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14
 

ONE­DIMENSIONAL
 
WAVE DYNAMICS
 

14.0 INTRODUCTION 

Examples of conductor pairs range from parallel conductor transmission lines car­
rying gigawatts of power to coaxial lines carrying microwatt signals between com­
puters. When these lines become very long, times of interest become very short, 
or frequencies become very high, electromagnetic wave dynamics play an essential 
role. The transmission line model developed in this chapter is therefore widely used. 

Equally well described by the transmission line model are plane waves, which 
are often used as representations of radiation fields at radio, microwave, and optical 
frequencies. For both qualitative and quantitative purposes, there is again a need 
to develop convenient ways of analyzing the dynamics of such systems. Thus, there 
are practical reasons for extending the analysis of TEM waves and one­dimensional 
plane waves given in Chap. 13. 

The wave equation is ubiquitous. Although this equation represents most ac­
curately electromagnetic waves, it is also applicable to acoustic waves, whether they 
be in gases, liquids or solids. The dynamic interaction between excitation ampli­
tudes (E and H fields in the electromagnetic case, pressure and velocity fields in the 
acoustic case) is displayed very clearly by the solutions to the wave equation. The 
developments of this chapter are therefore an investment in understanding other 
more complex dynamic phenomena. 

We begin in Sec. 14.1 with the distributed parameter ideal transmission line. 
This provides an exact representation of plane (one­dimensional) waves. In Sec. 
14.2, it is shown that for a wide class of two­conductor systems, uniform in an axial 
direction, the transmission line equations provide an exact description of the TEM 
fields. Although such fields are in general three dimensional, their propagation in the 
axial direction is exactly represented by the one­dimensional wave equation to the 
extent that the conductors and insulators are perfect. The distributed parameter 

1 
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Fig. 14.1.1 Incremental length of distributed parameter transmission line. 

model is also commonly used in an approximate way to describe systems that do 
not support fields that are exactly TEM. 

Sections 14.3–14.6 deal with the space­time evolution of transmission line volt­
age and current. Sections 14.3–14.4, which concentrate on the transient response, 
are especially applicable to the propagation of digital signals. Sections 14.5­14.6 
concentrate on the sinusoidal steady state that prevails in power transmission and 
communication systems. 

The effects of electrical losses on electromagnetic waves, propagating through 
lossy media or on lossy structures, are considered in Secs. 14.7–14.9. The distributed 
parameter model is generalized to include the electrical losses in Sec. 14.7. A limiting 
form of this model provides an “exact” representation of TEM waves in lossy media, 
either propagating in free space or along pairs of perfect conductors embedded in 
uniform lossy media. This limit is developed in Sec. 14.8. Once the conductors 
are taken as being “perfect,” the model is exact and the model is equivalent to 
the physical system. However, a second limit of the lossy transmission line model, 
which is exemplified in Sec. 14.9, is not “exact.” In this case, conductor losses give 
rise to an electric field in the direction of propagation. Thus, the fields are not TEM 
and this section gives a more realistic view of how quasi­one­dimensional models 
are often used. 

14.1 DISTRIBUTED PARAMETER EQUIVALENTS AND MODELS 

The theme of this section is the distributed parameter transmission line shown 
in Fig. 14.1.1. Over any finite axial length of interest, there is an infinite set of 
the basic units shown in the inset, an infinite number of capacitors and inductors. 
The parameters L and C are defined per unit length. Thus, for the segment shown 
between z + Δz and z, LΔz is the series inductance (in Henrys) of a section of the 
distributed line having length Δz, while CΔz is the shunt capacitance (in Farads). 

In the limit where the incremental length Δz 0, this distributed parameter →
transmission line serves as a model for the propagation of three types of electro­
magnetic fields.1 

1 To facilitate comparison with quasistatic fields, the direction of wave propagation for TEM 
waves in Chap. 13 was taken as y. It is more customary to make it z. 
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First, it gives an exact representation of uniformly polarized electromagnetic • 
plane waves. Whether these are waves in free space, perhaps as launched 
by the dipole considered in Sec. 12.2, or TEM waves between plane parallel 
perfectly conducting electrodes, Sec. 13.1, these fields depend only on one 
spatial coordinate and time. 

Second, we will see in the next section that the distributed parameter trans­• 
mission line represents exactly the (z, t) dependence of TEM waves propagat­
ing on pairs of axially uniform perfect conductors forming transmission lines 
of arbitrary cross­section. Such systems are a generalization of the parallel 
plate transmission line. By contrast with that special case, however, the fields 
generally depend on the transverse coordinates. These fields are therefore, in 
general, three dimensional. 

Third, it represents in an approximate way, the (z, t) dependence for sys­• 
tems of large aspect ratio, having lengths over which the fields evolve in the 
z direction (e.g., wavelengths) that are long compared to the transverse di­
mensions. To reflect the approximate nature of the model and the two­ or 
three­dimensional nature of the system it represents, it is sometimes said to 
be quasi­one­dimensional. 

We can obtain a pair of partial differential equations governing the transmis­
sion line current I(z, t) and voltage V (z, t) by first requiring that the currents into 
the node of the elemental section sum to zero 

∂V 
I(z)− I(z + Δz) = CΔz (1)

∂t 

and then requiring that the series voltage drops around the circuit also sum to zero. 

∂I 
V (z)− V (z + Δz) = LΔz (2)

∂t 

Then, division by Δz and recognition that 

f(z + Δz)− f(z) ∂f 
lim = (3) 

Δz 0 Δz ∂z → 

results in the transmission line equations. 

∂I ∂V 
= 

∂z 
−C 

∂t (4) 

∂V ∂I 
= 

∂z 
−L

∂t (5) 

The remainder of this section is an introduction to some of the physical situations 
represented by these laws. 
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Fig. 14.1.2 Possible polarization and direction of propagation of plane wave 
described by the transmission line equations. 

Plane­Waves. In the following sections, we will develop techniques for de­
scribing the space­time evolution of fields on transmission lines. These are equally 
applicable to the description of electromagnetic plane waves. For example, suppose 
the fields take the form shown in Fig. 14.1.2. 

E = Ex(z, t)ix; H = Hy(z, t)iy	 (6) 

Then, the x and y components of the laws of Ampère and Faraday reduce to2 

∂Hy ∂Ex − 
∂z 

= � 
∂t	

(7) 

∂Ex ∂Hy= −µ	 (8)
∂z ∂t 

These laws are identical to the transmission line equations, (4) and (5), with 

Hy I, Ex V, � C, µ L	 (9)↔ ↔ ↔ ↔ 

With this identification of variables and parameters, the discussion is equally appli­
cable to plane waves, whether we are considering wave transients or the sinusoidal 
steady state in the following sections. 

Ideal Transmission Line. The TEM fields that can exist between the parallel 
plates of Fig. 14.1.3 can either be regarded as plane waves that happen to meet the 
boundary conditions imposed by the electrodes or as a special case of transmission 
line fields. The following example illustrates the transition to the second viewpoint. 

Example 14.1.1. Plane Parallel Plate Transmission Line 

In this case, the fields Ex and Hy pictured in Fig. 14.1.2 and described by (7) and 
(8) can exist unaltered between the plates of Fig. 14.1.3. If the voltage and current 
are	 defined as 

V = Exa; I = Hyw (10) 

2 Compare with (13.1.2) and (13.1.3) for fields in x − z plane and propagating in the y 
direction. 
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Fig. 14.1.3 Example of transmission line where conductors are parallel plates. 

Equations (7) and (8) become identical to the transmission line equations, (4) and 
(5), with the capacitance and inductance per unit length defined as 

w� aµ
C = ; L = (11) 

a w 

Note that these are indeed the C and L that would be found in Chaps. 5 and 8 for 
the pair of perfectly conducting plates shown in Fig. 14.1.3 if they had unit length 
in the z direction and were, respectively, “open circuited” and “short circuited” at 
the right end. 

As an alternative to a field description, the distributed L−C transmission line 
model gives circuit theory interpretation to the physical processes at work in the 
actual system. As expressed by (1) and hence (4), the current I can be a function 
of z because some of it can be diverted into charging the “capacitance” of the line. 
This is an alternative way of representing the effect of the displacement current 
density on the right in Ampère’s law, (7). The voltage V is a function of z because 
the inductance of the line causes a voltage drop, even though the conductors are 
pictured as having no resistance. This follows from (2) and (5) and embodies the 
same information as did Faraday’s differential law (8). The integral of E from one 
conductor to the other at some location z can differ from that at another location 
because of the flux linked by a contour consisting of these integration paths and 
closing by contours along the perfect conductors. 

In the next section, we will generalize our picture of TEM waves and see 
that (4) and (5) exactly describe transverse waves on pairs of perfect conductors of 
arbitrary cross­section. Of course, L and C are the inductance per unit length and 
capacitance per unit length of the particular conductor pair under consideration. 
The fields depend not only on the independent variables (z, t) appearing explicitly in 
the transmission line equations, but upon the transverse coordinates as well. Thus, 
the parallel plate transmission line and the generalization of that line considered in 
the next section are examples for which the distributed parameter model is exact. 

In these cases, TEM waves are exact solutions to the boundary value problem 
at all frequencies, including frequencies so high that the wavelength of the TEM 
wave is comparable to, or smaller than, the transverse dimensions of the line. As 
one would expect from the analysis of Secs. 13.1–13.3, higher­order modes propa­
gating in the z direction are also valid solutions. These are not described by the 
transmission line equations (4) and (5). 
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Quasi­One­Dimensional Models. The distributed parameter model is also 
often used to represent fields that are not quite TEM. As an example where an 
approximate model consists of the distributed L − C network, suppose that the 
region between the plane parallel plate conductors is filled to the level x = d < a 
by a dielectric of one permittivity with the remainder filled by a material having a 
different permittivity. The region between the conductors is then one of nonuniform 
permittivity. We would find that it is not possible to exactly satisfy the boundary 
conditions on both the tangential and normal electric fields at the interface between 
dielectrics with an electric field that only had components transverse to z. 3 Even so, 
if the wavelength is very long compared to the transverse dimensions, the distributed 
parameter model provides a useful approximate description. The capacitance per 
unit length used in this model reflects the effect of the nonuniform dielectric in an 
approximate way. 

14.2 TRANSVERSE ELECTROMAGNETIC WAVES 

The parallel plates of Sec. 13.1 are a special case of the general configuration 
shown in Fig. 14.2.1. The conductors have the same cross­section in any plane z = 
constant, but their cross­sectional geometry is arbitrary.4 The region between the 
pair of perfect conductors is filled by a material having uniform permittivity � and 
permeability µ. In this section, we show that such a structure can support fields 
that are transverse to the axial coordinate z, and that the z− t dependence of these 
fields is described by the ideal transmission line model. 

Two common transmission line configurations are illustrated in Fig. 14.2.2. 
The TEM fields are conveniently pictured in terms of the vector and scalar 

potentials, A and Φ, generalized to describe electrodynamic fields in Sec. 12.1. This 
is because such fields have only an axial component of A. 

A = Az(x, y, z, t)iz (1) 

Indeed, evaluation in Cartesian coordinates, shows that even though Az is in general 
not only a function of the transverse coordinates but of the axial coordinate z as 
well, there is no longitudinal component of H. 

To insure that the electric field is also transverse to the z axis, the z component 
of the expression relating E to A and Φ (12.1.3) must be zero. 

∂Φ ∂Az
Ez = − 

∂z 
− 

∂t 
= 0 (2) 

A second relation between Φ and Az is the gauge condition, (12.1.7), which 
in view of (1) becomes 

∂Az ∂Φ 
= −µ� (3)

∂z ∂t 

3 We can see that a uniform plane wave cannot describe such a situation because the propa­
gational velocities of plane waves in dielectrics of different permittivities differ. 

4 The direction of propagation is now z rather than y. 
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Fig. 14.2.1 Configuration of two parallel perfect conductors supporting TEM
 
fields.
 

Fig. 14.2.2 Two examples of transmission lines that support TEM waves: 
(a) parallel wire conductors; and (b) coaxial conductors. 

These last two equations combine to show that both Φ and Az must satisfy 
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the one­dimensional wave equation. For example, elimination of ∂2Az/∂z∂t between 
the z derivative of (2) and the time derivative of (3) gives 

∂2Φ ∂2Φ 
= µ� (4)

∂z2 ∂t2 

A similar manipulation, with the roles of z and t reversed, shows that Az also 
satisfies the one­dimensional wave equation. 

∂2Az ∂2Az = µ� (5)
∂z2 ∂t2 

Even though the potentials satisfy the one­dimensional wave equations, in 
general they depend on the transverse coordinates. In fact, the differential equa­
tion governing the dependence on the transverse coordinates is the two­dimensional 
Laplace’s equation. To see this, observe that the three­dimensional Laplacian con­
sists of a part involving derivatives with respect to the transverse coordinates and 
a second derivative with respect to z. 

∂2 

� 2 = �2 
T + 

∂z2 
(6) 

In general, Φ and A satisfy the three­dimensional wave equation, the homogeneous 
forms of (12.1.8) and (12.1.10). But, in view of (4) and (5), these expressions reduce 
to 

� 2 Φ = 0 (7)T 

�2 
T Az = 0 (8) 

where the Laplacian �2 
T is the two­dimensional Laplacian, written in terms of the 

transverse coordinates. 
Even though the fields actually depend on z, the transverse dependence is as 

though the fields were quasistatic and two dimensional. 
The boundary conditions on the surfaces of the conductors require that there 

be no tangential E and no normal B. The latter condition prevails if Az is constant 
on the surfaces of the conductors. This condition is familiar from Sec. 8.6. With Az 

defined as zero on the surface S1 of one of the conductors, as shown in Fig. 14.2.1, it 
is equal to the flux per unit length passing between the conductors when evaluated 
anywhere on the second conductor. Thus, the boundary conditions imposed on Az 

are 
Az = 0 on S1; Az = Λ(z, t) on S2 (9) 

As described in Sec. 8.6, where two­dimensional magnetic fields were represented in 
terms of Az, Λ is the flux per unit length passing between the conductors. Because 
E is transverse to z and A has only a z component, E is found from Φ by taking 
the transverse gradient just as if the fields were two dimensional. The boundary 
condition on E, met by making Φ constant on the surfaces of the conductors, is 
therefore familiar from Chaps. 4 and 5. 

Φ = 0 on S1; Φ = V (z, t) on S2 (10) 
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By definition, Λ is equal to the inductance per unit length L times the total 
current I carried by the conductor having the surface S2. 

Λ = LI (11) 

The first of the transmission line equations is now obtained simply by evalu­
ating (2) on the boundary S2 of the second conductor and using the definition of 
Λ from (11). 

∂V ∂I 
+ L = 0 

∂z ∂t (12) 

The second equation follows from a similar evaluation of (3). This time we introduce 
the capacitance per unit length by exploiting the relation LC = µ�, (8.6.14). 

∂I ∂V 
+ C = 0 

∂z ∂t (13) 

The integral of E between the conductors within a given plane of constant 
z is V , and can be interpreted as the voltage between the two conductors. The 
total current carried in the +z direction through a plane of constant z by one of 
the conductors and returned in the −z direction by the other is I. Because effects 
of magnetic induction are important, V is a function of z. Similarly, because the 
displacement current is important, the current I is also a function of z. 

Example 14.2.1. Parallel Plate Transmission Line 

Between the perfectly conducting parallel plates of Fig. 14.1.3, solutions to (7) and 
(8) that meet the boundary conditions of (9) and (10) are 

x aµ x 
Λ(z, t)

�
1− 

� 
= 

�
1− 

�
I(z, t)Az = (14) 

a w a 

x 
Φ = 

�
1− 

�
V (z, t) 

a 
(15) 

In the EQS context of Chap. 5, the latter is the potential associated with a uniform 
electric field between plane parallel electrodes, while in the MQS context of Example 
8.4.4, (14) is the vector potential associated with the uniform magnetic field inside 
a one­turn solenoid. The inductance per unit length follows from (11) and the eval­
uation of (14) on the surface S2, and one way to evaluate the capacitance per unit 
length is to use the relation LC = µ�. 

µa µ� �w 
L = ; C = = (16) 

w L a 

Every two­dimensional example from Chap. 4 with perfectly conducting bound­
aries is a candidate for supporting TEM fields that propagate in a direction per­
pendicular to the two dimensions. For every solution to (7) meeting the boundary 
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conditions of (10), there is one to (8) satisfying the conditions of (9). This follows 
from the antiduality exploited in Chap. 8 to describe the magnetic fields with per­
fectly conducting boundaries (Example 8.6.3). The next example illustrates how we 
can draw upon results from these earlier chapters. 

Example 14.2.2. Parallel Wire Transmission Line 

For the parallel wire configuration of Fig. 14.2.2a, the capacitance per unit length 
was derived in Example 4.6.3, (4.6.27). 

π� 
C = (17)� 

R
l 

�� 
R
l 
�2 − 1 

� 
ln + 

The inductance per unit length was derived in Example 8.6.1, (8.6.12). 

