(- )sinh kA/H

P4 3 = -P34 = -[sinh(kA) - kA cosh(kA)]/H

Application of these relations is illustrated in Chap. 9

Axisymmetric Spherical Flows: To describe motions around small particles, bubbles and the like,
creep flows are now considered in spherical coordinates. The relations developed are limiting forms
of those for a spherical shell. First, stress-velocity relations are obtained relating variables on
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a spherical surface of radius a enclosing the region of interest. (The shell's inner radius 8 + 0.)
Then, they are found for an infinite region exterior to a surface of radius 0 (a + co).

In spherical coordinates, flows with no azimuthal dependence are described by the vector potential
of Table 2.18.1:

A A(r,O) +(
Av r sin 6e (7)

In substituting this form into Eq. 2 (with G = 0), observe that

S1 [22A sin 1 ()2 2a(s 36]71 (8)r sin r sin 6 2 2 a6 sin J6

To evaluate Eq. 2, the vector Laplacian is now taken of this expression. Because it takes the same form
as Eq. 7, with the quantity in [,] playing the role of A, it follows that Eq. 2 reduces to

1 2 sin6 1 A (9)
r sin 8 2 2 D86Tin( 8e

r

That variable separable solutions to Eq. 9 take the form

A - sin e P (cos e)A(r,t) (10)n

can be seen by observing from Eqs. 2.16.31a and 2.16.34 that the Legendre polynomial Pl satisfies
n

d sin -- -nn+)Pn (11)-i 1 - (Pl sine)]-- -L ( sin n) -n(n+l)P (11)
sin- 6

Hence, substitution of Eq. 10 into Eq. 9 results in a fourth-order differential equation determining the
radial dependence:

d2 n(n + 1)
L 2 ] A - 0 (12)

Further substitution shows that two solutions to Eq. 12 are of the form rq , where q - 1 + n and -n. Two
more solutions follow as r2rq, so that the radial dependence is expressed in terms of four time-dependent
amplitudes, A ,

A l n+1 + -n -n n+3 (13).= + A2() + 3 + A4(13)

The radius R will be identified with either a or 8.

The velocity components are evaluated from Eq. 13 by using Eq. (k) of Table 2.18.1:

L 1 d [sin 6 f0146 0) ; - (14)1 d ;1 A(14)
Vr r sin G dO n r 2

Ve cos e); ve - dA (15)

The edependences of the two components differ. For convenience, these are summarized in Table 7.20.1.
The amplitudes %8 and Vr are multiplied by the respective functions from Table 7.20.1 to recover the 6
dependence.

Flow within a volume enclosed by a spherical surface having radius a includes the origin. Because
the velocity implied by the second and third terms in Eq. 13 is singular at the origin, these terms are
excluded. Evaluation of Eqs. 14 and 15 at r = a then gives a pair of expressions in (Al,A4) which can
be inverted to obtain

2 2

S(16)

-(n+l)a 2 -2 _A4 2 2

ec7.2 
7.34J
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Table 7.20.1. Angular dependence of velocity and stress functions.

v 0 and S0r vr and Srr

Pl(cos 6) 1 d [sin 6 PI(cos )]n sin dO n

1 sin 6 2cos 6

2 3sin 0 cos e 3(3cos 2 0 - 1)

3 3 sin 0(5cos 2 6 - 1) 15cos 6(1 - 2sin 2 8) - 3cos 0

4 sin (7cos3 8 - 3cos 6) 5cos 6(7cos 3 0 - 3cos 6) + sin 2 8(3 - 21cos 2 8)
4 2 s 

2

For the flow in the region exterior to the surface having radius r - 0,contributions to Eq. 13
that are singular as r - - are excluded. The n-i mode is special, in that it represents flow that is
uniform in the z direction far from r = 8. Thus, the second and third terms in Eq. 13 contribute for
all values of n, but the first term also contributes when n=l. For a uniform parallel flow, 4 - UTz
at infinity, and it follows that for n=l, A1 = 002/2. Two equations for (12,13) are then written by
evaluating Eqs. 14 and 15 at r = 0.These are inverted to obtain

(2-n) 02
2

1 U61

+ ln
+ 1161n

(17)

In spherical coordinates, the stress components are

av
Srr = -p + 2 arr

SOr Dr (r

(18)

(19)

