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9.1	 U

I


Prob. 9.3.1 (a) Witho and T =0, 	 Eq. (a) reduces to V= +(y-(g) I

Thus, the velocity profile is seen to be linear in x. (b) With 1 3_,9=o 

and T =0, Eq. (a) becomes Iyx 

and the velocity profile is seen to be parabolic. The peak velocity
 I 
is at the center of the channel, where it is- (~i'/ )P}t . The volume 

rate of flow follows as 

Qv wiji4 A(= Wa..&&( 1 =2 -I &	 I

Hence, the desired relation of volume rate of flow and the difference S 
between outlet pressure and inlet pressure, hP , is 

I

i


Prob. 9.3.2 The control volume is as shown


with hybrid pressure p' acting on the longi­


tudinal surfaces (which have height x) and ­


'	 p'cfd+day Ishear stresses acting on transverse surface. 


With the assumption that these surface stresses

XI
 I 

represent all of the forces (that there is no I
 w0)14x(C)I 

acceleration), the force equilibrium is repre­


sented by
 I

IB


Divided by dy, this expression becomes Eq. (5)


I




9.2


Prob. 9.3.3 Unlike the other fully developed flows in Table 9.3.1,


this one involves an acceleration. The Navier-Stokes equation is


V).DI+vp =( )+2 + .-(1)


With v = v(r) 1 , continuity is automatically satisfied, V-9 =0. The 

radial component of Eq. 1 is 

+•-•F#') (2) 

It is always possible to find a scalar e(r) such that F = ---)/ 

and to define a scalar T(r) such that T = - (i/'r),cr. Then, Eq. (2) 

I reduces to 

C) +-T(r) i- (3) 

The 9 component of Eq. (1) is best written so that the viscous shear 

3 stress is evident. Thus, the viscous term is written as the divergence 

of the viscous stress tensor, so that the 9 component of Eq. (1) becomes 

I e'-,~(- +-rr) (4)+-T.V)++(T 


where


I ) (5)
2


Multiplication of Eq. (4) by r makes it possible to write the right hand


side as a perfect differential.


3. (-r (6) 

Then, because the flow is reentrant, )@U =-O and Eq. (6) can be integrated.


Id (3 C)]= (7) 

a a second integration of Eq. (7) divided by r3 gives 

13IV3 3 - (8 



I 
Prob. 9.3.3 (cont.) I; 
The coefficient C is determined in terms of the velocity V) on the I 
outer surface by evaluating Eq. (8) on the outer boundary and solving


for C. 
d ,, 

ow- zr~ 1oc /3/ 

This can now be introduced into Eq. (8) to give the desired velocity


distribution, Eq. (b) of Table 9.2.1.


Prob. 9.3.4 With Tr=0, Eq. (b) of Table 9.2.1 becomes


1I (, 2 A, Yi v(1) I 
The viscous stress follows as 

V (2) I 
Substituting 1 :dO and 3 " , at the inner surface where r =13 this 

becomes IE 
-7 I~ 

The torque on the inner cylinder is its area multiplied by the lever-arm 

/ and the stress Tr. I 

Note that in the limit where the outer cylinder is far away, this becomes


in Eq. (1) letting r = I'S(b) Expand the term multiplying vt • C <(< 

so that r-1 =(I/ - ' Z). In the term multiplying v8 , expand := d•,t 

so that r-1=(1/ +'C*tz) . Thus, Eq. (1) becomes 

- (o(-(3) (4-43)C . " OL" (6) 

I 



1 9.4 

Prob. 9.3.4(cont.)


The term out in front becomes approximately L/Cd-/3).a 

Thus, with the identification f'x ,' -W A- and OL-12-A the 

velocity profile becomes 

+I-1o (7) 

which is the plane Couette flow profile (Prob. 9.2.1).


Prob. 9.3.5 With thq assumption v = v(r)iz , continuity is automatically


satisfied and the radial component of the Navier Stokes equation becomes


so (+ (1)


so that the radial force density is balanced by the pressure in such a way


that p' is independent of r, where p'"m --p•. + .


Multiplied by r, the longitudinal component of the Navier Stokes equation


is t ) (2)
5 
This expression is integrated to obtain


I + __ (3) 

A second integration of this expression multiplied by r leads to the


velocity v(r)


in terms of the constant (O/Va)Y. To replace this constant with the 

velocity evaluated on the outer boundary, Eq. (4) is evaluated at the 

outer boundary, r = , where 1)~t= and that expression solved for 

5 Substitution of the resulting expression into Eq. (4) gives an expression 

that can be solved for the velocity profile in terms of 75 and 2) Eq. (c) 

of Table 9.2.1. i 



9.5


Prob. 9.3.6 This problem is probably more easily solved directly 
 a 
than by taking the limit of Eq. (c). However, it is instructive to take I

the limit. Note that Tzr=0, v =0 and d=R. But, so long as 1 is


finite, the term (31"11A) / of11) goes to zero as4-w0. Moreover,


so that the required circular Couette flow has a parabola as its profile I


(b) The volume rate of flow follows from Eq. (2)


Q V= Trr -IYP -_ '-= I

82 .41 a T 

where &p is the pressure at the outlet minus that at the inlet. I


Prob. 9.4.1 Equation 5.14.11 gives the surface force density in the


form


Thus, the interface tends to move in the positive y direction if the upper


region (the one nearest the electrode) is insulating and the lower one is I


filled with semi-insulating liquid and if SE is greater than zero, which 5

it is if the wave travels in the y direction and the interface moves at


a phase velocity less than that of the wave. i

For purposes of the fluid mechanics analysis, the coordinate origin


for x is moved to the bottom of the tank. Then, Eq. (a) of Table 9.3.1 I


is applicable with v3 =0 and v = U (the unknown surface velocity). There


are no internal force densities in the y direction, so T =0. In this

yx 

expression, there are two unknowns, U and 'r . These are determined j 

I




I Prob. 9.4.1 (cont.)


by the stress balance at the interface, which requires that


'X---oI =7 
and the condition that mass be conserved.