µ 
� 

l 
�� l �2 

� 
L = ln + − 1 (18)

π R R 

Of course, the product of these is µ�. 
At any given instant, the electric and magnetic fields have a cross­sectional 

distribution depicted by Figs. 4.6.5 and 8.6.6, respectively. The evolution of the 
fields with z and t are predicted by the one­dimensional wave equation, (4) or (5), 
or a similar equation resulting from combining the transmission line equations. 

Propagation is in the z direction. With the understanding that the fields have 
transverse distributions that are identical to the EQS and MQS patterns, the next 
sections focus on the evolution of the fields with z and t. 

No TEM Fields in Hollow Pipes. From the general description of TEM 
fields given in this section, we can see that TEM modes will not exist inside a 
hollow perfectly conducting pipe. This follows from the fact that both Az and Φ 
must be constant on the walls of such a pipe, and solutions to (7) and (8) that 
meet these conditions are that Az and Φ, respectively, are equal to these constants 
throughout. From Sec. 5.2, we know that these solutions to Laplace’s equation are 
unique. The E and H they represent are zero, so there can be no TEM fields. This 
is consistent with the finding for rectangular waveguides in Sec. 13.4. The parallel 
plate configuration considered in Secs. 13.1–13.3 could support TEM modes because 
it was assumed that in any given cross­section (perpendicular to the axial position), 
the electrodes were insulated from each other. 

Power­flow and Energy Storage. The transmission line model expresses the 
fields in terms of V and I. For the TEM fields, this is not an approximation but 
rather an elegant way of dealing with a class of three­dimensional time­dependent 
fields. To emphasize this point, we now show the equivalence of power flow and 
energy storage as derived from the transmission line model and from Poynting’s 
theorem. 

http:14.2.2a
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Fig. 14.2.3 Incremental length of transmission line and its cross­section. 

An incremental length, Δz, of a two­conductor system and its cross­section 
are pictured in Fig. 14.2.3. A one­dimensional version of the energy conservation 
law introduced in Sec. 11.1 can be derived from the transmission line equations 
using manipulations analogous to those used to derive Poynting’s theorem in Sec. 
11.2. We multiply (14.1.4) by V and (14.1.5) by I and add. The result is a one­
dimensional statement of energy conservation. 

∂ 
(V I) = 

∂ � 1 
CV 2 +

1 
LI2

�− 
∂z ∂t 2 2 (19) 

This equation has intuitive “appeal.” The power flowing in the z direction 
is V I, and the energy per unit length stored in the electric and magnetic fields is 
1CV 2 and 1LI2, respectively. Multiplied by Δz, (19) states that the amount by2 2 
which the power flow at z exceeds that at z + Δz is equal to the rate at which 
energy is stored in the length Δz of the line. 

We can obtain the same result from the three­dimensional Poynting’s integral 
theorem, (11.1.1), evaluated using (11.3.3), and applied to a volume element of 
incremental length Δz but one having the cross­sectional area A of the system (if 
need be, one extending to infinity). 

� � 
E× H izda

��
� 

E× H izda
��

�
− 

A 

· 
z+Δz 

− 
A 

· 
z 

(20) 
= 

∂ 
� � 1 

�E E +
1 
µH H

�
daΔz 

∂t A 2
· 

2
· 

Here, the integral of Poynting’s flux density, E × H, over a closed surface S has 
been converted to one over the cross­sectional areas A in the planes z and z + Δz. 
The closed surface is in this case a cylinder having length Δz in the z direction 
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and a lateral surface described by the contour C in Fig. 14.2.3b. The integrals of 
Poynting’s flux density over the various parts of this lateral surface (having circum­
ference C and length Δz) either are zero or cancel. For example, on the surfaces 
of the conductors denoted by C1 and C2, the contributions are zero because E is 
perpendicular. Thus, the contributions to the integral over S come only from inte­
grations over A in the planes z+Δz and z. Note that in writing these contributions 
on the left in (20), the normal to S on these surfaces is iz and −iz, respectively. 

To see that the integrals of the Poynting flux over the cross­section of the 
system are indeed simply V I, E is written in terms of the potentials (12.1.3). � 

E× H izda = 
� 

∂A� × H izda (21) 
A 

· 
A 

� −�Φ− 
∂t 

· 

The surface of integration has its normal in the z direction. Because A is also in the 
z direction, the cross­product of ∂A/∂t with H must be perpendicular to z, and 
therefore makes no contribution to the integral. A vector identity then converts the 
integral to � 

A 

E× H · izda = 
� 

A 

−�Φ× H · izda 

= − 
A 

�× (ΦH) · izda (22) 

+ da 
A 

Φ�× H · iz
In Fig. 14.2.3, the area A, enclosed by the contour C, is insulating. Thus, because 
J = 0 in this region and the electric field, and hence the displacement current, are 
perpendicular to the surface of integration, Ampère’s law tells us that the integrand 
in the second integral is zero. The first integral can be converted, by Stokes’ theorem, 
to a line integral. 

A 

E× H · izda = − 
C 

ΦH · ds (23) 

On the contour, Φ = 0 on C1 and at infinity. The contributions along the segments 
connecting C1 and C2 to infinity cancel, and so the only contribution comes from C2. 
On that contour, Φ = V , so Φ is a constant. Finally, again because the displacement 
current is perpendicular to ds, Ampère’s integral law requires that the line integral 
of H on the contour C2 enclosing the conductor having potential V be equal to −I. 
Thus, (23) becomes 

E× H izda = −V H ds = V I (24) 
A 

· 
C2 

· 

The axial power flux pictured by Poynting’s theorem as passing through the insu­
lating region between the conductors can just as well be represented by the current 
and voltage of one of the conductors. To formalize the equivalence of these points 
of view, (24) is used to evaluate the left­hand side of Poynting’s theorem, (20), and 
that expression divided by Δz. 

[V (z + Δz)I(z + Δz)− V (z)I(z)] 
Δz 

1 

− 

= 
∂ 

� � 1 
�E E + µH H

�
da 

(25) 

∂t A 2 
· 

2
· 

http:14.2.3b
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In the limit Δz 0, this statement is equivalent to that implied by the transmission →
line equations, (19), because the electric and magnetic energy storages per unit 
length are 

1 
CV 2 = 

� 
1 
�E Eda;

1 
LI2 = 

� 
1 
µH Hda (26)

2 A 2 
· 

2 A 2
· 

In summary, for TEM fields, we are justified in thinking of a transmission line 
as storing energies per unit length given by (26) and as carrying a power V I in the 
z direction. 

14.3 TRANSIENTS ON INFINITE TRANSMISSION LINES 

The transient response of transmission lines or plane waves is of interest for time­
domain reflectometry and for radar. In these applications, it is the delay and shape 
of the response to pulse­like signals that provides the desired information. Even 
more common is the use of pulses to represent digitally encoded information car­
ried by various types of cables and optical fibers. Again, pulse delays and reflections 
are often crucial, and an understanding of how these are endemic to common com­
munications systems is one of the points in this and the next section. 

The next four sections develop insights into dynamic phenomena described by 
the one­dimensional wave equation. This and the next section are concerned with 
transients and focus on initial as well as boundary conditions to create an awareness 
of the key role played by causality. Then, with the understanding that effects of the 
turn­on transient have died away, the sinusoidal steady state response is considered 
in Secs. 14.5–14.6, 

The evolution of the transmission line voltage V (z, t), and hence the associated 
TEM fields, is governed by the one­dimensional wave equation. This follows by 
combining the transmission line equations, (14.1.4)­(5), to obtain one expression 
for V . 

∂2V 1 ∂2V 1 1 
∂z2 

= 
c2 ∂t2 

; c ≡ √
LC 

= √
µ� 

(1) 

This equation has a remarkably general pair of solutions 

V = V+(α) + V (β) (2)−

where V+ and V− are arbitrary functions of variables α and β that are defined as 
particular combinations of the independent variables z and t. 

α = z − ct (3) 

β = z + ct (4) 

To see that this general solution in fact satisfies the wave equation, it is only nec­
essary to perform the derivatives and substitute them into the equation. To that 
end, observe that 

∂V ∂V 

∂z 
± = V±

� ; 
∂t 
± = �cV±

� (5) 
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where primes indicate the derivative with respect to the argument of the function. 
Carrying out the same process once more gives the second derivatives required to 
evaluate the wave equation. 

∂2V ∂2V± = V ��; ± = c 2V �� (6)
∂z2 ± ∂t2 ± 

Substitution of these expression for the derivatives in (1) shows that (1) is satisfied. 
Functions having the form of (2) are indeed solutions to the wave equation. 

According to (2), V is a superposition of fields that propagate, without chang­
ing their shape, in the positive and negative z directions. With α maintained con­
stant, the component V+ is constant. With α a constant, the position z increases 
with time according to the law 

z = α + ct (7) 

The shape of the second component of (2) remains invariant when β is held constant, 
as it is if the z coordinate decreases at the rate c. The functions V+(z − ct) and 
V (z + ct) represent forward and backward waves proceeding without change of −
shape at the speed c in the +z and −z directions respectively. We conclude that 
the voltage can be represented as a superposition of forward and backward waves, 
V+ and V , which, if the space surrounding the conductors is free space (where 
� = �o and

−
µ = µo), propagate with the velocity c � 3× 108 m/s of light. 

Because I(z, t) also satisfies the one­dimensional wave equation, it also can 
be written as the sum of traveling waves. 

I = I+(α) + I (β) (8)−

The relationships between these components of I and those of V are found by substi­
tution of (2) and (8) into either of the transmission line equations, (14.1.4)–(14.1.5), 
which give the same result if it is remembered that c = 1/

√
LC. In summary, as 

fundamental solutions to the equations representing the ideal transmission line, we 
have 

V = V+(α) + V (β) (9)−

1 
I = 

Zo 
[V+(α)− V−(β)] 

(10) 

where 
α = z − ct; β = z + ct (11) 

Here, Zo is defined as the characteristic impedance of the line. 

Zo ≡ 
�

L/C (12) 
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Fig. 14.3.1 Waves initiated at z = α and z = β propagate along the lines 
of constant α and β to combine at P . 

Typically, Zo is the intrinsic impedance 
�

µ/� multiplied by a function of the ratio 
of dimensions describing the cross­sectional geometry of the line. 

Illustration. Characteristic Impedance of Parallel Wires 

For example, the parallel wire transmission line of Example 14.2.2 has the charac­
teristic impedance 

�
L/C =

1 
ln 

� 
l 

+ 

�� l �2 − 1 

��
µ/� (13)

π R R 

where for free space, 
�

µ/� ≈ 377Ω. 

Response to Initial Conditions. The specification of the distribution of V 
and I at an initial time, t = 0, leads to two traveling waves. It is helpful to picture 
the field evolution in the z − t plane shown in Fig. 14.3.1. In this plane, the α = 
constant and β = constant characteristic lines are straight and have slopes ±c, 
respectively. 

When t = 0, we are given that along the z axis, 

V (z, 0) = Vi(z) (14) 

I(z, 0) = Ii(z) (15) 

What are these fields at some later time, such as at P in Fig. 14.3.1? 
We answer this question in two steps. First, we use the initial conditions to 

establish the separate components V+ and V at each position when t = 0. To this −
end, the initial conditions of (14) and (15) are substituted for the quantities on the 
left in (9) and (10) to obtain two equations for these unknowns. 

V+ + V = Vi (16)− 

1 
Zo 

(V+ − V−) = Ii (17) 



Cite as: Markus Zahn, course materials for 6.641 Electromagnetic Fields, Forces, and Motion, Spring 2005. 
MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD 
Month YYYY].

16 One­Dimensional Wave Dynamics Chapter 14 

These expressions can then be solved for the components in terms of the initial 
conditions. 

V+ =
1�

IiZo + Vi 

� 

2 (18) 

V =
1� 

− IiZo + Vi

� 

(19)− 2 

The second step combines these components to determine the field at P in 
Fig. 14.3.1. Here we use the invariance of V+ along the line α = constant and the 
invariance of V along the line β = constant. The way in which these components −
combine at P to give V and I is summarized by (9) and (10). The total voltage at 
P is the sum of the components, while the current is the characteristic admittance 
Z−1 multiplied by the difference of the components. o 

The following examples illustrate how the initial conditions determine the 
invariants (the waves V± propagating in the ±z directions) and how these invariants 
in turn determine the fields at a subsequent time and different position. They show 
how the response at P in Fig. 14.3.1 is determined by the initial conditions at just 
two locations, indicated in the figure by the points z = α and z = β. Implicit in 
our understanding of the dynamics is causality. The response at the location P at 
some later time is the result of conditions at (z = α, t = 0) that propagate with 
the velocity c in the +z direction and conditions at (z = β, t = 0) that propagate 
in the −z direction with velocity c. 

Example 14.3.1. Initiation of a Pure Traveling Wave 

In Example 3.1.1, we were introduced to a uniform plane wave composed of a single 
component traveling in the +z direction. The particular initial conditions for Ex 

and Hy [(3.1.9) and (3.1.10)] were selected so that the response would be composed 
of just the wave propagating in the +z direction. Given that the initial distribution 
of Ex is 

Ex(z, 0) = Ei(z) = Eoe
−z 2/2a 2 (20) 

can we now show how to select a distribution of Hy such that there is no part of 
the response propagating in the −z direction? 

In applying the transmission line to plane waves, we make the identification 
(14.1.9) 

� 
µo

V Ex, I Hy, C �o, L µo Zo (21)↔ ↔ ↔ ↔ ⇒ ↔ 
�o 

We are assured that E = 0 by making the right­hand side of (19) vanish. −
Thus, we make 

2
� 

�o 

� 
�o 2/2aHi = Ei = Eoe

−z (22) 
µo µo 
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It follows from (18) and (19) that along the characteristic lines passing through 
(z, 0), 

E+ = Ei; E = 0 (23)− 

and from (9) and (10) that the subsequent fields are 

Ex = E+ = Eoe
−(z−ct)2/2a 2 (24) 

� 
�o 

� 
�o 2/2aHy = E+ = Eoe

−(z−ct) 2 
(25) 

µo µo 

These are the traveling electromagnetic waves found “the hard way” in Example 
3.1.1. 

The following example gives further substance to the two­step process used to 
deduce the fields at P in Fig. 14.3.1 from those at (z = α, t = 0) and (z = β, t = 0). 
First, the components V+ and V , respectively, are deduced at (z = α, t = 0) and −
(z = β, t = 0) from the initial conditions. Because V+ is invariant along the line α = 
constant while V is invariant along the line β = constant, we can then combine −
these components to determine the fields at P . 

Example 14.3.2. Initiation of a Wave Transient 

Suppose that when t = 0 there is a uniform voltage Vp between the positions z = −d 
and z = d, but that outside this range, V = 0. Further, suppose that initially, I = 0 
over the entire length of the line. 

Vi = 
� 

Vp; −d < z < d 
(26)

0; z < −d and d < z 

What are the subsequent distributions of V and I? Once we have found these re­
sponses, we will see how such initial conditions might be realized physically. 

The initial conditions are given a pictorial representation in Fig. 14.3.2, where 
V (z, 0) = Vi and I(z, 0) = Ii are shown as the solid and broken distributions when 
t = 0. 

It follows from (18) and (19) that 

� 
0; α < −d, d < α 

� 
0; β < −d, d < β 

V+ = 1 , V = (27)Vp; −d < α < d − 
2
1Vp; −d < β < d 

2 

Now that the initial conditions have been used to identify the wave components V±, 
we can use (9) and (10) to establish the subsequent V and I. These are also shown in 
Fig. 14.3.2 using the axis perpendicular to the z − t plane to represent either V (z, t) 
(the solid lines) or I(z, t) (the dashed lines). Shown in this figure are the initial and 
two subsequent field distributions. At point P1, both V+ and V are zero, so that −
both V and I are also zero. At points like P2, where the wave propagating from 
z = d has arrived but that from z = −d has not, V+ is Vp/2 while V− remains zero. 
At points like P3, neither the wave propagating in the −z direction from z = d or 
that propagating in the +z direction from z = −d has yet arrived, V+ and V− are 
given by (27), and the fields remain the same as they were initially. 

By the time t = d/c, the wave transient has resolved itself into two pulses 
propagating in the +z and −z directions with the velocity c. These pulses consist 
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Fig. 14.3.2 Wave transient pictured in the z − t plane. When t = 
0, I = 0 and V assumes a uniform value over the range −d < z < d and 
is zero outside this range. 

of a voltage and a current that are in a constant ratio equal to the characteristic 
impedance, Zo. 

With the help of the step function u−1(z), defined by 

� 
0; z < 0 

u−1(z) ≡ 
1; 0 < z 

(28) 

we can carry out these same steps in analytical terms. The initial conditions are 

I(z, 0) = 0 

V (z, 0) = Vp[u−1(z + d)− u−1(z − d)] (29) 

The wave components follow from (18) and (19) and are expressed in terms of the 
variables α and β because they are invariant along lines where these parameters, 
respectively, are constant. 

1 
V+ = Vp[u−1(α + d)− u−1(α− d)]

2 (30)
1 

V− =
2 
Vp[u−1(β + d)− u−1(β − d)] 
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Fig. 14.3.3 Thunderstorm over power line modeled by initial conditions of 
Fig. 14.3.2. 