To evaluate the pressure in terms of the Ai's, Eq. 7.18.14 is evaluated using Eq. 8. The line integra-
tion can be carried out along the ,06and finally r directions. Because the integration is only a func-
tion of the end points, it is clear that the 8-dependent part comes from the last integration. Thus,

2~
_ 1dA _n(n + 1)
r 2 dr 2 r 2 .ý

(20)

with the 0 dependence the same as for vr . Equations 18 and 19 are now evaluated, first at r = R - a (the
region r < R, where A2 and A3 = 0):

Srri

[.aI

A

A4J
(21)

and then at r = R = B (the region r > R, where Al = UB2/2, A = 0):

[ ] -2(n+2) -2(n2+3n-1) A
rr [n+1 2

Li -2n(n+2) 2(1-n2) A3

(22)
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Note that the term in A1 does not contribute to Eq. 22 because its coefficient is zero for n = 1.

To recover the 0 dependence, the amplitudes Srr and Sgr are respectively multiplied by the func-
tions summarized in Table 7.20.1. That the 8 dependence of SOr is indeed simply Pn(cos e) is shown by
making use of Eq. 11.

The stress-velocity transfer relations now follow by substituting Eqs. 16 and 17 respectively into
Eqs. 21 and 22:

rr1

SOr

3v
n r

(23)

(2n+l) v•e

S(2n2+3n+4) 3 sB1
rr n+1 n+l r 2 ln-rl

S 3n (2n+l) ] + U(

The stress and velocity components in these relations are multiplied by the functions of 6 given in
Table 7.20.1 to recover the 0 dependence. Application of these relations is illustrated in
Sec. 7.21.

7.21 Stokes's Drag on a Rigid Sphere

Certainly the most celebrated low Reynolds number flow is that around a rigid sphere placed in what
would otherwise be a uniform flow. Of particular interest is the total drag force on the sphere, found
by integrating the z component of the traction, Srr cos 0 - SOr sin 6, over its surface,

f = [Srr cos 0 - Ser sin 0]27R 2 sin OdO (1)

The exterior n=l flow of Sec. 7.20 is now identified with that around the sphere. The uniform
z-directed velocity far from the sphere is U. Because the sphere surface at r = R is rigid, both
velocity components vanish there. In Eq. 7.20.24,

9B= 0,0 = 0 (2)

and the stress components are

= 3U (3)
2R

Using these amplitudes, as well as the 6 dependence given in Table 7.20.1, Eq. 1 becomes

fz = 67rnRU (4)

For a particle falling through a static fluid, U is the particle velocity. This "Stokes's drag" force
is a good approximation, provided the Reynolds number based on the particle diameter is small compared

to unity.

7.22 Lumped Parameter Thermodynamics of Highly Compressible Fluids

That additional laws are required to model highly compressible fluids is evident from the appear-
ance of additional dependent variables in the constitutive law for the mass density. In this section,
certain constitutive laws and thermodynamic relations are introduced. In Sec. 7.23 these are used to
formulate integral and differential statements of energy conservation for the internal energy subsystem.
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These laws are used extensively in Secs. 9.15-9.19.

Mechanical Equations of State: For a weakly compressible fluid, as defined in Sec. 7.10, the mass

density is a function of pressure and parameters reflecting either the fluid composition or state. That
air is buoyant when heated at constant pressure makes it evident that the mass density also depends on
temperature. A commonly used mechanical constitutive law, representing a single-component perfect gas,
is

p = pRT (1)

The temperature, T, is measured in degrees Kelvin (TKelvin = Tcentigrade + 273.15). The gas constant,
R, is R = RgY/M, where Rg = 8.31 x 103 is the universal gas constant and M is the molecular weight of the-Z 5
fluid. Using N2 as an example, the molecular weight is 28, R = 297 and it follows from Eq. 1 that at

atmospheric pressure (p=1.013x105 n/m 2 ) and 200 C the mass density in mks units is p=p/RT=1.16 kg/m3.

Energy Equation of State for a Perfect Gas: The specific internal energy, Wt, is defined as the
energy per unit mass stored in the thermal motions of the molecules. In a perfect gas, it depends only
on the temperature. Incremental changes in internal energy and temperature are related by

6WT = c 6T (2)

and a simple constitutive law takes the specific heat at constant volume, cv, as being constant over
the temperature range of interest.