6 

I These require that 

r7b 
z 

v K-Tl=

and it follows that U= ,T,/'/,/=S and •,,/b 

so that the required velocity profile, Eq. (a) of Table 9.3.1 is 

I Prob. 9.4.2 The time average electric surface force 

density is found by adapting Eq. 5.14.11. That o " 

configuration models the upper region and the infinite . 
c-­

half space if it is turned upside down and -"c), ~-~)

I v~ 
S-L E C ---.E C ,, -o-- X ) 0 o and b *. c• , Then, 

SE 
• - (1)<Ta>=~tLI~vo1V2Keec I.• 

I where 

k
e= 


I ty 0 + ýfý A. +C- C 0 

N cO+ tfacd 

I I5;vk Fcljj co+igo'.+EccrcO4L411 
Note that for (0I'>IRU, the electric surface force density is negative.




I 
Prob. 9.4.2 (cont.) 

With x defined as shown to the right, Eq. (a) of KI 
Table 9.3.1 

by setting 

so that 

is adapted to the flow in the upper section 

U1 = 0 -& and O 
'If J • x= 

From this, the viscous shear stress follows as 

(2) 

x 5¢ 7[ z (g 
-I) 

Thus, shear stress equilibrium at the interface requires that 

(3) 1 
I 

KjxcC) f+_j&Y+ (4) 

Thus, 

z 
(5) 

and Eq. 2 becomes I 
K 2i 1 (6) 

It is the volume rate of flow that is in common to the upper a 

regions. For the upper region 

nd lower 

0Sl2 T'1 3T 

In the lower region, where A - b- 6--- "= - O 

Eq. (a) of Table 9.3.1 becomes ( P p' and p • ' ) 

Thus,inthelowerregion,thevolume rate of flow is 

272 ( zL-b ! 

(7) 

(8) 

1 

Thus, in the lower region, the volume rate of flow is 
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Prob. 9.4.2 (cont.)


i 
S aV= 

o 
Tdx 	 (9)


Because Q in the upper and lower sections must sum to zero, it follows 

from Eqs. 7 and 9 that 

ao­
3 	 3 (10) 

This expression is then substituted into Eq. 5 to obtain the surface


velocity, U.


3 3 

Note that because /-r\ is negative (if the imposed traveling wave of potential


I 	 travels to the right with a velocity greater than that of the fluid in that same


direction) the actual velocity of the interface is to the left, as illustrated


in Fig. 9.4.2b.


5 	 Prob. 9.4.3 It is assumed that the magnetic skin depth is very short


compared to the depth b of the liquid. Thus, it is appropriate to model


the electromechanical coupling by a surface force density acting at the


interface of the liquid. First, what is the magnetic field distribution 

under the assumption that <<(C3/ , so that there is no effect of the 

5 liquid motion on the field? In the air gap, Eqs. (a) of Table 6.5.1 with


TO =0 show that


Al 	 ~c 	 -6I (1) 
while in the liquid, Eq. 6.8.5 becomes 

~ 4L (2) 

I 	 Boundary conditions are


I	
Aq. A' A AA. 



Prob. 9.4.3 (cont.)


Thus, it follows that

s-­

It follows from Eq. 6.8.10 that the time- (c)


average surface force density is


<a I -".(5)


Under the assumption that the interface remains flat, shear stress balance


at the interface requires that


The fully developed flow, Eq. (a) from Table 9.3.1, is used with the bulk


shear stress set equal to zero and v =0. That there is no net volume rate


of flow is represented by


C. 7) D0_ 

So, in terms of the "to be determined" surface velocity, the profile is


8 
9) 

The surface velocity can now be determined by using this expression to


10)

evaluate the shear stress balance of Eq. 6.


Thus, the required surface velocity is


) aB 
91) 3 

Az A!.Z= /uIol ( 
Note that /d/ ( • 1, this expression is closely approximated by 21 

CCos 



9.10


Prob. 9.4,3 (cont.)


E This result could have been obtained more simply by approximating Hbi 0 in

x


Eq. 1 and ignoring Eq. 2. That is, the fields in the gap could be approxi­


mated as being those for a perfectly conducting fluid.


Prob. 9.4.4 This problem is the same as Problem 9.4.3 except that


the uniform magnetic surface force density is given by Eq. 8 from


I Solution 6.9.2. Thus, shear stress equilibrium for the interface 

3, requires that 

Using the velocity profile, Eq. 8 from Solution 9.4.3, to evaluate Eq. 1


results in


H_ (2) 

I Prob. 9.5.1 With the skin depth short compared to both the layer


thickness and the wavelength, the magnetic fields are related by Eqs. 6.8.5.


I In the configuration of Table 9.3.1, the origin of the exponential decay is


I the upper surface, so the solution is translated to x= A and written as


I It follows that the time-average magnetic shear stress is


z -* /IZ


6? 1^01x 

This distribution can now be substituted into Eq. (a) of Table 9.3.1 to 

obtain the given velocity profile. (b) For %/& = O.1 , the magnetically 

i induced part of this profile is as sketched in the figure. 