The voltage and current at the point P in Fig. 14.3.1 follow from substitution of 
these expresions into (9) and (10). With α and β expressed in terms of (z, t) using 
(11), it follows that 

1 
V = Vp[u−1(z − ct + d)− u−1(z − ct − d)]

2 
1 

+ Vp[u−1(z + ct + d)− u−1(z + ct − d)]
2 

1 Vp
I = [u−1(z − ct + d)− u−1(z − ct − d)]

2 Zo (31)
1 Vp− 
2 Zo 

[u−1(z + ct + d)− u−1(z + ct − d)] 

These are analytical expressions for the the functions depicted by Fig. 14.3.2. 
When our lights blink during a thunderstorm, it is possibly due to circuit 

interruption resulting from a power line transient initiated by a lightning stroke. 
Even if the discharge does not strike the power line, there can be transients resulting 
from an accumulation of charge on the line imaging the charge in the cloud above, as 
shown in Fig. 14.3.3. When the cloud is discharged to ground by the lightning stroke, 
initial conditions are established that might be modeled by those considered in this 
example. Just after the lightning discharge, the images for the charge accumulated 
on the line are on the ground below. 

14.4 TRANSIENTS ON BOUNDED TRANSMISSION LINES 

Transmission lines are generally connected to a source and to a load, as shown 
in Fig. 14.4.1a. More complex systems composed of interconnected transmission 
lines can usually be decomposed into subsystems having this basic configuration. 
A generator at z = 0 is connected to a load at z = l by a transmission line having 
the length l. In this section, we build upon the traveling wave picture introduced 
in Sec. 14.3 to describe transients at a boundary initiated by a source. 

http:14.4.1a
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Fig. 14.4.1 (a)Transmission line with terminations. (b) Initial and boundary 
conditions in z − t plane. 

In picturing the evolution with time of the voltage V (z, t) and current I(z, t) 
on a terminated line, it is again helpful to use the z − t plane shown in Fig. 14.4.1b. 
The load and generator impose boundary conditions at z = l and z = 0. In addition 
to satisfying these conditions, the distributions of V and I must also satisfy the 
respective initial values V = Vi(z) and I = Ii(z) when t = 0, introduced in Sec. 
14.3. Thus, our goal is to find V and I in the ⊂­shaped region of z − t space shown 
in Fig. 14.4.1b. 

In Sec. 14.3, we found that the transmission line equations, (14.1.4) and 
(14.1.5), have solutions 

V = V+(α) + V (β) (1)−

1 
I = 

Zo 
[V+(α)− V−(β)] (2) 

where 
α = z − ct; β = z + ct (3) 

and c = 1/
√

LC and Zo = 
�

L/C. 
A mathematical way of saying that V+ and V , respectively, represent waves −

traveling in the +z and −z directions is to say that these quantities are invariants 
on the characteristic lines α = constant and β = constant in the z − t plane. 

There are two steps in finding V and I. 

First, the initial conditions, and now the boundary conditions as well, are • 
used to determine V+ and V along the two families of characteristic lines in −
the region of the z − t plane of interest. This is done with the understanding 
that causality prevails in the sense that the dynamics evolve in the “direction” 
of increasing time. Thus it is where a characteristic line enters the ⊂­shaped 
region of Fig. 14.4.1b and goes to the right that the invariant for that line is 
set. 

Second, the solution at a given point of intersection for the lines α = con­• 
stant and β = constant are found in accordance with (1) and (2). This second 
step can be pictured as in Fig. 14.4.1b. In physical terms, the total voltage or 

http:14.4.1b
http:14.4.1b
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Fig. 14.4.2 Characteristic lines originating on initial conditions. 

Fig. 14.4.3 Characteristic line originating on load. 

current is the superposition of traveling waves propagating along the charac­
teristic lines that intersect at the point of interest. 

To complete the first step, note that a characteristic line passing through a 
given point P has three possible origins. First, it can originate on the t = 0 axis, 
in which case the invariants, V , are determined by the initial conditions. This was ±
the only possibility on the infinite transmission line considered in Sec. 14.3. The 
initial voltage and current where the characteristic line originates when t = 0 in 
Fig. 14.4.2 is used to evaluate (1) and (2), and the simultaneous solution of these 
expressions then gives the desired invariants. 

1 
V+ = (Vi + ZoIi) (4)

2
1 

V− = 
2
(Vi − ZoIi) (5) 

The second origin of a characteristic line is the boundary at z = l, as shown 
in Fig. 14.4.3. In particular, we consider the load resistance RL as the termination 
that imposes the boundary condition 

V (l, t) = RLI(l, t) (6) 
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Fig. 14.4.4 Characteristic lines originating on generator end of line. 

The problems will illustrate how the same approach illustrated here can also 
be used to describe terminations composed of arbitrary circuits. Certainly, the case 
where the load is a pure resistance is the most important type of termination, for 
reasons that will be clear shortly. 

Again, because phenomena proceed in the +t “direction,” the incident wave 
V+ and the boundary condition at z = l conspire to determine the reflected wave 
V on the characteristic line β = constant originating on the boundary at z = l−
(Fig. 14.4.3). To say this mathematically, we substitute (1) and (2) into (6) 

RL
V+ + V− = 

Zo 
(V+ − V−) (7) 

and solve for V−. 

� 
RL 

Zo 
− 1

� 

V− = V+ΓL; ΓL ≡ � 
RL + 1

�
Zo (8) 

Here, V+ and V are evaluated at z = l, and hence with α = l − ct and β = l + ct.−
Given the incident wave V+, we multiply it by the reflection coefficient ΓL and 
determine V−. 

The third possible origin of a characteristic line passing through the given 
point P is on the boundary at z = 0, as shown in Fig. 14.4.4. Here the line has been 
terminated in a source modeled as an ideal voltage source, Vg(t), in series with a 
resistance Rg. In this case, it is the wave traveling in the −z direction (represented 
by V and incident on the boundary from the left in Fig. 14.4.4) that combines −
with the boundary condition there to determine the reflected wave V+. 

The boundary condition is the constraint of the circuit on the voltage and 
current at the terminals. 

V (0, t) = Vg − RgI(0, t) (9) 

Substitution of (1) and (2) then gives an expression that can be solved for V+, given 
V and Vg(t).− 
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� Rg
Vg Zo 

− 1
� 

V+ = 
Rg + 1 

+ V−Γg; Γg ≡ � Rg + 1
�

Zo Zo (10) 

The following examples illustrate the two steps necessary to determine the 
transient response. First, V are found over the range of time of interest using the ±
initial conditions [(4) and (5) and Fig. 14.4.2] and boundary conditions [(8) and Fig. 
14.4.3 and (10) and Fig. 14.4.4]. Then, the wave­components are superimposed to 
find V and I ((1) and (2) and Fig. 14.4.1.) To appreciate the space­time significance 
of the equations used in this process, it is helpful to have in mind the associated 
z − t sketches. 

Matching. The reflection of waves from the terminations of a line results 
in responses that can persist long after a signal has propagated the length of the 
transmission line. As a practical matter, it is therefore often desirable to eliminate 
reflections by matching the line. 

From (8), it follows that wave reflection is eliminated at the load by making 
the load resistance equal to the characteristic impedance of the line, RL = Zo. 
Similarly, from (10), there will be no reflection of the wave V at the source if the 
resistance Rg is made equal to Zo. 

− 

Consider first an example in which the response is made simple because the 
line is matched to its load. 

Example 14.4.1. Matching 

In the configuration shown in Fig. 14.4.5a, the load has a resistance RL while the 
generator is an ideal voltage source Vg(t) in series with the resistor Rg. The load is 
matched to the line, RL = Zo. As a result, according to (8), there are no V waves −
on characteristics originating at the load. 

RL = Zo V = 0 (11)⇒ − 

Suppose that the driving voltage consists of a pulse of amplitude Vp and 
duration T , as shown in Fig. 14.4.5b. Further, suppose that when t = 0 the line 
voltage and current are both zero, Vi = 0, and Ii = 0. Then, it follows from (4) and 
(5) that V+ and V are both zero on the respective characteristic lines originating − 

on the t = 0 axis, as shown in Fig. 14.4.5b. By design, (8) gives V = 0 for the −
β = constant characteristics originating at the load. Finally, because V = 0 for −
all characteristic lines incident on the source (whether they originate on the initial 
conditions or on the load), it follows from (10) that on characteristic lines originating 
at z = 0, V+ is as shown in Fig. 14.4.5b. We now know V+ and V− everywhere. 

It follows from (1) and (2) that V and I are as shown in Fig. 14.4.5. Because 
V = 0, the voltage and current both take the form of a pulse of temporal duration −
T and spatial length cT , propagating from source to load with the velocity c. 

To express analytically what has been found, we know that at z = 0, V = 0−
and in turn from (10) that at z = 0, 

Vg(t)
V+ = (12) 

g
� 

R 
+ 1

�
Zo 

http:14.4.5a
http:14.4.5b
http:14.4.5b
http:14.4.5b
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Fig. 14.4.5 (a) Matched line. (b) Wave components in z− t plane. (c) 
Response in z − t plane. 

This is the value of V+ along any line of constant α originating on the z = 0 axis. 
For example, along the line α = −ct� passing through the z = 0 axis when t = t�, 

Vg(t�)
V+ = � 

Rg + 1
� (13) 

Zo 

We can express this result in terms of z − t by introducing α = −ct� into (3), solving 
that expression for t�, and introducing that expression for t� in (13). The result is 
just what we have already pictured in Fig. 14.4.5. 

zVg

�
t − 

c 

� 

V (z, t) = V+(α) = (14)� 
Rg + 1

�
Zo 

Regardless of the shape of the voltage pulse, it appears undistorted at some location 
z but delayed by z/c. 

Note that at any location on the matched line, including the terminals of the 
generator, V/I = Zo. The matched line appears to the generator as a resistance 
equal to the characteristic impedance of the line. 

We have assumed in this example that the initial voltage and current are zero 
over the length of the line. If there were finite initial conditions, their response with 
the generator voltage set equal to zero would add to that obtained here because the 
wave equation is linear and superposition holds. Initial conditions give rise to waves 
V+ and V− propagating in the +z and −z directions, respectively. However, because 
there are no reflected waves at the load, the effect of the initial conditions could not 
last longer at the generator than the time l/c required for V− to reach z = 0 from 
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Fig. 14.4.6 (a) Open line. (b) Wave components in z − t plane. (c) 
Response in z − t plane. 

z = l. They would not last longer at the load than the time 2l/c, when any resulting 
wave reflected from the generator would return to the load. 

Open circuit and short circuit terminations result in complete reflection. For 
the open circuit, I = 0 at the termination, and it follows from (2) that V+ = V−. 
For a short, V = 0, and (1) requires that V+ = −V−. Note that these limiting 
relations follow from (8) by making RL infinite and zero in the respective cases. 

In the following example, we see that an open circuit termination can result 
in a voltage that is momentarily as much as twice that of the generator. 

Example 14.4.2. Open Circuit Termination 

The transmission line of Fig. 14.4.6 is terminated in an infinite load resistance and 
driven by a generator modeled as a voltage source in series with a resistance Rg 

equal to the characteristic impedance Zo. As in the previous example, the driving 
voltage is a pulse of time duration T , as shown in Fig. 14.4.6b. When t = 0, V 
and I are zero. In this example, we illustrate the effect of matching the generator 
resistance to the line and of having complete reflection at the load. 

The boundary at z = l, (8), requires that 

V− = V+ (15) 

while that at the generator, (10), is simply 

V+ = 
Vg 

2 
(16) 

Because the generator is matched, this latter condition establishes V+ on character­
istic lines originating on the z = 0 axis without regard for V−. These are summarized 
along the t axis in Fig. 14.4.6b. 

http:14.4.6b
http:14.4.6b
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To establish the values of V on characteristic lines originating at the load, −
we must know values of the incident V+. Because I and V are both initially zero, 
the incident V+ at the load is zero until t=l/c. From (15), V is also zero. From −
t = l/c until t = l/c + T , the incident V+ = Vp/2 and V− on the characteristic lines 
originating at the open circuit during this time interval follows from (15) as Vp/2. 
Finally, for all greater times, the incident wave is zero at the load and so also is the 
reflected wave. The values of V± for characteristic lines originating on the associated 
segments of the boundaries and on the t = 0 axis are summarized in Fig. 14.4.6c. 

With the values of V± determined, we now use (1) and (2) to make the picture 
also shown in Fig. 14.4.6c of the distributions of V and I at progressive instants in 
time. Because of the matched condition at the generator, the transient is over by 
the time the pulse has made one round trip. To make the current at the open circuit 
termination zero, the voltage doubles during that period when both incident and 
reflected waves exist at the termination. 

The configuration of Fig. 14.4.6 was regarded in the previous example as an 
“open circuit transmission line” driven by a voltage source in series with a resistor. 
If we had been given the same configuration in Chap. 7, we would have taken it 
to be a “capacitor” in series with the resistor and the voltage source. The next 
example puts the EQS approximation in perspective by showing how it represents 
the dynamics when the resistance Rg is large compared to Zo. A clue as to what 
happens when this ratio is large comes from writing it in the form 

Rg = Rg

�
C/L =	

RgCl 
=	 

RgCl 
(17)

Zo	 l
√

CL (l/c) 

Here, RgCl is the charging time of the capacitor and l/c is the electromagnetic wave 
transit time. When this ratio is large, the time for the transient to complete itself 
is many wave transit times. Thus, as will now be seen, the exponential charging of 
the capacitor is made up of many small steps associated with the electromagnetic 
wave passing “to and fro” over the length of the line. 

Example 14.4.3.	 Quasistatic Transient as the Limit of an Electrodynamic 
Transient 

The transmission line shown to the left in Fig. 14.4.7 is open at z = l and driven 
at z = 0 by a step in voltage, Vg = Vpu−1(t). We are especially interested in the 
response with the series resistance, Rg, very large compared to Zo. For simplicity, 
we assume that the initial voltage and current are zero. 

The boundary condition imposed at the open termination, where z = l, is 
I = 0. From (2), 

V+ = V (18)− 

while at the source, (10) pertains with Vg = Vp a constant 5 

Vp
V+ = Vg + V−Γg; Vg ≡ � 

Rg + 1
�	 (19) 

Zo 

5 Be careful to distinguish the constant Vg as defined in this example from the source voltage 
Vg(t) = VpU−1(t). 

http:14.4.6c
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Fig. 14.4.7 Wave components of open line to a step in voltage in 
series with a high resistance. 

with the reflection coefficient of the generator defined as 

Rg 

Γg ≡ Zo 
− 1 

(20)
Rg + 1 
Zo 

Starting with characteristic lines originating at t = 0, where the initial conditions 
determine that V+ and V are zero, we can now use these boundary conditions to−
determine V− on lines originating at the load and V+ on lines originating at z = 0. 
These values are shown in Fig. 14.4.7. Thus, V are now known everywhere in the ± 

⊂­shaped region. 
The voltage and current now follow from (1) and (2). In particular, consider 

the response at the generator terminals, where z = 0. In Fig. 14.4.7, the t axis has 
been divided into intervals of duration 2l/c, the first denoted by N = 1, the second 
by N = 2, etc. We have found that the wave components incident on and reflected 
from the z = 0 boundary in the N ­th interval are 

N−2� 
ΓnV = Vg g (21)− 

n=0 

N−1� 
Γn (22)V+ = Vg g 

n=0 

It follows from (2) that the current at z = 0 during this time interval is 

Vp 1 N−1 l l 
I(0, t) = Γg ; 2(N − 1) < t < 2N (23)

Rg 1 + Zo c c 
Rg 
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In turn, this current can be used to evaluate the terminal voltage. 

ΓN−1 
�� 

g
V (0, t) = (24)Vp 1− 

1 + Zo 
Rg 

With Rg/Zo very large, it follows from (20) that 

Γg 

�
1− 2 

Zo 
� 

(25)→ 
Rg 

In this same limit, the term 1+Zo/Rg in (24) is essentially unity. Thus, (24) becomes 
approximately 

V (0, t) Vp 

� 
1− 

�
1− 

2Zo 
�N−1

� 
; 2(N − 1) 

l 
< t < 

2Nl 
(26)→ 

Rg c c 

We suspect that in the limit where the round­trip transit time 2l/c is short compared 
to the charging time τ = RgCl, this voltage becomes the step response of the series 
capacitor and resistor. 