Conservation of Internal Energy in CQS Systems: There is a formal correspondence between conserva-
tion of energy statements exploited in describing lumped-parameter electromechanical coupling in Sec. 3.5
and used now for thermal-mechanical coupling in a fluid. As a reminder, suppose an EQS electromechanical
subsystem having single electrical and mechanical degrees of freedom is represented electrically by a
charge q at the potential v and mechanically by the displacement E of material subject to the force of
electrical origin f. Energy conservation for a subsystem defined as being free of dissipation is ex-
pressed by

v6q = 6w + f6c (3)

where w is the electrical energy stored.

Now, consider the thermal lumped-parameter system exemplified by Fig. 7.22.1. The first law of

thermodynamics, conservation of energy for this subsystem, states that an increment of heat, 4qT

(measured in joules) goes either into increasing the energy stored, or into doing mechanical work on an

external system

6q = SwT + p6v (4)

Here, wT plays the role of w and is energy stored in kinetic (thermal) motions at the molecular level.
The mechanical work done is expressed in terms of the change inthe total volume,v, and the pressure, p.
That this term plays the role of the last term in Eq. 3 is seen by considering the work done by the dis-

placement of p pistons in Fig. 7.22.1. With Ai the area of the ith piston, the net change in volume is

p
6v= E Ai i- (5) C . " ".

Because the gas is quasistatic (in the CQS sense of •ec. 7.25j the pressure exerted on each of the
pistons is the same. Thus,

p p
E PiAi6i = p E Ai i = p6v (6)
i=l i=l

so that p6v is indeed the mechanical work resulting from the net motions of the pisttns.

Comparison of Eqs. 3 and 4 makes it natural to represent the incremental heat addition in terms of
two variables. One of these, the potential, v, in the electrical analogue represented the intensity
through which the heat addition is made and is the temperature, T. The other variable, defined as the
entropy s, is analogous to the charge. It expresses the quantity or extent of the heat addition in
units of joules/OK. With the understanding that the incremental heat addition is indeed to a "con-
servative system" (that the thermal input can be recovered), the statement of energy conservation, Eq. 4,
becomes

T6s = 6wT + p6v (7)
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In working with a continuum, it is convenient to use extensive vari-
ables that are normalized to the mass density. This is accomplished
in the lumped-parameter system now being considered by dividing Eq. 7
by the (constant) total mass of the system. Thus, Eq, 7 becomes

TaS = 6WT + pdV

where the entropy per unit mass or specific entropy is S, and the
specific volume V = 1/p will be recognized as the reciprocal mass
density.

Just as it is natural to think of (q,5) as independent vari-
ables in Eq. 1, (S,V) are independent variables in Eq. 8. Thus, the
specific thermal energy is a state function WT(S,V). The cbenergy,
W'(v,Q), is introduced in the electromechanical system if it is more
convenient to use the potential iather than the charge as an in-
dependent variable. With a similar motivation, energy-function
alternatives to WT are often introduced.

Where p is a natural independent variable, the identity
pdV = 6(pV)-V6p converts Eq. 8 to

A

.... . I

(p,pT)
_-- : . ( . :

:F"T

T6S = 6HT - V6p

where the specific enthalpy, HT - WT + pV, is the convenient energy
function. The specific enthalpy, like Wt, is a state function. But
even more, for a perfect gas it is a function only of T. This is
clear from the definition of HT, the fact that for a perfect gas,
WT = WT(T) and because (from Eq. 1) pV = (p/P) = RT.

Fig. 7.22.1. Schematic view
of lumped-parameter
thermodynamic subsystem.

An energy equation of state equivalent to Eq. 2 can be stated in terms of the specific enthalpy

6HT = c 6T
Tp

(10)

and since the specific enthalpy is a defined function, it is not surprising that specific heat at con-
stant pressure, cp, is related to cv and R. To determine this relationship, write Eq. 9 using Eq. 10:

T6S = cp&T - V6p

Subtract Eq. 8 evaluated using Eq. 2 from this relation and it follows that

(cp - cv)6T = 6(pV) = R6T

(11)

(12)

where the second equality comes from Eq. 1. Thus,

c -c - R
p V (13)

7.23 Internal Energy Conservation in a Highly Compressible Fluid

In a moving fluid, the thermodynamic variables are generally functions of position and time.
Strictly, neither the equations of state nor the thermodynamic statement of energy conservation from
Sec. 7.22 applies to media in motion. The approach now taken in regard to the state equations is similar
to that used in the latter part of Sec. 3.3 to broaden the application of Ohm's law to conductors in
motion.