I

I
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Prob. 9.5.1 (cont.)


Prob. 9.5.2 Boundary conditions at


the inner and outer wall are


AO. - A • o 

(1)


Thus, from Eq. b of Table 6.5.1, the


complex amplitudes of the vector


potential are


a 

o .2 .4 .( .8 

A 
In terms of these amplitudes, the distribution of A(r) is given by


Eq. 6.5.10. In turn, the magnetic field components needed to evaluate


the shear stress are now determined.


+A


- A (4)-• 

Thus,


Tr = or zZIA 

and the velocity profile given by Eq. b of Table 9.3.1 can be evaluated.




3 9.12 

I Prob. 9.5.2 (cont.) 

Because there are rigid walls at r=a and r=b, 1$ =0 and =-­0 . 

Sthe 

The evaluation of these integrals is conveniently carried out numerically, 

as is the determination of the volume rate of flow Q. For a length in 

z direction, 

T( 

S(7) 

I 

I 

I 
Prob. 9.5.3 With the no slip boundary conditions on the flow, 1) =0 and 

=0, Eq. (c) of Table 9.3.1 gives the velocity profile as 

U-a 
(1)In IIt A>r+( )O± 

47)? 7 r 
6 b 

To evaluate this expression, it is necessary to determine the magnetic stress 

distribution. To this end, Eq. 6.5.15 gives 

-

Sand :­
because t/P)a H follows as 
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Prob. 9.5.3 (cont.)


Here, Eq. 2.16.26d has been used to simplify the expressions.


Boundary conditions consistent with the excitation and infinitely I


permeable inner and outer regions are 

= ) I~ O (5)
0 

Thus, the transfer relations f of T'able 6.5.1 give the complex amplitudes


needed to evaluate Eqs. (3) and (4)


b u 

and the required magnetic shear str'ess follows as

-A 

The volume rate of flow
 I
(7) 
is related to the axial pressure


gradient and magnetic pressure


/IK2 by integrating Eq. (1).


qv=II··" 

Prob. 9.6.1 The stress tensor coxIsistent with the force density F i is

ooy


T =F x. Then, Eq. (a) of Table 9.3.1 with v = 0 and v'- 0, as well as 
yx o 

-p'/ =- , reflecting the fact thLat the flow is reentrant, gives the 3 

I




o
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Prob. 9.6.1 (cont.)


velocity profile


-

For the transient solution, the appropriate plane flow equation is


SF(2)


The particular solution given by Eq. 1 can be subtracted from the total


solution with the result that Eq. 2 becomes


__h (3) 

A 

Solutions to this expression of the form V,(x)exp snt must satisfy the 

equation A 

l.+A o where (4) 

The particular solution already satisfies the boundary conditions. So must 

the homogeneous solution. Thus, to satisfy boundary conditions tKOt)=O, 0(6,t)f 

, A, (5) 

G--7) (6) 

Multiplication by sin (WA.X/n ) and integration from x=O to x= & serves to 

evaluate the Fourier coefficients. Thus, the transient solution is 
"' 

1. (4A (nL (7) 

Although it is the viscous diffusion time that determines how long


is required for the fully developed flow to be established, the viscosity is


0 
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Prob. 9.6.1 (cont.)


not involved in determining how quickly the bulk of the fluid will respond. I 
Because the force is distributed throughout the bulk, it is the fluid inertia 

that determines the degree to which the fluid will in general respond. This 

can be seen by taking the limit of Eq. 7 where times are short compared to 

the viscous diffusion time and the exponential can be approximated by the 

first two terms in the series expansion. Then, for •/o) r/A(T 1, 
00 

which is what would be expected by simply equating the mass times accelera-
 I 
tion of the fluid to the applied force.


Prob. 9.6.2 The general procedure for finding the temporal transient


outlined with Prob. 9.6.2 makes clear what is required here. If the i


profile is to remain invariant, then the fully developed flow must have


the same profil as the transient or homogeneous part at any instant.


The homogeneous response takes the form of Eq. 5 from the solution to


Prob. 9.6.1. For the fully developed flow to have the same profile


requires 
 3 

where the coefficient has been adjusted so that the steady force equation


is satisfied with the force density given by


=o FX, /Q(2) 

The velocity temporal transient is then the sum of the fully developed and


the homogeneous solutions, with the codfficient in front of the latter


adjusted to make v(x,O)=0.


I 
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SProb.9.6.2 (cont.)


"I 	 -7 (.3)


Thus, if the force distribution is the same as any one of the eigenmodes,


the resulting velocity profile will remain invariant.


I, 
Prob. 9.7.1 The boundary layer equations again take the similarity form


of Eqs. 17. However, the boundary conditions are


where U now denotes the velocity in the y direction adjacent to the plate.


ZI 	 The resulting distributions of f, g and h are shown in Fig. P9.7.1. The 

I 	 condition as -Poo is obtained by iterating with h(O) to obtain h(O) = 

Thus, the viscous shear stress at the boundary is (Eq. 19) 

(2)IS (o,)=-	 0) 

and it follows that the total force on a length L of the plate is 

S--wUj) 	 (3) 

0 

I­




3 9.17 


Prob. 9.7.2 What is expected is that the similarity parameter, , is essentially 

where Tt is the time required for a fluid element at the interface to reach


the position y. Because the interfacial velocity is not uniform, this time


must be found. In Eulerian coordinates, the interfacial velocity is given by Eq.