V (0, t) Vp(1 − e−t/τ ] (27)→ 

To see that this is indeed the case, we exploit the fact that 

lim(1 − x)1/x = e−1 (28) 
x 0→ 

by writing (26) in the form 

V (0, t) Vp 

� 
1− 

��
1− 

2Zo 
�1/(2Zo/Rg)

�(N−1)(2Zo/Rg)� 
(29)→ 

Rg 

It follows that in the limit where Zo/Rg is small, 

V (0, t) Vp

�
1− e−(N−1)(2Zo/Rg)

�
; 2(N − 1) 

l 
< t < 2N

l 
(30)→ 

c c 

Remember that N represents the interval of time during which the expression is 
valid. If we take the time as being that when the interval begins, then 

l t 
2(N − 1) 

c 
∼ t ⇒ 2(N − 1) =

(l/c) 
(31) 

Substitution of this expression for 2(N−1) into (30) and use of (17) then shows 
that in this high­resistance limit, the voltage does indeed take the exponential form 
for a charging capacitor, (27), with a charging time τ = RgCl. In the example of 
V (0, t) shown in Fig. 14.4.8, there are 10 round­trip transit times in one charging 
time, RgCl = 20l/c. 
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Fig. 14.4.8 Response of open circuit transmission line to step in voltage in 
series with a high resistance. The smooth curve is predicted by the EQS model. 

Fig. 14.4.9 Oscilloscope displays voltage at terminals of line under 
conditions of Examples 14.4.1­3. 

The following demonstration is typical of a variety of demonstrations that are 
easily carried out using a good oscilloscope and a stretch of transmission line. 

Demonstration 14.4.1. Transmission Line Matching, Reflection, and Qua­
sistatic Charging 

The apparatus shown in Fig. 14.4.9 is all that is required to demonstrate the 
phenomena described in the examples. In a typical experiment, a 10 m length of 
cable is used, in which case the wave transit time is about 0.05 µs. Thus, to resolve 
the transient, the oscilloscope must have a frequency response that extends to 100 
MHz. 

To achieve matching of the generator, as called for in Example 14.4.2, Rg = Zo. 
Typically, for a coaxial cable, this is 50 Ω. 
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To see the charging transient of Example 14.4.3 with 10 round trip transit 
times in the capacitive charging time, it follows from (17) that we should make 
Rg/Zo = 20. Thus, for a coaxial cable having Zo = 50Ω, Rg = 1kΩ. 

14.5 TRANSMISSION LINES IN THE SINUSOIDAL STEADY STATE 

The method used in Sec. 14.4 is equally applicable to finding the response to 
a sinusoidal excitation of an ideal transmission line. Rather than exciting the line 
by a voltage step or a voltage pulse, as in the examples of Sec. 14.4, the source may 
produce a sinusoidal excitation. In that case, there is a part of the response that is 
in the sinusoidal steady state and a part that accounts for the initial conditions and 
the transient associated with turning on the source. Provided that the boundary 
conditions are (like the transmission line equations) linear, we can express the 
response as a superposition of these two parts. 

V (z, t) = Vs(z, t) + Vt(z, t) (1) 

Here, Vs is the sinusoidal steady state response, determined without regard for the 
initial conditions but satisfying the boundary conditions. Added to this to make the 
total solution satisfy the initial conditions is Vt. This transient solution is defined 
to satisfy the boundary conditions with the drive equal to zero and to make the 
total solution satisfy the initial conditions. If we were interested in it, this transient 
solution could be found using the methods of the previous section. In an actual 
physical situation, this part of the solution is usually dissipated in the resistances 
of the terminations and the line itself. Then the sinusoidal steady state prevails. In 
this and the next section, we focus on this part of the solution. 

With the understanding that the boundary conditions, like those describing 
the transmission line, are linear differential equations with constant coefficients, the 
response will be sinusoidal and at the same frequency, ω, as the drive. Thus, we 
assume at the outset that 

jωt; jωt V = Re V̂ (z)e I = Re Î(z)e (2) 

Substitution of these expressions into the transmission line equations, (14.1.4)– 
(14.1.5), shows that the z dependence is governed by the ordinary differential equa­
tions 

dÎ  
= −jωCV̂  

dz (3) 

dV̂  
= −jωLÎ  

dz (4) 
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Fig. 14.5.1 Termination at z = 0 in load impedance. 

Again because of the constant coefficients, these linear equations have two solutions, 
each having the form exp(−jkz). Substitution shows that 

ˆ ˆ 
+e−jβz + V̂  jβz V = V −e (5) 

where β ≡ ω
√

LC. In terms of the same two arbitrary complex coefficients, it also 
follows from substitution of this expression into (14.1.5) that 

Î =	 
Z

1 
o 

�
V̂  

+e−jβz − V̂  −ejβz
� 

(6) 

where Zo = 
�

L/C. 
What we have found are solutions having the same traveling wave forms as 

identified in Sec. 14.3, (14.3.9)–(14.3.10). This can be seen by using (2) to recover 
the time dependence and writing these two expressions as 

t
�� 

+e−jβ
�
z− t

� 
+ V̂  jβ

�
z+

−e
ω ω 

V̂Re (7)V = β β 

t
�� 

+e−jβ
�
z− t

� 
V̂  −ejβ

�
z+1 ω ω 

V̂= Re (8)I β β−
Zo 

ˆThe velocity of the waves is ±ω/β = 1/
√

LC. Because the coefficients V± are com­
plex, they represent both the amplitude and phase of these traveling waves. Thus, 
the solutions could be sinusoids, cosinusoids, or any combination of these having 
the given arguments. In working with standing waves in Sec. 13.2, we demonstrated 
how the coefficients could be adjusted to satisfy simple boundary conditions. Here 
we introduce a point of view that is convenient in dealing with complicated termi­
nations. 

Transmission Line Impedance. The transmission line shown in Fig. 14.5.1 
is terminated in a load impedance ZL. By definition, ZL is the complex number 

V̂ (0) 
Î(0) 

= ZL (9) 
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In general, it could represent any linear system composed of resistors, in­
ductors, and capacitors. The complex amplitudes V̂  are determined by this and ±
another boundary condition. This second condition represents the termination of 
the line somewhere to the left in Fig. 14.5.1. 

At any location on the line, the impedance is found by taking the ratio of (5) 
and (6). 

2jβz V̂ (z) 1 + ΓLe 
Z(z) ≡ = Zo 1− ΓLe2jβz Î(z) (10) 

Here, ΓL is the reflection coefficient of the load. 

V̂  
ΓL ≡ ˆ

− 

V+ (11) 

Thus, ΓL is simply the ratio of the complex amplitudes of the traveling wave com­
ponents. 

At the location z = 0, where the line is connected to the load and (9) applies, 
this expression becomes 

ZL 1 + ΓL = 
Zo 1− ΓL (12) 

The boundary condition, expressed by (12), is sufficient to determine the 
reflection coefficient. That is, from (12) it follows that 

(ZL/Zo − 1)
ΓL = (13)

(ZL/Zo + 1) 

Given the load impedance, ΓL follows from this expression. The line impedance 
at a location z to the left then follows from the use of this expression to evaluate 
(10). 

The following examples lead to important implications of (11) while indicating 
the usefulness of the impedance point of view. 

Example 14.5.1. Impedance Matching 

Given an incident wave V+, how can we eliminate the reflected wave represented 
by V−? By definition, there is no reflected wave if the reflection coefficient, (11), is 
zero. It follows from (13) that 

ΓL = 0 ZL = Zo (14)⇒ 

Note that Zo is real, which means that the matched load is equivalent to a resistance, 
RL = Zo. Thus, our finding is consistent with that of Sec. 14.4, where we found that 
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such a termination would eliminate the reflected wave, sinusoidal steady state or 
not. 

It follows from (10) that the line has the same impedance, Zo, at any location 
z, when terminated in its characteristic impedance. Because V−=0, it follows from 
(7) that the voltage takes the form 

V = Re V̂  
+ej(ωt−βz) (15) 

The voltage has the distribution in space and time of a sinusoid traveling in the z 
direction with the velocity 1/

√
LC. At any given location, the voltage is sinusoidal 

in time at the (angular) frequency ω. The amplitude is the same, regardless of z. 6 

The previous example illustrated that at any location, a transmission line 
terminated in a resistance equal to its characteristic impedance has an impedance 
which is also resistive and equal to Zo. The next example illustrates what happens in 
the opposite extreme, where the termination dissipates no energy and the response 
is a pure standing wave rather than the pure traveling wave of the matched line. 

Example 14.5.2. Short Circuit Impedance and Standing Waves 

With a short circuit at z = 0, (5) makes it clear that V− = −V+. Thus, the reflection 
coefficient defined by (11) is ΓL = −1. We come to the same conclusion from the 
evaluation of (13). 

ZL = 0 ΓL = (16)⇒ −1


The impedance at some location z then follows from (10) as


Z(−l) ≡ j
X 

= j tan βl (17)
Zo Zo 

In view of the definition of β, 

ωl l 
βl = = 2π (18) 

c λ 

and so we can think of βl as being proportional either to the frequency or to the 
length of the line measured in wavelengths λ. The impedance of the line is a reactance 
X having the dependence on either of these quantities shown in Fig. 14.5.2. 

At low frequencies (or for a length that is short compared to a quarter­
wavelength), X is positive and proportional to ω. As should be expected from either 
Chap. 8 or Example 13.1.1, the reactance is that of an inductor. 

βl � 1 X (βl)
�

L/C = ωLl (19)⇒ → 

As the frequency is raised to the point where the line is a quarter­wavelength long, 
the impedance is infinite. A shorted quarter­wavelength line has the impedance of 
an open circuit! As the frequency is raised still further, the reactance becomes ca­
pacitive, decreasing with increasing frequency until the half­wavelength line exhibits 

6 By contrast with Demonstration 13.1.1, where the light emitted by the fluorescent tube 
indicated that the electric field peaked at some locations and nulled at others, the distribution of 
light for a matched line would be “flat.” 
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Fig. 14.5.2 Reactance as a function of normalized frequency for a 
shorted line. 

Fig. 14.5.3 A quarter­wave matching section. 

the impedance of the termination, a short. That the impedance repeats itself as the 
line is increased in length by a half­wavelength is evident from Fig. 14.5.2. 

We consider next an example that illustrates one of many methods for match­
ing a load resistance RL to a line having a characteristic impedance not equal to 
RL. 

Example 14.5.3. Quarter­Wave Matching Section 

A quarter­wavelength line, as shown in Fig. 14.5.3, has the useful property of 
converting a normalized load impedance ZL/Zo to a normalized impedance that is 
the reciprocal of that impedance, Zo/ZL. To see this, we evaluate the impedance, 
(10), a quarter­wavelength from the load, where βz = −π/2, and then use (12). 

π Zo 
2 

Z
�
βz = − 

2 

� 
= 

ZL 
(20) 

Thus, if we wanted to match a line having the characteristic impedance Zo
a to 

a load resistance ZL = RL, we could interpose a quarter­wavelength section of line 
having as its characteristic impedance a Zo that is the geometric mean of the load 
resistance and the characteristic impedance of the line to be matched. 

Zo = 
�

Zo
aRL (21) 

The idea of using quarter­wavelength sections to achieve matching will be continued 
in the next example. 

The transmission line model is equally well applicable to electromagnetic plane 
waves. The equivalence was pointed out in Sec. 14.1. When these waves are opti­
cal, the permeability of common materials remains µo, and the polarizability is 
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Fig. 14.5.4 (a) Cascaded quarter­wave transmission line sections. (b) 
Optical coating represented by (a). 

described by the index of refraction, n, defined such that 

D = n 2�oE (22) 

Thus, n2�o takes the place of the dielectric constant, �. The appropriate value of 
n2�o is likely to be very different from the value of � used for the same material at 
low frequencies.7 

The following example illustrates the application of the transmission line view­
point to an optical problem. 

Example 14.5.4. Quarter­Wave Cascades for Reduction of Reflection 

When one quarter­wavelength line is used to transform from one specified impedance 
to another, it is necessary to specify the characteristic impedance of the quarter­
wave section. In optics, where it is desirable to minimize reflections that result from 
the passage of light from one transparent medium to another, it is necessary to 
specify the index of refraction of the quarter wave section. Given other constraints 
on the materials, this often is not possible. In this example, we see how the use of 
multiple layers gives some flexibility in the choice of materials. 

The matching section of Fig. 14.5.4a consists of m pairs of quarter­wave sec­
tions of transmission line, respectively, having characteristic impedances Zo

a and Zo
b . 

This represents equally well the cascaded pairs of quarter wave layers of dielectric 
shown in Fig. 14.5.4b, interposed between materials of dielectric constants � and �i. 
Alternatively, these layers are represented by their indices of refraction, na and nb, 
interposed between materials having indices ni and n. 

First, we picture the matching problem in terms of the transmission line. The 
load resistance RL represents the material to the right of the cascade. This region is 
pictured as an infinite transmission line having characteristic impedance Zo. Thus, it 
presents a load to the cascade of resistance RL = Zo. To determine the impedance at 
the other side of the cascade, we make repeated use of the impedance transformation 
for a quarter­wave section, (20). To begin with, the impedance at the terminals of 
the first quarter­wave section is 

(Zo
a)2 

Z = (23)
Zo 

7 With fields described in the frequency domain, �, and hence n2, are in general complex 
functions of frequency, as in Sec. 11.5. 

http:14.5.4b
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With this taken as the load resistance in (20), the impedance at the terminals of 
the second section is � 

Zo
b �2 

Z = Zo (24)
Zo

a 

This can now be regarded as the impedance transformation for the pair of quarter­
wave sections. If we now make repeated use of (24) to represent the impedance trans­
formation for the quarter­wave sections taken in pairs, we find that the impedance 
at the terminals of m pairs is 

� 
Zb �2m 

Z = o Zo (25)
Zo

a 

Now, to apply this result to the optics configuration, we identify (14.1.9) 

ζo
RL 

�
µo/� ≡ ζL = ;→ 

n 

ζo
Zo

a = 
�

µo/�a ≡ ζa = ; (26) 
na 

Zo
b = 

�
µo/�b ≡ ζb =	

ζo 

nb 

and have from (25) for the intrinsic impedance of the cascade 

ζ = ζL

� ζb 
�2m 

(27)
ζa 

In terms of the indices of refraction, 

n 
= 

� 
na 

�2m 

(28) 
ni nb 

If this condition on the optical properties and number of the layer pairs is fulfilled, 
the wave can propagate through the interface between regions of indices ni and n 
without reflection. Given materials having na/nb less than n/ni, it is possible to 
pick the number of layer pairs, m, to satisfy the condition (at least approximately). 

Coatings are commonly used on lenses to prevent reflection. In such appli­
cations, the waves processed by the lens generally have a spectrum of frequencies. 
Thus, optimization of the matching coatings is more complex than pictured here, 
where it has been assumed that the light is at a single frequency (is monochromatic). 

It has been assumed here that the electromagnetic wave has normal incidence 
at the dielectric interface. Waves arriving at the interface at an angle can also be 
pictured in terms of the transmission line. In practical applications, the design of 
lens coatings to prevent reflection over a range of angles of incidence is a further 
complication.8 

8 H. A. Haus, Waves and Fields in Optoelectronics, Prentice­Hall, Inc., Englewood Cliffs, 
N.J. (1984), pp. 43­46. 
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Fig. 14.6.1 (a)Transmission line conventions. (b) Reflection coefficient de­
pendence on z in the complex Γ plane. 

14.6 REFLECTION COEFFICIENT REPRESENTATION OF TRANSMISSION 
LINES 

In Sec. 14.5, we found that a quarter­wavelength of transmission line turned a 
short circuit into an open circuit. Indeed, with an appropriate length (or driven at 
an appropriate frequency), the shorted line could have an inductive or a capacitive 
reactance. In general, the impedance observed at the terminals of a transmission 
line has a more complicated dependence on the termination. 

Typical microwave measurements are made with a length of transmission line 
between the observation point and the terminals of the device under study, whether 
that be an antenna or a transistor. In this section, the objective is a way of visu­
alizing the relation between the impedance at the “generator” terminals and the 
impedance of the “load.” We will find that a representation of the variables in the 
reflection coefficient plane is valuable both conceptually and practically. 

At a location z, the impedance of the transmission line shown in Fig. 14.6.1a 
is (14.5.10) 

Z(z)
=

1 + Γ(z) 
Zo 1− Γ(z) (1) 

where the reflection coefficient at the location z is defined as the complex function 

V̂  
Γ(z) =	 ˆ

− 
ej2βz 

V+ (2) 

At the load position, where z = 0, the reflection coefficient is equal to ΓL as defined 
by (14.5.11). 

Like the impedance, the reflection coefficient is a function of z. Unlike the 
impedance, Γ has an easily pictured z dependence. Regardless of z, the magnitude 
of Γ is the same. Thus, as pictured in the complex Γ plane of Fig. 14.6.1b, it is a 
complex vector of magnitude |V	̂  −/V̂  

+| and angle θ + 2βz, where θ is the angle at 
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the position z = 0. With z defined as increasing from the generator to the load, the 
dependence of the reflection coefficient on z is as summarized in the figure. As we 
move from the generator toward the load, z increases and hence Γ rotates in the 
counterclockwise direction. 

In summary, once the complex number Γ is established at one location z, 
its variation as we move toward the load or toward the generator can be pictured 
as a rotation at constant magnitude in the counterclockwise or clockwise direc­
tions, respectively. Typically, Γ is established at the location of the load, where the 
impedance, ZL, is known. Then Γ at any location z follows from (1) solved for Γ. 