First, the laws must hold with the thermodynamic variables evaluated in the primed or moving frame
of reference, at least for a fluid element undergoing uniform and constant translation. Equations of
state are expressed in the laboratory frame of reference by transforming variables from the primed to
the unprimed frame. The thermodynamic variables of temperature, specific entropy, etc., are scalars.
They are the same in both reference frames, and hence the mechanical and energy equations of state,
Eqs. 7.22.1 and 7.22.2,are used even if the fluid they describe is in motion.

The seeming ubiquity of these state equations should not obscure the underlying assumption that
accelerations and relative deformations of the material have negligible effect on the mechanical and
energy equations of state. The notion that the fluid can be described in terms of state functions rests
on there being a local equilibrium condition for the internal energy subsystem. Because processes occur
at a finite rate and in an accelerating frame of reference, extension of the first law to continuum
systems rests on the assumption that each element of the medium reaches this equilibrium state at each
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stage of the process.

A further assumption in what follows is that it is meaningful to separate the thermal and electric
or magnetic subsystems. If the constitutive laws, Eqs. 7.22.1 and 7.22.2 for example, are modified by
the electromagnetic fields, then this is not possible.

In this section, three subsystems are distinguished, each including dissipations. Two are the
electric or magnetic and the mechanical subsystems. Each of these couples to the third, the internal
energy subsystem. Given fluid of fixed identity filling a volume V enclosed by a surface S, the ob-
jective now is to write a continuum statement of internal energy conservation that makes the same
physical statement as Eq. 7.22.8.

Power Conversion from Electromagnetic to Internal Form: To begin with, consider the inputs of
heat to the volume. Whether the system is EQS or MQS, the electrical input of heat per unit volume is

V1-. To see this, observe from the conservation of energy statement for the elecqric (Eq. 2.13.16) or
magnetic (Eq. 2.14.16) subsystem that the power density leaving that system is Jf.E. This density either
goes into the mechanical subsystem (into moving the fluid) or into the internal subsystem (into heating
the fluid). Given the force densities, it is now possible to isolate the dissipation density. For an
EQS system where polarization effects are negligible, the electrical dissipation must therefore be

1 - p4 4v= ( + Pf ). - Pf 'v = 'l (1)

Here, the EQS transformation laws (Eqs. 2.5.9a, 2.5.11a and 2.5.12a) have been used. For an MQS system
without magnetization, the electrical dissipation density is

JfE - Jf x o1 = J(E' - Vx Io) -'J xxo = JH*E (2)

where the MQS transformation laws (Eqs. 2.5.9b, 2.5.11b and 2.5.12b) and an identity* have been used.
Hence, the electrical dissipation density makes the same appearance for EQS and MQS systems.

Power Flow Between Mechanical and Internal Subsystems: Just as the statement of energy conservation
is the basis for identifying the electrical dissipation density (Eqs. 1 and 2), the kinetic energy con-
servation statement, Eq. 7.17.8, makes it possible to identify the last two terms in that expression as
power flowing from the mechanical system into the internal energy subsystem. Because the first of these
two terms has been interpreted as heat generated by mechanical dissipation, it is now written on the
left of the internal energy equation. However, the second of these terms represents mechanical power
input in the form of a compression of the gas, and is therefore moved to the other side of the expression
(with its sign of course reversed).

Integral Internal Energy Law: The continuum version of Eq. 7.22.8 is now written as

E d+ - rd fVE'fdV + dV - ' ~ nda = t IvWTd V + IVpVvdV (3)

In addition to the first two heat input terms on the left, there has been added one representinf the con-
duction of heat across the surface S and into the volume V. Typically, the thermal heat flux, 7T,is
represented by a thermal conduction constitutive law, to be introduced in Sec. 10.2. On the right is the
time rate of change of energy stored within the volume (which is one of fixed identity) plus the work
done on the mechanical system through the expansion of the fluid.