9.7.28. / .Z 


47 
For a particle having the position y, it follows that 

dt·. ' dj(3)= 

and integration gives -3 

0 0 
Substitution into Eq. 1 then ives 


In the definition of the similarity parameter, Eq. 25, 


been set equal to unity.


(2) 
1 
(2)


I 

(5)


the numerical factor has


I 
I 
I 
I 
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I 	 Prob. 9.7.3 Similarity parameter and function are assumed to take 

the forms given by Eq. 23. The stress equilibrium at the interface, 

Syx (x=0) = -T(y), requires that 

-7 C,C? L) 
so that m+2n=k and C, CZ = CL . Substitution into Eq. 14 shows 

that for the similarity solution to be valid, 2m+2n-1 = m+3n or m=n+l. 

Thus, it follows that n=(i-1)/3 and m=(R43)/3 . If (/ ,)(C, ­/C)-

the boundary layer equation then reduces to 

_____ f(2) 

which is equivalent to the given system of first order equations. The only


boundary condition that appears to be different from those of Eq. 27 is on


the interfacial shear stress. However, with the parameters as defined,


Eq. 1 reduces 	 to simply V(o)=-i. 

SProb.9.7.4 (a) In the liquid volume, the potential must satisfy Laplace's


£ 	 equation, which it does. It also satisfies the boundary condition imposed 

on the potential by the lower electrodes. At the upper interface, the 

electric field is E = V6/6Li , which satisfies the condition that there 

be no normal electric field (and hence current density) at the interface. 

I (b) With the given potential at x=a, the x directed electric field is the 

potential difference divided by the spacing: Ex= [V /•Y 4 •~ A 

density T=Eo E./4/ V4) (c)Thus, the surface force is , 	 (V 3 . With 

I 	 the identification -a( -(CoV4ý )(\-Vb)and k=3, the surface force density takes 

the form assumed in Prob. 9.7.3.


I 
I

I
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Prob. 9.8.1 First, determine the electric fields and hence the 

surface force density. The applied potential 

can be written in the complex notation as 

a, ýV *+ 4! so that the desired 

standing wave solution is the superposition (e.r
;b------------ _c(4) 

of two traveling wave solutions with ampli­

tudes =V./2. Boundary conditions are 

&C#VA-4 e V.e v'4 \1
,A, AT = 0 I = G'4 E 3 1 -

And bulk transfer relations are (Eqs. (a), Table 2.16.1) 

FV C- C 0+ (3 0.L 1 

'E^ S V1 (3CL L 

E 3 O1___s 

1rJ

EX ~ 1 

It follows that


where then


=e e EO ;(3 = 

COTV1 0(Zoh(La 

~e 

Now, observe that E and W are real and even int/ while Ez is imaginary 

and odd in . Thus, the surface force density reduces to 

ad evaluation - , z (6)ives 6+o 

and evaluation gives 'T .T0 sý 

TO0 67 V. (7) 

5;(Gt+ok¾.~~~ 'hJ e~at" b~k(3ot h. 
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Prob. 9.8.1 (cont.)


The mechanical boundary conditions consistent with the assumption that gravity


holds the interface flat are


oK =ofL =0 0•=O O0- (8) 

Stress equilibrium for the interface requires that


- e (9)+ 0 , T~s7, 1· =0 

In terms of the complex amplitudes, this requires


+-T, + S I -- e 
(10) 

With the use of the transfer relations from Sec. 7.20 for cellular creep


flow, Eqs. 7.20.6, this expression becomes


T c7 P( - 'P } o (11) 

and it follows that the velocity complex amplitudes are


I+ -T (12) 

The actual interfacial velocity can now be stated


S e T (13) 

?A 4" 6bP3 S 
where, from Eq. 7.20.6,


44 _ 

Note that P.. and P, are positive. Thus, ~1- ~ 

44 33 

is positive


and circulations are as sketched and as would


the coefficient of sin 2 igy 


be expected in view of the sign of af and Ez


at the interface.
I 
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Prob. 9.8.1 (cont.)


Charge conservation, including the effect of charge convection at the interface,


is represented by the boundary condition


-+ (14) 

The convection term will be negligible if


<P (15)< < 1 

where C/v" is the longest time constant formed from E % and .-bcr 

(A more careful comparison of terms would give a more specific combination 

of C 's and aV's in forming this time constant.) The velocity is itself a I 

function of three lengths, 2TF/A , a and b. With the assumption that 4a 

and pb are of the order of unity, the velocity given by Eqs. 13 and 7 is


typically (I(~V,/716and it follows that Eq. 15 takes the form of a


condition on the ratio of the charge relaxation time to the electroviscous


time.


e-7 < < (16) 5 

Effects of inertia are negligible if the inertial and viscous force densities


bare the relationship


P : <<I" ,<<(17) 

With the velocity again taken as being of the order of E ((0 V/j• 2 , this 

condition results in the requirement that the ratio of the viscous diffusion 

time to the electroviscous time be small. a 
< <(18)


I 



I 

S9.22


I 

j 

£ 

if; 


'ax(s.•)Prob. 9.9.1 The flow is fully developed, so = 

Thus, inertial terms in the Navier-StoKe's


equation are absent. The x and y components of


that equation therefore become


~-2O (1)


--~I +O(E, tYaAo)Q.A (2) 