� 
Z 
Zo 
− 1

� 

Γ = � 
Z + 1

�
Zo (3) 

With the magnitude and phase of Γ established at the load, the reflection 
coefficient can be found at another location by a simple rotation through an angle 
4π(z/λ), as shown in Fig. 14.6.1b. The impedance at this second location would 
then follow from evaluation of (1). 

Smith Chart. We save ourselves the trouble of evaluating (1) or (3), either 
to establish Γ at the load or to infer the impedance implied by Γ at some other 
location, by mapping Z/Zo in the Γ plane of Fig. 14.6.1b. To this end, we define 
the normalized impedance as having a resistive part r and a reactive part x 

Z 
= r + jx (4)

Zo 

and plot the contours of constant r and of constant x in the Γ plane. This makes 
it possible to see directly what Z is implied by each value of Γ. Effectively, such a 
mapping provides a graphical solution of (1). The next few steps summarize how 
this mapping of the contours of constant r and x in the Γr − Γi plane can be made 
with ruler and compass. 

First, (1) is written using (4) on the left and Γ = Γr + jΓi on the right. The 
real and imaginary parts of this equation must be equal, so it follows that 

r = 
(1 − Γ2 

r − Γi 
2) 

(5)
(1− Γr)2 + Γ2 

i 

2Γi 
x = (6)

(1− Γr)2 + Γ2 
i 

These expressions are quadratic in Γr and Γi. By completing the squares, they can 
be written as �

Γr − 
r �2 

+ Γ2 
i = 

� 1 �2 

(7) 
r + 1 1 + r 

(Γr − 1)2 +
�
Γi − 

1 �2 = 
� 1 �2 (8) 

x x 

http:14.6.1b
http:14.6.1b
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Fig. 14.6.2 (a) Circle of constant normalized resistance, r, in Γ plane. (b) 
Circle of constant normalized reactance, x, in Γ plane. 

Fig. 14.6.3 Smith chart. 

Thus, the contours of constant normalized resistance, r, and of constant normalized 
reactance, x, are the circles shown in Figs. 14.6.2a–14.6.2b. 

Putting these contours together gives the lines of constant r and x in the 
complex Γ plane shown in Fig. 14.6.3. This is called a Smith chart. 

Illustration. Impedance with Simple Terminations 

How do we interpret the examples of Sec. 14.5 in terms of the Smith chart? 

•	 Quarter­wave Section. In Example 14.5.3 we found that a normalized re­
 
sistive load rL was transformed into its reciprocal by a quarter­wave line.
 
Suppose that rL = 2 (the load resistance is 2Zo) and x = 0. Then, the load is
 

http:14.6.2a�14.6.2b
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at A in Fig. 14.6.3. A quarter­wavelength toward the generator is a rotation 
of 180 degrees in a clockwise direction, with Γ following the trajectory from 
A B in Fig. 14.6.3. Note that the impedance at B is indeed the reciprocal 
of that at 
→

A, r = 0.5, x = 0. 

	 Impedance of Short Circuit Line. Consider next the shorted line of Ex­•
ample 14.5.2. The load resistance rL is 0, and reactance xL is 0 as well, so 
we begin at the point C in Fig. 14.6.3. Now, we can trace out the impedance 
as we move away from the short toward the generator by rotating along the 
trajectory of unit radius in the clockwise direction. Note that all along this 
trajectory, r = 0. The normalized reactance then traces out the values given in 
Fig. 14.5.2, first taking on positive (inductive) values until it becomes infinite 
at λ/4 (rotation of 180 degrees), and then negative (capacitive) values until it 
returns to C, when the line has a length of λ/2. 

	 Matched Line. For the matched load of Example 14.5.1, we start out with •
rL = 1 and xL = 0. This is point D at the origin in Fig. 14.6.3. Thus, the 
trajectory of Γ is a circle of zero radius, and the impedance remains rL = 1 
over the length of the line. 

While taking measurements on a transmission line terminated in a particular 
device, the Smith chart is often used to have an immediate picture of the impedance 
at the terminals. Even though the chart could be replaced by a programmable 
calculator, the overview provided by the Smith chart is important. Not only does 
it provide insight concerning the impedance, it can be used to picture the spatial 
evolution of the voltage and current, as we now see. 

Standing Wave Ratio. Once the reflection coefficient has been established, 
the voltage and current distributions are determined (to within a factor determined 
by the source). That is, in terms of Γ, (14.5.5) becomes 

V̂ = V̂  
+e−jβz[1 + Γ(z)]	 (9) 

The exponential factor has an amplitude that is independent of z. Thus, [1 + Γ(z)] 
represents the z dependence of the voltage amplitude. This complex quantity can be 
pictured in the Γ plane as shown in Fig. 14.6.4a. Remember, as we move from load 
to generator, Γ rotates in the clockwise direction. As it does so, 1+Γ varies between 
a maximum value of 1 + Γ and a minimum value of 1 − Γ . According to (9), we | |	 | |
can now picture the spatial distribution of the voltage amplitude. Convenient for 
describing this distribution is the voltage standing wave ratio (VSWR), defined as 
the ratio of the maximum voltage amplitude to the minimum voltage amplitude. 
From Fig. 14.6.4a, we can see that this ratio is 

(1 + Γ)max 1 + Γ 
VSWR = = 

| |
(1 + Γ)min 1− |	Γ| (10) 

The distribution of voltage amplitude is shown for several VSWR’s in Fig. 
14.6.4b. We have already seen such distributions in two extremes. With the short 

http:14.6.4a
http:14.6.4a
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Fig. 14.6.4 (a) Normalized line voltage 1 + Γ. (b) Distribution of voltage 
amplitude for three VSWR’s. 

circuit or open circuit terminations considered in Sec. 13.1, the reflection coefficient 
was on the unit circle and the VSWR was infinite. Indeed, the infinite VSWR 
envelope of Fig. 14.6.4b is that of a standing wave, with nulls every half­wavelength. 
The opposite extreme is also familiar. Here, the line is matched and the reflection 
coefficient is on a circle of zero radius. Thus, the VSWR is unity and the distribution 
of voltage amplitude is uniform. 

Measurement of the VSWR and the location of a voltage null provides the 
information needed to determine a line termination. This follows by first using (10) 
to evaluate the magnitude of the reflection coefficient from the measured VSWR. 

Γ = 
VSWR − 1 

(11)| | 
VSWR + 1 

Thus, the radius of the circle representing the voltage distribution on the line has 
been determined. Second, a determination of the position of a null is tantamount 
to locating (to within a half­wavelength) the position on the line where Γ passes 
through the negative real axis. The distance from this point to the load, in wave­
lengths, then determines where the load is located on this circle. The corresponding 
impedance is that of the load. 

Demonstration 14.6.1. VSWR and Load Impedance 

In the slotted line shown in Fig. 14.6.5, a movable probe with its attached detector 
provides a measure of the line voltage as a function of z. The distance between the 
load and the voltage probe can be measured directly. By using a frequency of 3 
GHz and an air­insulated cable (having a permittivity that is essentially that of free 
space, so that the wave velocity is 3 × 108 m/s), the wavelength is conveniently 10 
cm. 

The characteristic impedance of the coaxial cable is 50 Ω, so with terminations 
of 50 Ω, 100 Ω, and a short, the observed distribution of voltage is as shown in 
Fig. 14.6.4b for VSWR’s of 1, 2, and ∞. (To plot data points on these curves, the 
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Fig. 14.6.5 Demonstration of distribution of voltage magnitude as 
function of VSWR. 

measured values should be normalized to match the peak voltage of the appropriate 
distribution.) 

Figure 14.6.5 illustrates how a measurement of the VSWR and position of a 
null can be used to infer the termination. Addition of a half­wavelength to l means 
an additional revolution in the Γ plane, so which null is used to define the distance 
l makes no difference. The trajectory drawn in the illustration is for the 100 Ω 
termination. 

Admittance in the Reflection Coefficient Plane. Commonly, transmission 
lines are interconnected in parallel. It is then convenient to work with the ad­
mittance rather than the impedance. The Smith chart describes equally well the 
evolution of the admittance with z. 

With Yo = 1/Zo defined as the characteristic admittance, it follows from (1) 
that 

Y 

Yo 
= 

1− Γ 
1 + Γ 

(12) 

If Γ → −Γ, this expression becomes identical to that relating the normalized 
impedance to Γ, (1). Thus, the contours of constant normalized conductance, g, 
and normalized susceptance, y, 

Y ≡ g + jy (13)
Yo 

are those of the normalized impedance, r and x, rotated by 180 degrees. Rotate 
by 180 degrees the impedance form of the Smith chart and the admittance form is 
obtained! The contours of r and x, respectively, become those of g and y. 9 

9 Usually, Γ is not explicitly evaluated. Rather, the admittance is given at one point on the 
Γ circle (and hence on the chart) and determined (by a rotation through the appropriate angle 
on the chart) at another point. Thus, for most applications, the chart need not even be rotated. 
However, if Γ is to be evaluated directly from the admittance, it should be remembered that the 
coordinates are actually −Γr and −Γi. 
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Fig. 14.6.6 (a) Single stub matching. (b) Admittance Smith chart. 

The admittance form of the Smith chart is used in the following example. 

Example 14.6.1. Single Stub Matching 

In Fig. 14.6.6a, the load admittance YL is to be matched to a transmission line 
having characteristic admittance Yo by means of a “stub” consisting of a shorted 
section of line having the same characteristic admittance Yo. Variables that can be 
used to accomplish the matching are the distance l from the load to the stub and 
the length ls of the stub. 

Matching is accomplished in two steps. First, the length l is adjusted so that 
the real part of the admittance at the position where the stub is attached is equal to 
Yo. Then the length of the shorted stub is adjusted so that it’s susceptance cancels 
that of the line. Here, we see the reason for using the admittance form of the Smith 
chart, shown in Fig. 14.6.6b. The stub and the line are connected in parallel so that 
their admittances add. 

The two steps are pictured in Fig. 14.6.6b for the case where the normalized 
load admittance is g + jy = 0.5, at A on the chart. The real part of the admittance 
becomes equal to the characteristic admittance on the circle g = 1; we adjust the 
length l so that the stub is connected at B, where the Γ constant curve intersects| |
the g = 1 circle. In the particular example shown, this length is l = 0.152λ. From 
the chart, one reads off a positive susceptibility at this point of about y = 0.7. We 
can determine the stub length ls that gives the negative of this susceptance by again 
using the chart. The desired admittance of the stub is at C, where g = 0 and y = 
−0.7. In the case of the stub, the “load” is the short, where the admittance is infinite, 
at D on the chart. Following the Γ = 1 circle in the clockwise direction (from the | |
“load” toward the “generator”) from the short at D to the desired admittance at C 
then gives the length of the stub. For the example, ls = 0.153λ. 

To the left of the point where the stub is attached, the line should have a 
unity VSWR. The following demonstrates this concept. 

Demonstration 14.6.2. Single Stub Matching 

http:14.6.6a
http:14.6.6b
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Fig. 14.6.7 Single stub matching demonstration. 

Fig. 14.7.1 Incremental section of lossy distributed line. 

In Fig. 14.6.7, the previous demonstration has been terminated with an adjustable 
length of line (a line stretcher) and a stub. The slotted line makes it possible to see 
the effect on the VSWR of matching the line. With a load of Z = 100Ω and the 
stub and line stretcher adjusted to the values found in the previous example, the 
voltage amplitude is found to be independent of the position of the probe in the 
slotted line. Of course, we can add a half­wavelength to either l or ls and obtain the 
same condition. 

14.7 DISTRIBUTED	 PARAMETER EQUIVALENTS AND MODELS WITH 
DISSIPATION 

The distributed parameter transmission line of Sec. 14.1 is now generalized to 
include certain types of dissipation by using the incremental circuit shown in Fig. 
14.7.1 . The capacitance per unit length C is shunted by a conductance per unit 
length G and in series with the inductance per unit length L is the resistance per 
unit length R. 

If the line really were made up of so many lumped parameter elements that it 
could be described by continuum equations, G would be the conductance per unit 
length of the lossy capacitors (Sec. 7.9) and R would be the resistance per unit 
length of the inductors. More often, G and R (like L and C) are either equivalent 
to or a model of a physical system. Examples are discussed in the next two sections. 
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The steps leading to the generalized transmission line equations are suggested 
by Eqs. 14.1.1 through 14.1.5. In requiring that the currents at the terminal on the 
right sum to zero, there is now an additional current through the shunt conductance. 
In the limit where Δz 0,→ 

∂I ∂V 
= 

∂t 
− GV−C 

∂z (1) 

Similarly, in summing the voltages around the loop, there is now a voltage drop 
across the series resistance. Again, in the limit Δz 0,→ 

∂V ∂I 
= −L

∂t 
− RI 

∂z (2) 

As should be expected, with the introduction of dissipation represented by G 
and R, V (z, t) and I(z, t) no longer take the form of waves propagating without 
distortion. That is, substitution shows that solutions no longer take the form of 
(14.4.1)–(14.4.3). As a result, we would have to work considerably harder than in 
Secs. 14.3–14.4 to describe transients on lossy transmission lines. However, although 
somewhat more involved then before, the sinusoidal steady state response follows 
from the approach illustrated in Secs. 14.5–14.6. 

With the objective of describing the sinusoidal steady state, complex ampli­
tude representations of V and I (14.5.2) are substituted into (1) and (2) to give 

dÎ  
= −(jωC + G)V̂  (3)

dz 

dV̂
= −(jωL + R)Î  (4)

dz 

To obtain an expression for the voltage alone, (3) is substituted into the derivative 
of (4). 

d2V̂  
− (jωL + R)(jωC + G)V̂  = 0 (5)

dz2 

With the voltage found from this equation, the current follows from (4). 

Î = 
−1 dV̂  

(6)
R + jωL dz 

Albeit complex, the coefficient in (5) is constant, so it is again appropriate to look 
for exponential solutions. Using the convention established in Sec. 14.5, we look for 
solutions exp(−jkz). Substitution into (5) then shows that 

k2 = −(jωL + R)(jωC + G) (7) 

So as to be clear in distinguishing the two roots of this dispersion equation, we 
define β as having a positive real part and write the roots as 
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Fig. 14.7.2 Roots of (7) as functions of normalized ω. The real and imag­
inary parts, respectively, of the complex wave number β relate to the phase 
velocity and rate of decay of the wave, as shown. 

k = β ≡ 
�

(ω2LC − RG)− jω(RC + LG); Re β > 0±β; (8) 

These roots, k = kr + jki, are pictured as a function of frequency in Fig. 14.7.2. 
From (7), k2 is in the lower half­plane. It follows that the value of k having a 
positive real part (defined as β) has a negative imaginary part. 

These definitions take on physical significance when the solutions to (5) are 
written as 

V̂ = V̂  
+e−jβz + V̂  −ejβz (9) 

because it is then clear that we have defined β so that V+ represents a wave with 
points of constant phase propagating in the +z direction. Note that because βi is 
negative, this wave decays in the +z direction, as shown in Fig. 14.7.2. Similarly, 
V̂  is the complex amplitude at z = 0 of a wave that decays in the −z direction−
and has phases propagating in the −z direction.10 

In terms of the two coefficients V̂  , the current expression follows from sub­
stituting (9) into (6) 

±

Î =	 
1

(V̂  
+e−jβz − V̂  −ejβz) (10)

Zo 

where the complex characteristic impedance is now defined as 

10 It is important not to generalize from this finding. The direction of propagation of points 
of constant phase (the phase propagation direction, PPG, is not, in general, indicative of the 
directions of propagation of the wave; i.e., a source positioned on an infinite line at z = 0 does 
not necessarily cause waves with positive PPG to go away from the source in the +z direction 
and with negative PPG to go away in the −z direction. The direction of propagation is usually 
determined by the direction of the group velocity (GV). In the presence of loss, waves with positive 
GV decay in the +z­direction, with negative GV in the −z­direction. 



Sec. 14.7 Equivalents and Models 47 

Fig. 14.7.3 Open circuit lossy line. 

(R + jωL)
Zo ≡ 

jβ (11) 

Comparison of (9) and (10) with (14.5.5) and (14.5.6) shows that the impedance 
and reflection coefficient descriptions are applicable, provided we generalize β and 
Zo to be the complex numbers given by (8) and (11). That these quantities are now 
complex is an inconvenience11 and a warning that some ideas established for the 
ideal line need to be reexamined. For example, reasoning as in Sec. 14.5 shows that 
a pure resistance can no longer be used to match the line. Further, it is not possible 
to match the line at all frequencies with any finite number of lumped elements. 

Example 14.7.1. Signal Attenuation on an Open Circuit Line 

The lossy transmission line shown in Fig. 14.7.3 is open at the right and driven by 
a voltage source of complex amplitude Vg at the left. What is the voltage measured 
at the open circuit? 