Differential Internal Energy Law: To convert Eq. 3 to a differential statement, Gauss' theorem,
Eq. 2.6.2, is used to write the surface integral as a volume integral. In addition, the generalized
Leibnitz rule, Eq. 2.6.5, is used to take the time derivative inside the integral on the right. Then,
conservation of mass, Eq. 7.2.3, is used to simplify that integrand. Because the volume V is arbitrary,
it follows that

DWT
S+ + pVv (4)
f v T Dt

Combined Internal and Mechanical Energy Laws: Especially in dealing with steady flows, it is often
convenient to add the mechanical energy equation, Eq. 7.17.8, to the internal energy equation, Eq. 3:

E dV + Visijnjda P-Tfnda= +(WT-- )dV (5)

Here, Eqs. 1 or 2 have been used in reverse, with $ex taken as being of electric or magnetic origin. The
surface integral is converted to a volume integral and the Leibnitz rule used on the right. Then, the

AB x C Ax BC
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integrands are equated to give

If- 8+ 1 ) +4 1 +a
Sa ( ) - V = t P(WT + 2 vv) + V.pv(W T + vv) (6)

Now, if the flow is steady so that a( )/at = 0, substitution of Sij = - 6ij + Ti gives

- +Jf (vi i)- . (H+- vv)] (7)

where the pressure part of Sij has been moved to the right and absorbed in the specific enthalpy,
HT T + p/p (Eq. 7.22.9).

Entropy Flow: That the energy equation, Eq. 4, is the continuum version of Eq. 7.22.8 is made
evident if it is recognized from mass conservation, Eq. 7.2.3, that

Remember that the specific volume V 1/p. Thus, the right-hand side of Eq. 7.22.8 multiplied by p is
the same as Eq. 4, provided that the variations 6WT and 6V are replaced by convective derivatives of
these functions. This suggests that the left side of Eq. 5 can be identified with T6S, so that Eq. 4
becomes

DW 1pT = p + Pp ) (9)

For an ideal gas, it follows from the mechanical and energy equations of state, Eqs. 7.22.1 and 7.22.2,
that

DS Cv DT D 1 p 1DD 1
+ pR ()= -) - ()+pR () (10)Dt T Dt D p p Dt p Dt p

Because R = c -c (Eq. 7.22.13), with y E c /C, this expression becomes

DS (.1 DR D p Do)

= e p L_- = -D [c In(pp-)] (11)Dt v p Dt p Dt Dt v

It follows that along a particle line passing through a point where the properties are S = So, = Poand p = po, the specific entropy of a perfect gas is

p0
S = So + c ln[-P- (-)-] (12)

If in particular there are no heat additions to the element of fluid, so that the left side of Eq. 4 is
zero, then the element of fluid sustains isentropic dynamics: S = SO and the pressure and density are
related by the isentropic equation of.state,

P
P- () = 1 === (2o)Y (13)
pO p PO PO

For isentropic flow, Eq. 13 represents an invariant along the trajectory of a given fluid element. If
the volume of gas of interest originates where the properties are.uniform, then Eq. 13 is equivalent to
a constitutive law relating pressure and density throughout that volume. Thus, isentropic dynamics fall
within the framework of the weakly compressible dynamics considered in Secs. 7.10 - 7.12. With the
understanding that it is the specific entropy that is being held constant, the acoustic velocity follows
from Eqs. 7.10.4 and Eq. 13 as

a = (P =y-1 = ZMY- (14)

o

For a perfect gas, the acoustic velocity depends only on the temperature and ratio of specific heats.
Note that if the dynamics were isothermal (constant temperature) rather than isentropic, the acoustic
velocity would be a = RRff. Because y ranges between unity and two, such a velocity would always be
less than that for an isentropic process.
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7.24 Overview

The fluid continuum developed in this chapter is capable of storing energy in two forms, the
kinetic energy associated with the fluids having inertia and internal energy associated with its com-
pressibility. Dissipation has been represented by the Newtonian model, in which stress is linearly
related to strain rate. In summary, the differential laws are the equation of state, Eq. 7.10.3,

P - p
p = p(al',"',m,ps) + 2

a

conservation statements for the properties ai' Eq. 7.10.4,

ia
conservationof mass, Eq. 7.2.3, which=

conservation of mass, Eq. 7.2.3, which can be combined with Eqs. 1 and 2 to give

1 apa
2 (1 + *.Vp)= -(p-a -V*2 at i aa

a i

and conservation of momentum, Eq. 7.16.6,

S-+ V + Vp + nx + (C + V(

The relations and approximations which have been developed are now placed in perspective by
fying the characteristic times underlying these laws and recognizing the hierarchy of these times
plicit to the various models. The discussion is to the laws of fluid mechanics what that of Sec.
is to the laws of electrodynamics.