Because Ez is independent of x, this expression is written in the form


so that what is on the right is independent of x. Solutions to this expression


that are appropriate for the infinite half space are exponentials. The growing 

exponential is excluded, so the homogeneous solution is exp-x where YE•A•J, 

The particular solution is (--+ HF/(Guo~ lo~Z . The combination of 

these that makes v =0 at the wall where x=0 is 

l·d( = (cY·i t0 E) (l-e ) (4)o 

Thus, the boundary layer has a thickness that is approximately -1


Prob. 9.14.1 There is no electromechanical coupling, soE =0 and Eq. 3 

becomes p= -jO(K -V) . Thus, Eq. 5 becomes +m x=,At and in turn 

Eq. 4 is =O (1) 

Because = .-- , Eq. 9 is 

•+ L - " 0 (2) 

In the steady state, Eq. 2 shows that 

while Eq. 1 gives 

V z 1 (0 (4) 

Combined, these expressions show that 

TW (5) 

The plot of this function with the bottom elevation (y) as a parameter is


1 
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Prob. 9.14.1 (cont.) 3 
shown in the 

w 
figure. The


Flow condi­


tions


establish the


vertical line
 I 
along which


the transi- I 
tion must


evolve.
 I 
Given the
 I 
bottom ele­


vation and


hence the


particular curve, Fig. S9.14.1


the local depth follows from the intersection with the vertical line. If 

the flow is initiated above the minimum in H( • ), the flow enters sub- I 

critical, whereas if it enters below the minimum ( <~( ), the flow enters 

supercritical. This can be seen by evaluating I 

L 0 3 z 7 (8) 

and observing that the critical depth in the figure comes at


(9) 

Consider three types of conservative transitions caused by having a


positive bump in the bottom. For a flow initiated at A, the depth decreases


where increases and then returns to its entrance value, as shown in


Fig. 2a. For flow entering with depth at B, the reverse is true. The 
 f 
depth increases where the bump occurs. These situations are distinguished


I 



9.24


Prob. 9.14.1 (cont.)


by what the entrance depth is relative to the critical depth, given by


Eq. (9). If the entrance depth q is greater than critical, (1,7


then it follows from Eq. 9 that the entrance velocity, :• is less than


the gravity wave velocity\W -)f or the critical depth. A third possi­


bility is that a flow initiated at A reaches the point of tangency between


the vertical line and the head curve. Eqs. 3 and 8 combine to show that


(10) 

Then, critical conditions prevail .. .


at the peak of the bump and the flow //


can continue into the subcritical


regime, as sketched in Fig. 2c. A ' / / /


similar super-subcritical transition , . . P"


is also possible. (See Rouse, H.,


Elementary Mechanics of Fluids,

Fig. S9.14.2


John Wiley & Sons, N.Y. (1946), p. 139.


Prob. 9.14.2 The normalized mass conservation and momentum equations are


= (i) 

Thus, to zero order in (d/L) 2 , the vertical force equation reduces to a 

static equilibrium; p = -10(x -¶) . The remaining two expressions then 

comprise the fundamental equations. Observe that these expressions in them­

selves do not require that v =v (y,t). In fact, the quasi-one-dimensional

y y 

model allows rotational flows. However, if it is specified that the flow


is irrotational to begin with, then it follows from Kelvin's Theorem on


vorticity that the flow remains irrotational. This is a result of the


expressions above, but is best seen in general. The condition of irrota­
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Prob. 9.14.2 (cont.)


tionality in dimensionless form is


IF 
7­

and hence the quasi-one-dimensional space-rate expansion, to zero order,
 I 
requires that v =v (y,t). Thus, Eqs. 1 and 2 become the fundamental laws


y y 

for the quasi-one-dimensional model I 
a+0 - o 

'I 
with the requirements that p is determined by the transverse static
 B 
equilibrium and v =v (y,t).


y y


I.
Prob. 9.14.3 With gravity ignored, the pressure is uniform over the liquid


cross-section. This means that it is the same pressure that appears in the
 I 
normal stress balance for each of the interfaces.


It follows that the interfacial positions are related.


I/3Tb = 01T, (2) 

Within a constant associated with the fluid in the neighborhood of the origin, I 
the cross-sectional area is then


/1 V 0 - (3) i 
or essentially represented by the variable . Mass conservation, Eq. 9.13.9, 

gives
 3 

Because the pressure is uniform throughout, Eq. 9.13.3 is simply the force a 
balance equation for the interface (either one). 

- IS-( ) (5) 

Thus, the force equation, Eq. 9.13.4, becomes the second equation of motion.


1 ý (6) I 
_Lýý + ,) * 

d' (~)Z 3 0 
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Prob. 9.16.1 Substitution of Eq. 8 for T in Eq. 2 gives


· +cr CAoPP­
Manipulation then results in 

Note that 
ZPT dV 

Note that 

1 o0 
2 C,-RTT Z C, * 

Se
Cv
ZCP 

7 zL
MO=(g-i)Ž2. 

where use has been made of the relations J=-C /CV and R=c -c and it follows

that Eq 

that Eq. 2 is - - - K 
(A (100)­

so that the required relation, Eq. 9, results.


Prob. 9.16.2 The derivative of Eq. 9.16.9 that is required to be zero is


A(PA/ = -~(- I4 ) MO'.
-- I 

M"' I I+ (S-_)' 

This expression can be factored and written as
 I 
4­
d (ln 7­

+ \ Ao I+ 
21, II-I 

By definition, the Mach number is


AA O 

NJ


Thus,


Through the use of Eq. 9.16.8, this expression becomes -1


Substitution of the quantity on the left for the group on the right as it




5 
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Prob. 9.16.2 (cont.)


appears in Eq. 2 reduces the latter expression to 


S(J/i7) (6) 

1Thus, the derivative is zero at M = 1. 