The open circuit at z = 0 requires that I(0) = 0, and hence [from (10)] that 
V+ = V−. Thus, the voltage, as given by (9), is 

ˆ (e−jβz jβz

V̂ = V̂  
+(e−jβz + ejβz) = Vg 

(ejβl +

+ 

e−
e

jβl)

) 
(12) 

Here we have adjusted the coefficient V̂  
+ so that the voltage is V̂  

g at the left end, 
where the voltage source is connected. As a function of time, the voltage distribution 
is therefore 

V (z, t) = ReV̂  
g 
(e−jβz + ejβz) 

ejωt (13)
(ejβl e−jβl)+ 

Much of the complicated phenomenon represented by this simple expression is en­
capsulated in the complex wave number. To illustrate, consider the voltage measured 
at z = 0, which from (13) has the complex amplitude 

V̂ (0) = 
V̂  

g 
(14) 

cos βl 

If a calculator or computer is not available for evaluating the cosine of a complex 
number, then we can use the double­angle identity to write 

cos βl = cos(βrl + jβil) = cos βrl cosh βil − j sin βrl sinh βil (15) 

11 Circumvented by having a calculator programmed to carry out operations on complex 
variables. 
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Fig. 14.7.4 Frequency response for open circuit lossy line. 

For the case where all of the loss is due to the shunt conductance (R = 0), the 
frequency response is illustrated in Fig. 14.7.4. The four responses shown are for 
increasing amounts of loss, perhaps introduced by increasing G. 

At very low frequencies, the output voltage simply follows the driving voltage. 
This is because we have considered the case where R = 0 and with the frequency 
so low that the inductor has no effect, the output terminals are connected to the 
source through a negligible impedance. 

As the frequency is raised, consider first the response with no loss (l/l∗ = 0). 
As the frequency approaches that required to make the line a quarter­wavelength 
long, the impedance of the line at the generator approaches zero and the current 
approaches infinity. This resonance condition results in the infinite response at z = 0. 
(As the frequency is raised further, these resonance conditions occur each time the 
frequency is such that the line has a length equal to a quarter­wavelength plus a 
multiple of a half­wavelength.) With the addition of a slight amount of loss (l/l∗ = 
0.1), the response is finite even under the resonance conditions. Further increasing 
the loss (l/l∗ = 1) results in a response with a dull peak at the resonance point. Still 
larger losses (l/l∗ = 10) bring in skin effect and monotonic attenuation of the voltage 
over the length of the line. Phenomena underlying this response are discussed in the 
next section. 

14.8 UNIFORM AND TEM WAVES IN OHMIC 
CONDUCTORS (R = 0) 

Transverse electromagnetic (TEM) waves that propagate in the z direction and 
are polarized in the x direction have electric and magnetic fields 

E = Ex(z, t)ix; H = Hy(z, t)iy (1) 

We consider here how waves having this form propagate through a material with 
not only uniform permittivity � and permeability µ (as in Secs. 14.1–14.6) but now 
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Fig. 14.8.1 (a) TEM fields in uniform lossy material. (b) Perfectly conduct­
ing electrodes with material having uniform σ as well as � and µ between. With 
fringing field ignored, fields in the material have the transverse character of 
(a). 

a uniform conductivity σ as well. As suggested by Fig. 14.8.1a, these fields might 
constitute plane waves in “infinite” media. They might also be the fields between 
the perfectly conducting planar electrodes of Fig. 14.8.1b. Our first objective in 
this section is to see that both the TEM fields in “infinite media” and on the “strip 
line” are described exactly by the distributed parameter model of Sec. 14.7 with 
R = 0. The ohmic loss introduces a conductance per unit length G. 

With the introduction of fields having the form of (1) into the laws of Faraday 
and Ampère, only two of the six equations are not automatically satisfied. These are 
the x component of Ampère’s law with Ohm’s law used to express the conduction 
current 

∂Hy ∂�Ex − 
∂z 

= σEx + 
∂t 

(2) 

and the y component of Faraday’s law 

∂Ex ∂µHy 

∂z 
= − 

∂t 
(3) 

Except for the conduction current, the first term on the right in (2), these are 
the same equations as featured in Secs. 14.1­14.6. They become the plane parallel 
transmission­line equations if (2) is multiplied by the plate width w and (3) is 
multiplied by −a, where a is the plate spacing 

∂I ∂V 
= −GV − C (4)

∂z ∂t 

∂V ∂I 
= −L (5)

∂z ∂t 

where the current I and voltage V are 

I ≡ Kzw = −Hyw; V ≡ −Exa (6) 

and 
G = 

σw 
; C = 

�w 
; L = 

µa 
(7) 

a a w 

http:14.8.1a
http:14.8.1b
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These are the same equations found for the distributed parameter line of Sec. 14.7 
with R = 0. Thus, whether representing a plane wave in a uniform lossy material or 
the transmission­line filled with such a uniform medium, the distributed parameter 
model is “exact.” 

From the point of view taken in Sec. 14.2, the geometry of the parallel con­
ductors in the “strip line” is a special case. In the problems, the derivation of the 
transmission line equations given in Sec. 14.2 is generalized to include the effects 
of a uniformly conducting material in the space between the perfect conductors. 
Regardless of their cross­sectional geometry, so long as the pair of conductors are 
perfectly conducting and the material between them is uniform, the fields are ex­
actly TEM and exactly represented by the distributed parameter model. Not only 
is 
√

LC = 
√

µ� (8.6.14), but so also is C/G = �/σ (7.6.4), regardless of the cross­
sectional geometry. 

We now suppose that sinusoidal steady state conditions have been established. 
Then the voltage and current are represented by (14.7.9) and (14.7.10) with the 
wave number and characteristic impedance given by (14.7.8) and (14.7.11) with 
R = 0 and L,C, and G given by (7). 

β = 
�

ω2µ� − jωµσ	 (8) 

Zo =	 
ωµa	

(9)
wβ 

Example 14.8.1.	 TEM Fields in a Lossy Material between Plane Parallel 
Plates Terminated in an Open Circuit 

With an “open circuit” at z = 0 and driven by a voltage source at z = −l, 
the parallel plate configuration of Fig. 14.7.1b is equivalent to the open circuit 
transmission line of Example 14.7.1. With the understanding that β is now given by 
(8), it follows from (14.7.13) that 

[e−jβl(z/l) + ejβl(z/l)] jωt V = Re V̂  
g 

ejβl e−jβl 
e	 (10)

+ 

Using the values of V̂  
+ = V̂  − implied by (14.7.12) in (14.7.10) results in the current 

distribution 
ˆ [e−jβl(z/l) jβl(z/l)

I = Re 
Z

Vg

o ejβl + 

− 
e−
e 

jβl 

] 
ejωt (11) 

where Zo is evaluated using (9). 
The voltage and current have been specified as a superposition of forward and 

backward waves, which, respectively, decay in the directions in which their phases 
propagate. The distribution of the square of the magnitude of V (of Ex) predicted 
by (10) (and hence of the time average dissipation density or time average electric 
energy density) is illustrated by Fig. 14.8.2. In this case, the electrical dissipation is 
small enough so that a standing wave pattern is evident. The wave propagating and 
decaying to the right interferes with the wave propagating and decaying to the left 
in such a way that the boundary condition at z = 0 is satisfied. In the neighborhood 
of z = 0, where the wave traveling to the left has not yet decayed appreciably, the 
two waves interfere to form the familiar standing wave pattern. However, at the left, 
the wave traveling to the left has largely decayed and so interferes with the wave 
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Fig. 14.8.2 Square of the magnitude of V̂  as a function of position z for 
a slightly damped electromagnetic wave. ω = 12 × 1010 rad/s, l = 0.1 m, 
� = �o, µ = µo, and σ = 0.1 S/m, so ω�/σ = ωτe = 10.6 and l∗ = 0.0265 m. 

traveling to the right to produce no more than a ripple in the total field magnitude. 
Further insights concerning these field distributions will come from considering some 
limits of the dispersion equation discussed next. 

The first and second terms under the radical in the dispersion equation, (8), 
represent the displacement and conduction current densities, respectively. The rela­
tive importance of these current densities is determined by the relationship between 
the frequency and the reciprocal charge relaxation time. This is evident if (8) is 
written as 

β = ω
√

µ� 

�
1− 

ωτ

j 

e 
(12) 

where τe ≡ �/σ is the charge relaxation time. 

Displacement Current Much Greater Than Conduction Current:. 
ωτe � 1. In this limit, the waves are essentially electromagnetic, with some damping 
due to the finite conductivity. The second term under the radical in (12) is small 
compared to the first. Thus, the expression can be given a convenient approximation 
by using the first two terms in a binomial expansion.12 

β ≈ ω
√

µ� − 
j 

(13)
2l∗ 

The natural distance over which the electromagnetic wave decays by 1/e is 2l∗, 
where the characteristic length l∗ is defined in (13) as 

l∗ ≡ 
σ 

1 �
�/µ 

(14) 

12 With x ≡ −j/ωτe, (1 + x)1/2 ≈ (1 + 1 x)
2 
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Note that this length is the reciprocal of the intrinsic impedance conductivity prod­
uct. With τe = C/G, the dependence of β on ω given by (13) approximates the 
high­frequency range of Fig. 14.7.2. 

In the case of Fig. 14.8.2, ω�/σ = 10.6, so that the conditions for this low 
loss limit are met. Because the attenuation length for the electric field is 2l∗, the 
attenuation length for the square of the magnitude of Ex is l∗, as shown in the 
figure, and the length of the system l is several times larger than the characteristic 
length l∗. 

Conduction Current Much Greater Than Displacement Current: 
ωτe � 1. In this limit, the effects of displacement current are ignored altogether 
so that the first term under the radical is neglected compared to the second, and 
the dispersion equation is approximated by 

β ≈ 
�
−jωµσ =	 

(1 − j)	
(15)

δ 

Here, δ ≡ 
�

2/ωµσ is the skin depth, familiar from Sec. 10.7.13 Thus, in this regime, 
the decay length is δ while the wavelength is 2πδ. The dependence of β on ω given 
by (15) approximates β in the low­frequency range of Fig. 14.7.2. 

Example 14.8.2.	 Overview of TEM Fields in Open Circuit Transmission 
Line Filled with Lossy Material 

Given the properties and dimensions of a simple system and a characteristic time 
for the dynamics, what are its dominant electromagnetic features? In this example, 
with the voltage source driving the system of Fig. 14.8.1b (so that the characteristic 
time is 1/ω), the system could be essentially a: 

(1) resistor, in which case Ex would be uniform (Sec. 7.2) 

(2) lossy capacitor, also with an essentially uniform Ex (Sec. 7.9) 

(3) distribution of inductors and resistors with the distribution of Ex governed by 
magnetic diffusion (Sec. 10.7) 

(4) lossy transmission line supporting slightly damped electromagnetic waves 

With the objective of having a summary way of picturing these possibilities, 
we recognize that the field distributions [(10) and (11)] are exponential functions 
of βl(z/l). Thus, βl encapsulates the field distribution. In terms of dimensionless 
parameters, ωτe (representing the frequency) and l/l∗ (representing the length), we 
write (12) as 

l 
βl = 

�
ωτe(ωτe − j) (16)

l∗ 

and conclude that the field distributions are governed by two parameters, the length 
of the system relative to the characteristic length (l/l∗) and the frequency relative to 

13 As defined by (10.7.2), the product of ω and the magnetic diffusion time based on this 
length, µσδ2, is equal to 2. 
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Fig. 14.8.3 In the length­frequency plane, regimes for TEM fields 
in material of uniform �, µ, and σ between perfect conductors having 

length l (Fig. 14.8.1a). The length is normalized to l∗ = (σ
�

µ/�)−1 

and the angular frequency to τe = �/σ. 

the reciprocal charge relaxation time (ωτe). The logs of these variables are the coordi­
nates in Fig. 14.8.3. The origin of the plot is at the length equal to the characteristic 
length, l∗, and the angular frequency equal to the reciprocal charge relaxation time, 
(�/σ)−1. These coordinates provide for a systematic overview of the electromagnetic 
regimes. 

The approximate expressions for the wave number given by (13) and (15), 
respectively, apply to the right and left of the vertical axis, as indicated at the 
top of Fig. 14.8.3. It is tempting to jump to the conclusion that there are simply 
two regimes, the one to the right where the fields are composed of slightly damped 
electromagnetic waves, and the one to the left involving “skin­effect.” However, this 
is not the whole story, because it does not take into account the length of the system. 
It is really βl, and not β alone, that determines the field distribution between the 
plates. 

Whether representing a slightly damped electromagnetic wave or magnetic 
diffusion (skin effect), a small value of βl means that there is little variation of the 
voltage over the length of the system. In the cases where |βl | � 1, the exponentials 
expressing the z dependence can be approximated by the first terms in a Taylor’s 
series. Thus, in this regime, the voltage (Ex) follows from (10) as being essentially 
uniform 

V ≈ Re V̂  
gejωt (17) 

and the current (Hy) given by (11) takes on an esssentially linear distribution. 

V̂  
g z jωt wσ jωt I ≈ 

Zo 
(−jβl)

l
e = Re − V̂  

g 
a 

(1 + jωτe)ze (18) 
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The regime in Fig. 14.8.3 where this limit pertains, follows from the dispersion 
equation, (16). 

|βl | = 
l

l 
∗ 
(ωτe)

1/2[(ωτe)
2 + 1]1/4 � 1 (19) 

The line along which βl = 1 can be conveniently pictured by making this expression 
an equality, solving for l/l∗ and taking the log. 

log 
� 

l

l 
∗ 

� 
= − 

1

2 
log(ωτe)− 

1

4 
log[(ωτe)

2 + 1] (20) 

This makes it clear that for large values of ωτe, the line of demarcation has a slope of 
−1, while for small values, its slope is −1/2. This line is shown in Fig. 14.8.3. In the 
region well to the southwest of this line, the electric field distribution is essentially 
uniform. The circuits drawn on the respective regions in Fig. 14.8.3 picture the four 
limiting cases. 

In terms of this figure, picture what happens as the frequency is raised for 
systems that are larger than the matching length, l � l∗. In this case, raising the 
frequency follows a trajectory in the upper half­plane from the left to the right. With 
the frequency very low, the voltage and current distributions are approximated by 
(17) and (18). Because ωτe � 1, it follows from the latter equation that the system 
is essentially a resistor. As the line βl = 1 is approached, ωτe is still small, so that 
effects of the displacement current are negligible. That the variation of the fields that 
comes into play is due to magnetic diffusion is clear from the appropriate limiting 
expression for β, (15). Indeed, the line βl = 1 in this quadrant approaches the line 
along which the angular frequency is equal to the reciprocal magnetic diffusion time 
based on the length l, 

ωτm = ωµσl2 = 1 (21) 

as can be seen by rewriting this expression as 

log 
� l � 

= − 
1

2 
log(ωτe) (22)

l∗ 

In the neighborhood of this line, in the second quadrant where the magnetic diffusion 
line is shown (the distributed transmission line of Sec. 14.7 with R = 0 and C = 0), 
the system is magnetoquasistatic (MQS). 

As the frequency is raised still further, the displacement current begins to 
come into effect. The wave number makes a transition from representing the heavily 
damped waves of magnetic diffusion to the slightly damped electromagnetic waves 
of the first quadrant. 

Consider the contrasting nature of the system with its length much less than 
the characteristic length, l � l∗, as the frequency is raised. 

As before, to the far left of the figure, the electric field is uniform and the 
current is that characteristic of a resistor. This regime, like that just above in the 
second quadrant, is one of quasi­steady conduction. In this regime, the fields are 
described by the steady conduction approximation which was the subject of the 
first half of Chap. 7. 

By contrast with the situation in the upper half­plane, the fields now remain 
uniform until the angular frequency passes well beyond the reciprocal charge re­
laxation time, the vertical axis. Note that in this range, the voltage and current 
are those for a distribution of conductances shunting perfectly conducting plates, as 
shown in Fig. 14.8.3. Thus, all of the conductances and capacitances can be lumped 
together. Up to this frequency range, the system is electroquasistatic (EQS). 
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Fig. 14.8.4 (a) Strip line, used for microwave transmission on circuit boards
 
and chips. (b) “Twin lead” commonly used for TV antennae.
 

As the frequency is raised still further, effects of magnetic induction come into 
play and conspire with the displacement current to create field distributions typical 
of electromagnetic waves. This happens in the range where βl = 1, because in this | |
quadrant, the angular frequency is equal to the electromagnetic delay time based 
on the length of the system, 

ωτem ≡ ω
√

µ�l = 1 (23) 

as can be seen by writing this expression as 

log 
� l 
l∗ 

� 
= − log(ωτe) (24) 

In this frequency range and further to the right, the field distributions are those for 
slightly damped electromagnetic waves. 

In summary, far to the left in Fig. 14.8.3, quasi­steady conduction prevails. The 
dynamic process that first comes into play as the frequency is raised is determined by 
the length of the system relative to the characteristic length. Systems large enough 
to be in the upper half­plane are in the MQS regime. Those small enough to be in 
the lower half­plane are in the EQS regime. 