identi-
im-
2.3

The laws are normalized by introducing dimensionless variables,

(x,y,z) = £(x,yz), t = Tt, ' =fi(k/T), p = RP

With the objective a time-rate parameter expansion for the dependent variables, the pressure is given
two different normalizations designed to make the zero order approximation all that is required in a
wide range of physical situations. Thus, p is normalized to

reflect the dependence of density on pressure as
represented by Eq. 1

p = a2Rp (6a)

and Eqs. 1-4 become

P = P(l.''',***msPs) + P - P
(7a)

reflect the dynamic pressure (inertia)
in Bernoulli's equation

R2
p =•2

p = p(als,-.,m p s)+ (P- ps )

+ V-(aiv) = 0at 1

( + v.Vp) = -(P-ai -- )v.
at i

p q + v*V + Vp

SF + - [2v+ + -)V(V-v)]
ex T TI 3

where

+ F
F = Fex 2 -ex

Ra

c 2
Ra

(9a)

(10a)

(11a)

8t + v•Vp) = -(p-a i a-)V• (9b)

at
Pt + v.Vv +p

(10b)

F +-[V- v + + -)V(Vv)]
ex T fl 3

v

2
+ T
F -F
ex R. -ex

i•2

Tv r
v fl

(llb)

Sec. 7.24

appearing

(6b)

(7b)

I

7.41



; T A/a (12)

The time-rate parameter 8 is the ratio of an acoustic wave transit time, Ta, to characteristic
times of interest. The viscous dissipation brings in a second characteristic time, either Tc or Tv.
The viscous diffusion time, Tv, is familiar from Sec. 7.18 (Eq. 7.18.12), where its analogy to the mag-
netic diffusion time is discussed. The viscous relaxation time, Tc, is analogous to the charge relaxa-
tion time. For example, both Tc and Te are independent of the characteristic length. Moreover, as can
be seen by substitution from Eqs. 11 and 12, the geometric mean of Tc and Tv is the acoustic transit
time

vTC = (13)

The analogy to the electrodynamic relation between Tm, Te and Tem, Eq. 2.3.11, points to there being two
quasistatic limits, each resulting because 8 << 1.

These can be identified by expanding the normalized dependent variables in power series in B. For
example,

p = P + p1 + 2+ "' (14)

To zero order in 8,Eqs. 7-10 become the quasistatic laws. In un-normalized form these are

Compressible quaaistatic Incompressible (inertial) quasistatic
(CQS) (IQS)

P-ps
P = P(al'''t , sp) + (15a) P = P(al...,m'Ps) (15b)

+ V.(civ)= 0 (16)

P + V.(p) = 0 (17a) V.· = 0 (17b)at

+ 2- 1 4+( av + + + 2+
Vp F + V + + )(V) (18a) + vv) + Vp =F + V v (18b)

where the ordering of characteristic times is respectively as indicated in Fig. 7.22.1.

I I' I I -
TV TO r. T a TV,

Fig. 7.22.1. Ordering of T a, Tv and Tc and domain of mechanical quasistatics.

Which of the normalized laws, Eqs. 7-10, is used is arbitrary. However, if for example the left
normalization were used for a configuration in which the quasistatic motions were incompressible, the
zero-order approximation would be zero, and the appropriate solution would be first-order in 8.Examples
in which boundary conditions clearly require the CQS limit are those where the total volume of the fluid
must change, as in the slow compression of a gas ina rigid-walled vessel by a piston. The IQS and
CQS limits are identified for a specific problem, without viscous dissipation, in Sec. 7.12.

Usually, it is the IQS limit that is considered when 0 << 1. Note that with the exception of
Secs. 7.10-7.12, Eqs. 15b - 18b have received most of the attention in this chapter. The inviscid in-
compressible model pertains to Ta << T << Tv. The low Reynolds number limit is one in which not only
isT, << T, but Tv << T as well.

Nature makes unlikely the CQS ordering of characteristic times. For T /T < 1, it isnecessary
that the harancteristic length 2 < n/Ra. In air under standard conditions this iength is a fractinon of
a micrometer. Because this is about the molecular mean free path, the continuum fluid model is of doubt-
ful validity on a length scale small enough to make viscous relaxation important.
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