Prob. 9.16.3 Eqs. (c) and (e) require that i 

so that the force equation becomes


4 O-) =/'C Ada (2) 

In view of the mechanical equation of state, Eq. (d), this relation becomes


With the respective derivatives placed on opposite sides of the equation, 

this expression becomes 

and r (4) 

and hence integration results in the desired isentropic equation of state.


0C =(5) 

1I

I


a 

I 
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5 Prob. 9.17.1 Equations (a)-(e) of Table 9.15.1 with F and EJ provided 

by Eqs.5, 7 and 8 are the starting relations 

Itý 
(CI-T , -L 

r vt (2) 

(3) 

pp•-• 

That the Mach number remains constant requires that 

"•'V/d R"t = M D 

(4) 

(4) 

and differentiation of this relation shows that 

TRm4AT (5) 

Substitute for p in Eqs. 2 and 3 using Eq. 4. Then multiply Eq. 2 by -K 

and add to Eq. 3 to obtain 

-E- -•I-X)L +S2-° (6 

1 
In view of the constraint from Eq. 5, the first term can be expressed as 

a function of T 

p IT + (j -1 dT 
Then, division by p and rearrangement gives 

SAT 
where 

< -cEjC4 -•(-,)M T_(S. -')i 
Hence, 

6 __ 

o (7)o> 

(8) 

(9) 

SIn turn, it follows from Eq. 4 that 

I; (0 (4 (10) 
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Prob. 9.17.1 (cont.) 
 I


The velocity is already determined as a function of T by Eq. 4. 5


O oIo


Finally, the area follows from Eq. 1 and--these last two relations.


(12)

Ao ­

The key to now finding all of the variables is T(z), which is now found I 
by substituting Eq. 11 into the energy equation, Eq. 3


ol - 3/2


This expression can be integrated to provide the temperature evolution with z.


'(14)


Given this expression for T(z), the other variables follow from Eqs. 9-12.


The specific entropy is also now evaluated. Equation 7.23.12 is evaluated 
 5

using Eqs. 9 and 10 to obtain


Note that Cf -l) = Cp- . t-' 

1

I
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I 	 Prob. 9.17.2 First arrange the conservation equations as given.


Conservation of mass, Eq. (a) of Table 9.15.1, is


j: 	 d tA)=A((oiL , 4) =0 (1) 

Conservation of momentum is Eq. (b) of that table with F given by Eq. 9.17.4. 

4+ aIIs3A13a-- (2) 

Conservation of energy is Eq. (c) JE expressed using Eq. 9.17.5. 

Because tcp/e 	 R= Ce-c , and -AAE -T4 1T , this expression becomes 

,)i.' + + ( crTE 

The mechanical equation of state becomes 

I Tp -+ 	 -1 3 i-r o (5) 

,
Finally, from the definition of M 2 

A V_)0M A = A (6) 

Arranged in matrix form, Eqs. 1,2,4,5 and 6 are the expression summarized in


the problem statement.


SThe
matrix is inverted by using Cramer's rule. As a check in carrying out


this inversion, the determinant of the matrix is


_Pt -	 (7) 

£ Integration of this system of first order equations is straightforward if


conditions at the inlet are given. (Numerical integration can be carried out using


I standard packages such as the Fortran IV IMSL Integration Package DEVREK.)


As suggested by the discussion in Sec. 9.16, whether the flow is "super-critical"


or "sub-critical" will play a role in determining cause and effect and hence in


establishing the appropriate boundary conditions. When the channel is fitted into


a system, it is in general necessary to meet conditions at the downstream end.


This could be done by using one or more of the upstream conditions as interation


variables. This technique is familiar from the integration of boundary layer


I 	 equations in Sec. 9.7.


11 
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Prob. 9.17.2 (cont.)


If the channel is to be designed to have a given distribution of one of


the variables on the left, with the channel area to be so determined, these 

expressions should be rewritten with that variable on the right and I/'A on 

the left. For example, if the mach number is a given function of z, then the 

last expression can be solved forfVA as a function of(/M '/ , 3(E4?t)• 

and YIE_ (~ +3) . The other expressions can be written in terms of these same 

variables by substituting for A/A with this expression. 

Prob. 9.17.3 From Prob. 9.17.2, A'=O , reduces the transition equations 

to [7-d(Ea .­

P - (f- I) 

pvI, 

I 

I-M 

T 
-(-)M 'L-I ES 

(M4O s' 
t"'


(a) For subsonic and supersonic generator operation, M 1 and 3)> 0 
while ~< O . Eq. la gives I - "(E +%) 

(~~' ~(I ~pi> \r 

Eq. lb can be written as


= ]jo 
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Prob. 9.17.3 (cont.)


Except for sign, Eq. Ic is the same as Eq. la, so


1>0 
SEq.Id is 

(4) 

I and finally, Eq. le is 

Q -1) M-ýA :S ET3 ) (5) 

With -a 0, the force is retarding the flow and it "might be expected" 

that the gas would slow down and that the ma density would increase. What 

has been found is that for subsonic flow, the velocity increases while the 

mass density pressure and temperature decrease. From Eq. (6), it also 

follows that the Mach number decreases. That is, as the gas velocity goes 

up and the sonic velocity goes down (the temperature goes down) the critical 

sonic condition MA = I is approached. 