The distributed parameter transmission line is often used to represent the 
evolution of fields on pairs of conductors surrounded by inhomogeneous dielectrics. 
Practical examples are shown in Fig. 14.8.4, where the dielectric is piece­wise uni­
form. In these cases, even if the conductors can be represented as perfectly con­
ducting, so that R = 0, the fields between the conductors are not exactly TEM. 
Completely transverse waves would propagate with different velocities in the two 
dielectric regions, and it would not be possible to match boundary conditions at 
the interfaces. Nevertheless, with C and G, respectively, taken as being the EQS 
capacitance and conductance per unit length of the open circuit conductors, and L 
the MQS inductance per unit length of the short circuit conductors, the distributed 
parameter line of Sec. 14.7 can provide an excellent model. 

In cases where the material between the conductors is inhomogeneous, the 
distributed parameter model provides a good approximation of the principal mode 
of propagation, provided that the frequency is low enough to insure that the wave­
length in the z direction is long compared to the cross­sectional dimensions. For 



56 One­Dimensional Wave Dynamics Chapter 14 

example, it is shown in the problems that there is a z­directed E in the strip line 
of Fig. 14.8.4a, so the fields are not TEM. However, if one neglects fringing fields 
one can show that Ez is small compared to the transverse fields if 

b(βa)
����

�a 

����1− � 1 (25) 
a + b �b 

Thus, the distributed parameter model is exact if the dielectric is uniform (�a = �b), 
and approximately correct if βa = 2πa/λ is small enough to fulfill the inequality. 

14.9 QUASI­ONE­DIMENSIONAL MODELS (G = 0) 

The transmission line model of Sec. 14.7 can also represent the losses in the parallel 
conductors. With the conductors of finite conductivity, currents in the z direction 
cause a component of E in that direction. Because the tangential E is continuous 
at the surfaces of the conductors, this axial electric field extends into the insulating 
region between the conductors as well. We conclude that the fields are no longer 
exactly TEM when the conductor losses are finite. 

Under what circumstances can the series distributed resistance R be used to 
represent the conductor losses? We will find that the conductivity must be suffi­
ciently low so that the skin depth is large compared to the conductor thickness. 
One might expect that this model applies only to the case of large R. Interestingly, 
we find that this “constant resistance” model can remain valid even under circum­
stances where line losses are small, in the sense that the decay of a wave within a 
distance of the order of a wavelength is small. This occurs when |ωL| � R, i.e., 
the effect of the distributed inductance is much larger than that of the series re­
sistance. In the opposite extreme, where the effect of the series resistance is large 
compared to that of the inductance, the model represents EQS charge diffusion. A 
demonstration is used to exemplify physical situations modeled by this distributed 
R­C line. These include solid state electronic devices and physiological systems. 

We conclude this section with a model that is appropriate if the skin depth is 
much less than the conductor thickness. By restricting the model to the sinusoidal 
steady state, the series distributed resistance R can be replaced by a “frequency 
dependent” resistance. This approximate model is typical of those used for repre­
senting losses in metallic conductors at radio frequencies and above. 

We assume conductors in which the conduction current dominates the dis­
placement current. In the sinusoidal steady state, this is true if 

ω� ≡ ωτe � 1 (1)
σ 

Thus, as the frequency is raised, the distribution of current density in the conduc­
tors is at first determined by quasi­stationary conduction (first half of Chap. 7) and 
then by the magnetic diffusion processes discussed in Secs. 10.3­10.7. That is, with 
the frequency low enough so that magnetic diffusion is essentially instantaneous, 
the current density is uniformly distributed over the conductor cross­sections. Intu­
itively, we should expect that the constant resistance R only represents conductor 

http:14.8.4a
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Fig. 14.9.1 (a) Faraday’s integral law and, (b) Ampère’s integral law applied 
to an incremental length Δz of line. 

losses at frequencies sufficiently low so that the distribution of current density in 
the conductors does not depend on rates of change. 

The equations used to describe the incremental circuit in Sec. 14.7 express the 
integral laws of Faraday and Ampère for incremental lengths of the transmission 
line. The “current loop equation” for loop C1 in the circuit of Fig. 14.9.1a can be 
derived by applying Faraday’s law to the surface S1 enclosed by the contour C1, 
also shown in that figure. 

� b 

E ds +
� d 

E ds + Ez

�� Δz − Ez

�� Δz = 
∂ 

� 
µH da (2)

(1) (2)
a 

· 
c 

· − 
∂t S1 

· 

With the line integrals between conductors defined as the voltages and the 
flux through the surface as ΔzLI, this expression becomes 

∂ 
�

V (z + Δz)− V (z) + Ez

��
(1) 

Δz − Ez

��
(2) 

Δz = −
∂t 

µH da (3) 
S1 

· 

and in the limit where Δz 0, we obtain → 

∂V ∂I 

∂z 
= −L

∂t 
− Ez

��
(1) 

+ Ez

��
(2) 

(4) 
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The field equivalent of charge conservation for the circuit node enclosed by 
the surface S2 in Fig. 14.9.1b is Ampère’s integral law applied to the surface S2 

enclosed by the contour C2, also shown in that figure. Note that C2 almost encircles 
one of the conductors with oppositely directed adjacent segments completing the 
z­directed parts of the contour. For a surface S2 of incremental length Δz, Ampère’s 
integral law requires that 

� b � d ∂ 
�

H ds + H ds = �E da (5) 
a 

· 
c 

· 
∂t S2 

· 

where the contributions from the oppositely directed legs in the z direction cancel. 
Ampère’s integral law requires that the integral of H ds on the contours essentially · 
surrounding the conductor be the enclosed current I. Gauss’ integral law requires 
that the surface integral of �E da be equal to ΔzCV . Thus, (5) becomes · 

∂V −I(z + Δz) + I(z) = CΔz (6)
∂t 

and in the limit, the second transmission line equation. 

∂I ∂V 
= −C (7)

∂z ∂t 

If the current density is uniformly distributed over the cross­sectional areas 
A1 and A2 of the respective conductors, it follows that the current densities are 
related to the total current by 

I = A1Jz1 = −A2Jz2 (8) 

In each conductor, Jz = σEz, so the axial electric fields required to complete (4) 
are related to I by 

Ez1 = 
Jz1 = 

I 
; Ez2 = 

Jz2 = 
I 

(9)
σ1 σ1A1 σ1 

− 
σ2A2 

and indeed, the voltage equation is the same as for the distributed line, 

∂V ∂I 
= −L

∂t 
− RI (10)

∂z 

where the resistance per unit length has been found to be 

1 1 
R ≡ 

σ1A1 
+ 

σ2A2 
(11) 

Example 14.9.1. Low­Frequency Losses on Parallel Plate Line 

In the parallel plate transmission line shown in Fig. 14.9.2, the conductor thickness 
is b and the cross­sectional areas are A1 = A2 = bw. It follows from (11) that the 
resistance is 

2 
R = (12)

bwσ 
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Fig. 14.9.2 Parallel plate transmission line with conductor thickness 
b that is small compared to skin depth. 

Under the assumption that the conductor thickness, b, is much less than the 
plate spacing,14 a, the inductance per unit length is the same as found in Example 
14.1.1, as is also the capacitance per unit length. 

L = 
aµ

; C = 
w� 

(13) 
w a 

As the frequency is raised, the current distribution over the cross­sections of 
the conductors becomes nonuniform when the skin depth δ (10.7.5) gets to be on 
the order of the plate thickness. Thus, for the model to be valid using the resistance 
given by (12), � 

2 2 
δ ≡ 

ωµσ 
� b ⇒ ωµσb � 

b 
(14) 

With this inequality we require that the effects of magnetic induction in determining 
the distribution of current in the conductors be negligible. Under what conditions are 
we justified in ignoring this effect of magnetic induction but nevertheless keeping 
that represented by the distributed inductance? Put another way, we ask if the 
inductive reactance jωL can be large compared to the resistance R and still satisfy 
the condition of (14). 

2 
ωL � R ⇒ 

a 
� ωµσb (15) 

Combined, these last two conditions require that 

b 

a 
� 1 (16) 

We conclude that as long as the conductor thicknesses are small compared to their 
spacing, R represents the loss over the full frequency range from dc to the frequency 
at which the current in the conductors ceases to be uniformly distributed. This is 
true because the time constant τm ≡ L/R = µσab that determines the frequency at 
which the resistance is equal to the inductive reactance15 is much larger than the 
magnetic diffusion time µσb2 based on the thickness of the conductors. 

14 So that the magnetic energy stored in the plates themselves is negligible compared to that 
between the plates. 

15 Familiar from Sec. 10.3. 
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Fig. 14.9.3 Charge diffusion or R­C transmission line. 

Fig. 14.9.4 Charge diffusion line. 

Charge Diffusion Transmission Line. If the resistance is large enough so that 
the inductance has little effect, the lossy transmission line becomes an EQS model. 
The line is simply composed of the series resistance shunted by the distributed 
capacitance of Fig. 14.9.3. To see that the voltage (and hence charge) and current 
on this line are governed by the diffusion equation, (10) is solved for I, with L set 
equal to zero, 

1 ∂V 
I = − 

R ∂z 
(17) 

and that expression substituted into the z derivative of (7). 

∂2V ∂V 
= RC (18)

∂z2 ∂t 

By contrast with the charge relaxation process undergone by charge in a 
uniform conductor, the charge in this heterogeneous system diffuses. The distributed 
R­C line is used to model EQS processes that range from those found in neural 
conduction to relaxation in semiconductors. We can either view the solution of (17) 
and (18) as a special case from Sec. 14.7 or exploit the complete analogy to the 
magnetic diffusion processes described in Secs. 10.6 and 10.7. 

Demonstration 14.9.1. Charge Diffusion Line 

A simple demonstration of the charge diffusion line is shown in Fig. 14.9.4. A thin 
insulating sheet is sandwiched between a resistive sheet on top (the same Teledeltos 
paper used in Demonstration 7.6.2) and a metal plate on the bottom. 
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With sinusoidal steady state conditions established by means of a voltage 
source at z = −l and a short circuit at the right, the voltage distribution is the 
analog of that described for magnetic diffusion in Example 10.7.1. The “skin depth” 
for the charge diffusion process is given by (10.7.5) with µσ RC.→ 

� 
2 

δ = (19)
ωRC 

With this the new definition of δ, the magnitude of the voltage measured by means of 
the high­impedance voltmeter can be compared to the theory, plotted in Fig. 10.7.2. 
Typical values are � = 3.5�o, bσ = 4.5×10−4 S (where bσ is the surface conductivity 
of the conducting sheet), and a = 25 µm, in which case RC = �/(bσ)a = 2.7× 10−3 

sec/m2 and δ � 0.5 m at a frequency of 500 Hz. 

In the previous example, we found that the transmission line model is appli­
cable provided that the conductor thicknesses were small compared to their spac­
ing and to the skin­depth. That the model could be self­consistent from dc up 
to frequencies at which the inductive impedance dominates resistance is in part 
attributable to the plane parallel geometry. 

To see this, consider a transmission line composed of a circular cylindrical 
conductor and a thin sheet, as shown in Fig. 8.6.7. In Demonstration 8.6.1, it was 
found that the condition n B = 0 on the conductor surfaces is met at frequencies · 
for which the skin depth is far greater than the thickness of the thin sheet conduc­
tor. The examples of Sec. 10.4 show why this is possible. The effective magnetic 
diffusion time that determines the frequency at which currents in the conducting 
sheet make a transition from a quasi­stationary distribution to one consistent with 
n B = 0 is µσΔl, where Δ is the thickness of the conductor and l is the distance · 
between conductors. This is also the L/R time constant governing the transition 
from resistance to inductance domination in the distributed electrodynamic model. 
We conclude that, even though the current may be essentially uniform over the 
conductor cross section, as the frequency changes from dc to the inductance domi­
nated range, the current can shift its distribution over the conductor surface. Thus, 
in non­planar geometries, the constant R model can be inadequate even over a 
frequency range where the skin depth is large compared to the conductor thickness. 

Skin Depth Small Compared to All Dimensions of Interest. In transmission 
lines used at radio frequencies and higher, it is usual for the skin depth to be much 
less than the conductor thickness, δ � b. In the case of Fig. 14.9.2, 2 � ωµσb2 . 
Provided that a > b, it follows from (15) that the inductive reactance dominates 
resistance. Although the line is then very nearly ideal, it is often long enough so 
that losses cannot be neglected. We therefore conclude this section by developing a 
model, restricted to the sinusoidal steady state, that accounts for losses when the 
skin depth is small compared to all dimensions of interest. 

In this case, the axial conduction currents are confined to within a few skin 
depths of the conductor surfaces. Within a few skin depths, the tangential magnetic 
field decays from its value at the conductor surface to zero. Because the magnetic 
field decays so rapidly along a coordinate perpendicular to a given point on the 
conductor surface, the effects on the magnetic diffusion of spatial variations along 
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Fig. 14.9.5 Parallel plate transmission line with conductors that are 
thick compared to the skin depth. 

the conductor surface are negligible. For this reason, fields in the conductors can be 
approximated by the one­dimensional magnetic diffusion process described in Sec. 
10.7. The following example illustrates this concept. 

Example 14.9.2. High­Frequency Losses on Parallel Plate Line 

The parallel plate transmission line is shown again in Fig. 14.9.5, this time with the 
axial current distribution in the conductors in thin regions on the inner surfaces of 
the conductors rather than uniform. In the conductors, the displacement current is 
negligible, so that the magnetic field is governed by the magnetic diffusion equation, 
(10.5.8). In the sinusoidal steady state, the y component of this equation requires 
that 

1 
� 

∂2Ĥy 
+ 

∂2Ĥ 
y 

� 
= −jωĤy (20)

µσ ∂x2 ∂z2 

The first term on the left is of the order of Hy/(δ)2, while the second is of the 
order of Hyk2 = Hy(2π/λ)2 [where λ is the wavelength in the axial (z) direction]. 
Thus, the derivative with respect to z can be ignored compared to that with respect 
to x, provided that 

1 2 λ 

δ2 
� k ⇒ δ � 

2π 
(21) 

In this case, (20) becomes the one­dimensional magnetic diffusion equation studied 
in Sec. 10.7. In the lower conductor, the magnetic field diffuses in the −x direction, 
so the appropriate solution to (20) is 

Ĥ 
y = Ĥ 

oe
(1+j)x/δ (22) 

where Ho is the magnetic field intensity at the surface of the lower conductor [see 
(10.7.8)]. Ampère’s law gives the current density associated with this field distribu­
tion 

Ĵ  
z = 

∂Ĥ 
y 

= 
Ĥ 

o(1 + j) 
e(1+j)x/δ (23)

∂x δ 

It follows from either integrating this expression over the cross­section of the lower 
conductor or appealing to Ampère’s integral law that the the total current in the 
lower conductor is 

0 

ˆ 
� 

ˆ ˆI = w Jzdx = wHo (24) 
−∞ 
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The axial electric field intensity at the surface of the lower conductor can now be 
written in terms of this total current by first using Ohm’s law and the current density 
of (23) evaluated at the surface and then using (24) to express this field in terms of 
the total current. 

Ĵ  
z(0) Î (1 + j)

Ê 
z(0) = = (25)

σ w σδ 

A similar derivation gives an axial electric field at the surface of the upper conductor 
that is the negative of this result. Thus, we can complete the sinusoidal steady state 
version of the voltage transmission­line equation, (4). 

ˆ 

dz 
= − jωL + 

wσδ 
I (26) 

dV
� 

2(1 + j)
�
ˆ 

Because the magnetic energy stored within the conductor is usually negligible com­
pared to that in the region between conductors, 

2 
ωL � (27)

wσδ 

and (26) becomes the first of the two sinusoidal steady state transmission line equa­
tions. 

dV̂ 

dz 
= −

�
jωL + 

2 

wσδ 

�
Î (28) 

The second follows directly from (7). 

dÎ 

dz 
= −jωCV̂ (29) 

Comparison of these expressions with those describing the line operating with the 
conductor thickness much less than the skin depth, (10) and (7), shows that here 
there is an equivalent distributed resistance. 

2 1 
� 

2ωµ 
Req = = (30)

wσδ w σ 

(Here, µ is the permeability of the conductor, not of the region between conduc­
tors.) Note that this is the series dc resistance of conductors having width w and 
thickness δ. Because δ is inversely proportional to the square root of the frequency, 
this equivalent resistance increases with the square root of the frequency. 

14.10 SUMMARY 

The theme in this chapter has been the transmission line. It has been used 
to represent the evolution of electromagnetic fields through structures generally 
comprised of a pair of “conductors” embedded in a less conducting, and often 
highly insulating, medium. We have confined ourselves to systems that are uniform 
in the direction of evolution, the z direction. 
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If the conductors can be regarded as perfectly conducting, and the medium in 
which they are embedded as having uniform permeability, permittivity, and conduc­
tivity, the fields are exactly TEM, regardless of the cross­sectional geometry. The 
relevant laws and distributed parameter model are summarized in Table 14.10.1. 
Identification of variables as illustrated in the table make the transmission line ex­
actly equivalent to a plane wave. Whether L,C, or G represent fields propagating 
along the conductors or a plane wave, LC = µ� and C/G = �/σ. 