For supersonic flow, all conditions are reversed. The velocity


decreases with increasing z while the pressure, density and temperature


£
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Prob. 9.17.3 (cont.)


increase. However, because the Mach number is now decreasing with increas­


ing z, the flow again approaches the critical sonic condition. I 
(b) In the "accelerator" mode, F 3)O and 3•(O . For the discussion, 

Itake B as positive so that 5 < 0 , which means that 

o0 1< 1-" (7) I 
Note that this means that EJ is automatically greater than zero. Note that


this leaves unclear the signs of the right-hand sides of Eqs. 2-6. Consider


a section of the channel where the voltage is uniformly distributed with z.
 IThen E is constant and the dependence on J of the right-hand sides of


Eqs. 2-6 can be sketched as shown in the figure. In sketching Eq. 3,


it is necessary to recognize that = --1e so that Eq. 3 is also 
a, 

-- I +(f-e)AO~j (8Pe (i-PA) pL~ j J -, E1 a_P6 

1 
1os' A 1 I 

M<1. Nr) 
/h) 

1 'I­
c 

/7\N 

-Y P 

a-E (ý) + cr '--
3"=


+ V,, I~ A`'-
if


N 

~---­

/ 

I 
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Prob. 9.17.3 (cont.)


By way of illustrating the significance of these sketches, consider the


dependence of-T/T on . If at some location in the duct 4 0~


then the temperature is increasing with z if the flow is subsonic and


decreasing if it 	 is supersonic. The opposite is true if J < G-E/ZtAz 

S(Remember that E is negative.)


SProb.9.18.1 The mechanical equation of state is Eq. (d) of Table 9.15.1


F ( Rk(1) 

The objective is now to eliminate ~, I and P from Eqs. 9.18.21 and 

9.18.22. 	Substitution of the former into the latter gives 

S •V O- (2) 

I Now, with T eliminated by use of Eq. 1, this becomes 

b a -Iý = O (3) 

i Because = C~ -CV , (Eq. 7.22.13) and -- Cp/Cv so 

p•= '/(1-I) , it follows that Eq. 3 can be written as 

(4)


Integration from the "d" state to the state of interest gives the first of


the desired expressions


. ýS) - (L 	 (5) 

a 	 The second relation is simply a statement of Eq. 1 divided by d on the 

left and R T 7- on the right. 

I

I
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 1 

Prob. 9.18.2 Because the channel is designed to make the temperature I

constant, it follows from the mechanical equation of state (Eq. 9.18.13) 
 3

that ?/-T • E (1) 

At the same time, it has been shown that the transition is adiabatic, so


Eq. 9.18.23 holds. (2)

"• (2) 

3Thus, it follows that both the temperature and mass density must also be 


constant

P (3) I 

In turn, Eq. 9.18.10, which expresses mass conservation, becomes 

VA (4) 

and Eq. 9.18.20 can be used to show that the charge density is constant j

1 (5)


So, with the relation E = -d/d, Eq. 9.18.9 is (Gauss' Law) 

_d (o d A L (6)
C1 t jq 1o 6 (6) 

In view of the isothermal condition, Eq. 9.18.22 requires that


The required relation of the velocity to the area is gotten from Eq. 3.


A. t(8) I 
and substitution of this relation into Eq. 7 gives the required expression


for in terms of the area. 
 f 
- +­

Substitution of this expression into Eq. 5 gives the differential equation


for the area dependence on z that must be used to secure a constant temperature.


zI f\0 __ _ _ (10)Sn 
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5 Prob. 9.18.2 (cont.) 

¶ Multiplication of Eq. 10 by c -yt results in an expression that 

can be written as 

d [z )-\is.,Aj 0 . (11) 

(Note that this approach is motivated by a similar one taken in dealing 

with potential-well motions.) To evaluate the constant of integration for 

Eq. 10, note from the derivative of Eq. 9 that E is proportional to d -/d 

3 3 ­

E A ý (12)-4PAa dA 
T A 

Thus, conditions at the outlet are 

8 A-'_: (13)0 


and Eq. 12 becomes


The second integration proceeds by writing Eq. 14 as


+ 2Z l (15) 

and introducing as a new parameter 

I x~=Ac#)4 &(W')= Ad eK1 (16) 

5 Then, Eq. 15 is 00 

e den =X (17)


i This expression can be written as (choosing the - sign) 

I
(18) 

! (L)e c-, ~dJa/(e 
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Prob. 9.18.2 (cont.) 

where X ( 1 

=F(K) e 4 X (19) I 
and Eq. 5 has been used to write / =L /f . 

Eq. 12 and Eq. 14 evaluated at the entrance give 

3 / _ T3__ 2 (20) 

while from Eq. 4 Eo 0 2a0 . Because =/O, this expression 

therefore becomes the desired one. 

91S -. 

(21) 

Finally, the terminal voltage follows from Eq. 9 as 

v -P - (22)• 

Thus, the electrical power out is I


3 A 
v 7 4-'J -= (23) 

The area ratio follows from Eq. 20 and can be substituted into 

Eq. 22, written using the facts that td 9 A /oF1j as 

I (-C A )/(o. 1• ) so that (A/1A.)= e ] , 

10 -L9 A"C ý(( -1) (24) f 

Thus, it is clear that the maximum power that can be extracted I


( •~1,-_Cro) is the kinetic power Oeo,a (o~ o')I 

I


I

L I
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Prob. 9.18.3 With the understanding that the duct geometry is given, so that 

PI¶ is known, the electrical relations are, Eq. 9.18.8 

3 - ývr1*( F %v)+ a Tr T, (1) 

or with primes indicating derivatives,


'I 4 ¶'(bE '..')4P ¶T ( ')44'6bE41)+iZCyfe2.G =0o(2) 
Eq. 9.18.9


2(¶E) (3)-

which iso


The mechanical relations are


2) 0O (5) 

which can be written as


Eq. 9.18.11


P • p - O (7) 

Eq. 9.18.12


0(8)


and Eq. 9.18.13


jo+ -tA C9 -T)- - o 

?,_£0-• _ ' o (9) 
Although redundant, the Mach relation is


Mz (10) 

Y R -7 
which is equivalent to


+ - =o (11) 

With the definition

I E 0+T-- 'if z[ (12)(1-a+ --
Eqs. 6,7,8,2,4,9 and 11 are respectively written in the orderly form
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(13) 5Prob. 9.18.3 (cont.)


o o o 0r I

o 0 0 o o -a / 

IY (I-1) O o a o 0 E'/4
('/9


S o a0 P (b6+2 5 )EO 0 

M'/
o 0 0 I 0 0 -T,/F 'I 

6


0 -I I o o I o
 I 
o I p o 

In the inversion of these equations, the determinant of the coefficients is 

(14) 1required relations are 

Thus, the required relations are 

(15)p /P 

fE/p 1 

po'/p-r'"/T A
EYE 

- (bE X )EZ_7
(6--t E3­

A' /IAv 
j 

-I I -1 0


N~~''


0 
0 0 

- I I (1- (b 
0 o o z -. 

0 

-I,,,?-,+il'+I)
rI r-,), -(, 0 
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I 	 Prob. 9.18.4 In the limit of no convection, the appropriate laws 

II 	 represent Gauss, charge conservation and the terminal current. These


are Eqs. 9.18.8, 9.18.9 and 9.18.10.


aE)4a ti(S) P(2) 

I4'P 0 e~ ++z IT 	 z W S 0(3)0 

This last expression serves to determine the entrance charge density,


given the terminal current I.


Z-IT 	 Z(4) 

Using this expression, it is possible to evaluate the integration constant


needed to integrate Eq. 1. Thus, that expression shows that


I I - 2 rT jol 	 (5) 

Substitution of this expression (of how the charge density thins out as the


channel expands) into Eq. 2 gives a differential equation for the channel


I 	 radius. 

Ei. + Z.sE.tr1 T _ 2_-W____ 	 (6) 

This expression can be written so as to make it clear that it can be


integrated.


where


Thus, integration from the entrance, where Z=o and o , gives 

I

I
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Prob. 9.18.4 (cont.)


-3 [A, 0 - 7-T)-1 (-F? 
Given a normalized radius I , this expression can be used to find the


associated normalized position z , with the normalized wall conductivity, J, 
as a dimensionless parameter. 

Prob. 9.19.1 It is clear from the energy equation, Eq. 9.16.2, that


because the velocity decreases (as it by definition does in a diffuser),


then the temperature must increase. The temperature is related to the


pressure by the mechanical equation of state, Eq. (d) of Table 9.15.1.


_ P -­,s = J_-­

In the diffuser, the transition is also adiabatic, so Eq. 9.16.3 also


applies


Po 
These equations can be combined to eliminate the mass density.


"=-
I -oTo 

Because >5 , it follows that because the temperature increases, so 

does the pressure. 
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Prob. 9.19.2 The fundamental equation representing components in the 

cycle is Eq. 9.19.7 

IV 
"V = 4 r A X (') 

In the heat-exchanger the gas is raised in temperature and entropy 

i 

I 
I 

I 

as it passes from 1--w . Here, the electrical power input represented 

by the left side of Eq. 1 is replaced by a thermal power input. Thus, with 

the understanding that the vaporized water leaves the heat exchanger at f 

with negligible kinetic energy, 

thermal energy input/unit time P 

mass/unit time 
T (2) 

In representing the turbine, it is assumed that the vapor expansion that 

turns the thermal energy into kinetic energy occurs within the turbine and 

I 
that the gas has negligible kinetic energy as 

turbine power output _V 
mass/unit time Ap 

it leaves the turbine 

T T 

Heat rejected in the condensor, 5-- , is taken as lost. The 

power required to raise the pressure of the condensed liquid, from h--b , 

is (assuming perfect pumping efficiency) 

I 
pump power in 

mass/unit time 

L ( 

(4) 

* 

Combining these relations and recognizing that the electrical power output 

is 7 times the turbine shaft power gives 

electrical power output 

thermal power in 
- pumping power 

, ,( )- ( -R (5) 

I 
I 

HT - Hf 
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Prob. 9.19.2 (cont.) 

'Now, let the heat input '-. be that rejected in e -- o. 

of the MHD or EHD system of Fig. 9.19.1. 
o a 

To describe the combined systems, let MT and M 3 represent the


mass rates of flow in the topping and steam cycles respectively. The effi­


ciency of the overall system is then


electrical power out of topping cycle - compressor power 

2- + electrical power out of steam cycle - pump power 

heat power into topping cycle 

(6)


)]
M'I ,-PTO tkg 

Because the heat rejected by the topping cycle from e- is equal ti0 

that into the steam cycle, 

T H ;- 4)
'T T 

ASr N-~4


and it followý 

'7=


I Cc b 
T T 

With the requirement that -_ , and again using Eq. 7 to reintroduce 

AA_ / M4 , Eq. 8 can be written as 

;AT( 4T)T S(CI( _- 14) 

MOr( 14 I - .76 

This efficiency expression takes the form of Eq. 9.19.13.