Much of this chapter is devoted to describing the limit where the conduc­
tors are not only perfect, but the medium has negligible conductivity (G = 0). 
Transients on this “ideal” transmission line are described by using the relations 
summarized in Table 14.10.2. The voltage and current at any position and time 
(z, t) are superpositions of wave components that propagate with the velocity c. 
These forward and backward wave components are, respectively, invariant on lines 
in the z−t plane of constant α and β. Along those lines originating on initial condi­
tions, the wave components are as summarized in the second row of the table. The 
last two rows summarize how the reflected wave component is determined from the 
incident component at two common terminations. 

A summary of the relations used to describe the ideal line in the sinusoidal 
steady state is given in Table 14.10.3. Because it has a magnitude that is constant 
and a phase that increases linearly with z, the evolution of voltage and current and 
of their ratio, the impedance Z(z), is conveniently pictured in terms of the complex 
reflection coefficient, Γ(z). Relations and the complex Γ plane are illustrated in the 
first row. The mappings of the impedance and of the admittance onto this plane, 
respectively, are summarized by the second and third rows. Because the magnitude 
of Γ is constant over a uniform length of line, the trajectory of Z(z) or Y (z) is 
on a circle of constant radius in the directions of the generator or the load, as 
indicated. These Smith charts give a convenient overview of how the impedance 
and admittance vary with position. 

In Sec. 14.7, a shunt conductance per unit length, G, (to represent losses in the 
material between the transmission line conductors) and a series resistance per unit 
length, R, (for losses in the conductors themselves) was added to the distributed 
parameter transmission line representation. For the limiting case where the con­
ductors were infinitely conducting, R = 0, and the material between of uniform 
properties, the fields represented by the line were exactly TEM. In the case where 
the material properties did vary over the cross section, the distributed parameter 
picture provided a useful model for the line provided that the wavelength was long 
compared to the cross­sectional dimensions. In specific terms, this model gave the 
opportunity to consider the dynamical processes considered in Chaps. 7, 10, and 
12 (charge relaxation, magnetic diffusion and electromagnetic wave propagation, 
respectively) in one self consistent situation. What was learned will be generalized 
in the review of the processes given in Secs. 15.3–15.4. 

In Sec. 14.9, where G = 0 but R was finite, the specific objective was to 
understand how the transmission line concept could be used to approximate con­
ductor losses. A broader objective was to again illustrate the use of the distributed 
parameter line as a model, representing the fields at frequencies sufficiently low so 
that the wavelength is long compared with the transverse dimensions. 
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TABLE 14.10.1 

TRANSMISSION LINE EQUIVALENTS 

= −C 

= 

∂I 

∂z 

∂V 

∂z 

− GV 

−L 

∂V 

∂t 

∂I 

∂t 

(14.8.4) 

(14.8.5) 

I → Hy 

V → Ex 

C → � = 
n 2�o 

L → µ 

C 

G 
→ �/σ 
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TABLE 14.10.2 
WAVE TRANSIENTS 

I 

α 

V = V+(α V−(β) 

= 
1 

Zo 
(V+(α)− V−(β)) 

= z − ct; β = z + ct 

Zo = 
�

L/C 

c /
√

LC 

) + 

= 1 

(14.3.9) 

(14.3.10) 

(14.3.11) 

(14.3.12) 

(14.3.1) 

V+ = 
1 

2
(Vi + ZoIi) 

V− = 
1 

2
(Vi − ZoIi) 

(14.3.18) 

(14.3.19) 

V− = V+ 

� RL 

Zo 
− 1

� 

� RL 

Zo 

�
+ 1 

(14.4.8) 

V+ = 
Vg � Rg 

Zo 

� + V− 

� Rg 

Zo 
− 1

� 

� Rg 

Zo 

�
+ 1 + 1 

(14.4.10) 
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(R 
TABLE 14.10.3 

SINUSOIDAL­STEADY­STATE = 0, G = 0) 

V̂ = V̂+e− z)] 

Î = 
V̂+e− 

Zo 
[1 − Γ(z)] 

Γ ≡ 
V̂− 

V̂+ 

ej2 

Zo = 
�

L/C 

β = ω
√

LC 

jβz[1 + Γ( 

jβz 

βz 

(14.5.5) 

(14.5.6) 

(14.6.2) 

(14.3.12) 

(14.5.5) 

Z(z) 

Zo 
= 

z) 

1− Γ(z) 
≡ r +

1 + Γ( 
jx (14.6.1) 

Z 
Zo 
− 1 

Z 
Zo 

Γ = 
+ 1 

(14.6.3) 

Y (z) 

Yo 
= 

1− Γ(z) 

z) 
= g + 

1− Y 
Yo 

Y 
Yo 

Yo = 
� 

Γ = 
1 + 

C/L 

1 + Γ( 
jy (14.6.12) 
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P R O B L E M S 

14.1 Distributed Parameter Equivalents and Models 

14.1.1	 The “strip line” shown in Fig. P14.1.1 is an example where the fields are 
not exactly TEM. Nevertheless, wavelengths long compared to a and b, the 
distributed parameter model is applicable. The lower perfectly conducting 
plate is covered by a planar perfectly insulating layer having properties 
(�b, µb = µo). Between this layer and the upper electrode is a second per­
fectly insulating material having properties (�a, µa = µo). The width w is 
much greater than a+b, so fringing fields can be ignored. Determine L and 
C and hence the transmission line equations. Show that LC = µ� unless 
�a = �b. 

� 

Fig. P14.1.1 

Fig. P14.1.2 

14.1.2	 An incremental section of a “backward wave” transmission line is as shown 
in Fig. P14.1.2. The incremental section of length Δz shown has a reciprocal 
capacitance per unit length ΔzC−1 and reciprocal inductance per unit 
length ΔzL−1. Show that, by contrast with (4) and (5), in this case the 
transmission line equations are 

∂2I ∂2V 
L = −V ; C = −I (a)

∂t∂z ∂t∂z 
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14.2 Transverse Electromagnetic Waves 

14.2.1∗ For the coaxial configuration of Fig. 14.2.2b, 

(a) Show that, defined as zero on the outer conductor, Az and Φ are 

Az = −µIln(r/a)/2π; Φ = −λlln(r/a)/2π� (a) 

where λl is the charge per unit length on the inner conductor. 
(b) Using these expressions, show that the L and C needed to complete 

the transmission line equations are 

µ
L = ln

� a�
; C = 2π�/ln

� a�	 
(b)

2π b	 b 

and hence that LC = µ�. 

14.2.2	 A transmission line consists of a conductor having the cross­section shown 
in Fig. P4.7.5 adjacent to an L­shaped return conductor comprised of 
“ground planes” in the planes x = 0 and y = 0, intersecting at the ori­
gin. Assuming that the region between these conductors is free space, what 
are the transmission line parameters L and C? 

14.3 Transients on Infinite Transmission Lines 

14.3.1	 Show that the characteristic impedance of a coaxial cable (Prob. 14.2.1) is 

Zo = 
�

µ/�ln(a/b)/2π	 (a) 

For a dielectric having � = 2.5�o and µ = µo, evaluate Zo for values of 
a/b = 2, 10, 100, and 1000. Would it be reasonable to design such a cable 
to have Zo = 1KΩ? 

14.3.2	 For the parallel conductor line of Fig. 14.2.2 in free space, what value of 
l/R should be used to make Zo = 300 ohms? 

14.3.3	 The initial conditions on an infinite line are V = 0 and I = Ip for −d < 
z < d and I = 0 for z < −d and d < z. Determine V (z, t) and I(z, t) for 
0 < t, presenting the solution graphically, as in Fig. 14.3.2. 

14.3.4	 On an infinite line, when t = 0, V = Vo exp(−z2/2a2), and I = 0, deter­
mine analytical expressions for V (z, t) and I(z, t). 

14.3.5∗ In the energy conservation theorem for a transmission line, (14.2.19), V I 
is the power flow. Show that at any location, z, and time, t, it is correct to 
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think of power flow as the superposition of power carried by the + wave in 
the +z direction and − wave in the −z direction. 

V I = 
1 

[
Zo 

V 2
+ − V 2 

−]	 (a) 

14.3.6	 Show that the traveling wave solutions of (2) are not solutions of the equa­
tions for the “backward wave” transmission line of Prob. 14.1.2. 

14.4 Transients on Bounded Transmission Lines 

14.4.1	 A transmission line, terminated at z = l in an “open circuit,” is driven at 
z = 0 by a voltage source Vg in series with a resistor, Rg, that is matched 
to the characteristic impedance of the line, Rg = Zo. For t < 0, Vg = Vo = 
constant. For 0 < t, Vg = 0. Determine the distribution of voltage and 
current on the line for 0 < t. 

14.4.2	 The transient is to be determined as in Prob. 14.4.1, except the line is now 
terminated at z = l in a “short circuit.” 

14.4.3	 The transmission line of Fig. 14.4.1 is terminated in a resistance RL = Zo. 
Show that, provided that the voltage and current over the length of the 
line are initially zero, the line has the same effect on the circuit connected 
at z = 0 as would a resistance Zo. 

14.4.4	 A transmission line having characteristic impedance Za is terminated at 
z = l + L in a resistance Ra = Za. At the other end, where z = l, it is 
connected to a second transmission line having the characteristic impedance 
Zb. This line is driven at z = 0 by a voltage source Vg(t) in series with a 
resistance Rb = Zb. With Vg = 0 for t < 0, the driving voltage makes a 
step change to Vg = Vo, a constant voltage. Determine the voltage V (0, t). 

14.4.5	 A pair of transmission lines is connected as in Prob. 14.4.4. However, rather 
than being turned on when t = 0, the voltage source has been on for a long 
time and when t = 0 is suddenly turned off. Thus, Vg = Vo for t < 0 
and Vg = 0 for 0 < t. The lines have the same wave velocity c. Determine 
V (0, t). (Note that, by contrast with the situation in Prob. 14.4.4, the line 
having characteristic impedance Za now has initial values of voltage and 
current.) 

14.4.6	 A transmission line is terminated at z = l in a “short” and driven at z = 0 
by a current source Ig(t) in parallel with a resistance Rg. For 0 < t < 
T, Ig = Io = constant, while for t < 0 and T < t, Ig = 0. For Rg = Zo, 
determine V (0, t). 



Sec. 14.5 Problems 71 

14.4.7	 With Rg not necessarily equal to Zo, the line of Prob. 14.4.6 is driven by 
a step in current; for t < 0, Ig = 0, while for 0 < t, Ig = Io = constant. 

(a) Using an approach suggested by Example 14.4.3, determine the cur­
rent I(0, t). 

(b) If the transmission line is MQS, the system can be represented by a 
parallel inductor and resistor. Find I(0, t) assuming such a model. 

(c) Show that in the limit where the round­trip transit time 2l/c is short 
compared to the time τ = lL/Rg, the current I(0, t) found in (a) 
approaches that predicted by the MQS model. 

14.4.8	 The transmission line shown in Fig. P14.4.8 is terminated in a series load 
resistance, RL, and capacitance CL. 

(a) Show that the algebraic relation between the incident and reflected 
wave at z = l, given by (8) for the load resistance alone, is replaced 
by the differential equation at z = l 

ZoCL 

� 
RL + 1 

� 
dV− + V = ZoCL 

� 
RL − 1

� 
dV+ + V+ (a)

Zo dt 
− 

Zo dt 

which can be solved for the reflected wave V (l, t) given the incident 
wave V+(l, t). 

−

(b) Show that if the capacitor voltage is Vc when t = 0, then 

� 
RLVc Zo 

− 1
� 

V−(l, 0) =	 � 
RL + 1

� + V+(l, 0)� 
RL + 1

� (b) 
Zo	 Zo 

(c) Given that Vg(t) = 0 for t < 0, Vg(t) = Vo = constant for 0 < t, and 
that Rg = Zo, determine V (0, t). 

Fig. P14.4.8 

14.5 Transmission Lines in the Sinusoidal Steady State 

14.5.1 Determine the impedance of a quarter­wave section of line that is termi­
nated, first, in a load capacitance CL, and second, in a load inductance 
LL. 

14.5.2 A line having length l is terminated in an open circuit. 
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(a) Determine the line admittance Y (−l) and sketch it as a function of 
ωl/c. 

(b) Show that the low­frequency admittance is that of a capacitor lC. 

14.5.3∗ A line is matched at z = 0 and driven at z = −l by a voltage source Vg(t) = 
Vo sin(ωt) in series with a resistance equal to the characteristic impedance 
of the line. Thus, the line is as shown in Fig. 14.4.5 with Rg = Zo. Show 
that in the sinusoidal steady state, 

V = Re	 
1
2	 
V̂  

ge
−jβ(z+l)ejωt; I = Re

2Z

1 
o 
V̂  

ge
−jβ(z+l)ejωt 

where V̂ 

g ≡ −jVo.


14.5.4	 In Prob. 14.5.3, the drive is zero for t < 0 and suddenly turned on when 
t = 0. Thus, for 0 < t, Vg(t) is as in Prob. 14.5.3. With the solution written 
in the form of (1), where Vs(z, t) is the sinusoidal steady state solution 
found in Prob. 14.5.3, what are the initial and boundary conditions on the 
transient part of the solution? Determine V (z, t) and I(z, t). 

14.6 Reflection Coefficient Representation of Transmission Lines 

14.6.1∗ The normalized load impedance is ZL/Zo = 2 + j2. Use the Smith chart 
to show that the impedance of a quarter­wave line with this termination is 
Z/Zo = (1 − j)/4. Check this result using (20). 

14.6.2	 For a normalized load impedance ZL/Zo = 2 + j2, use (3) to evaluate the 
reflection coefficient, Γ , and hence the VSWR, (10). Use the Smith chart 
to check these results.

| | 

14.6.3	 For the system shown in Fig. 14.6.6a, the load admittance is YL = 2Yo. 
Determine the position, l, and length, ls, of a shorted stub, also having the 
characteristic admittance Yo, that matches the load to the line. 

14.6.4	 In practice, it may not be possible or convenient to control the position l 
of the stub, as required for single stub matching of a load admittance YL 

to a line having characteristic admittance Yo. In that case, a “double stub” 
matching approach can be used, where two stubs at arbitrary locations 
but with adjustable lengths are used. At the price of restricting the range 
of loads that can be matched, suppose that the first stub is attached in 
parallel with the load and shorted at length l1, and that the second stub 
is shorted at length l2 and connected in parallel with the line at a given 
distance l from the load. The stubs have the same characteristic admittance 
as the line. Describe how, given the load admittance and the distance l to 
the second stub, the lengths l1 and l2 would be designed to match the 
load to the line. (Hint: The first stub can be adjusted in length to locate 
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the effective load anywhere on the circle on the Smith chart having the 
normalized conductance gL of the load.) Demonstrate for the case where 
YL = 2Yo and l = 0.042λ. 

14.6.5	 Use the Smith chart to obtain the VSWR on the line to the left in Fig. 
14.5.3 if the load resistance is RL/Zo = 2 and Zo

a = 2Z0. (Hint: Remember 
that the impedance of the Smith chart is normalized to the characteristic 
impedance at the position in question. In this situation, the lines have 
different characteristic impedances.) 

14.7 Distributed Parameter Equivalents and Models with Dissipation 

14.7.1	 Following the steps exemplified in Section 14.1, derive (1) and (2). 

14.7.2	 For Example 14.7.1, 

(a) Determine I(z, t). 
(b) Find the impedance at z = 
(c) In the long wave limit,	 |βl |

−
� 
l. 

1, what is this impedance and what 
equivalent circuit does it imply? 

14.7.3	 The configuration is as in Example 14.7.1 except that the line is shorted at 
z = 0. Determine V (z, t) and I(z, t), and hence the impedance at z = −l. In 
the long wave limit, βl � 1, what is this impedance and what equivalent 
circuit does it imply?

| | 

14.7.4∗ Following steps suggested by the derivation of (14.2.19), 
(a) Use (1) and (2) to derive the power theorem 

∂	 ∂ �1 1 − 
∂z

(V I) = 
∂t 2

CV 2 +
2
LI2

� 
+ I2R + V 2G (a) 

(b) The product of two sinusoidally varying quantities is a constant (time 
average) part plus a part that varies sinusoidally at twice the fre­
quency. In complex notation, 

AejωtRe ˆ 1 1
Re ˆBe2jωt Re ˆ Bejωt = ReÂB̂∗ + A ˆ (b)

2 2 

Use (11.5.7) to prove this identity. 
(c) Show that, in describing the sinusoidal steady state, the time average 

of the power theorem becomes 

d � 1 ˆ I
1

Î ˆV− 
dz 2

ReV ∗̂� 
= 

2
Re(I ∗̂R + V ˆ ∗G) (c) 
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Show that for Example 14.7.1, it follows that the time average power 
input is equal to the integral over the length of the time average power 
dissipation per unit length. 

1
ReV̂ Î∗

��
z=−l 

= 
� 0 1

Re(Î Î∗R + V̂ V̂ ∗G)dz (d)
2 2−l 

(d) Evaluate the time average input power on the left in this relation and 
the integral of the time average dissipation per unit length on the 
right and show that they are indeed equal. 

14.8 Uniform and TEM Waves in Ohmic Conductors 

14.8.1	 In the general TEM configuration of Fig. 14.2.1, the material between the 
conductors has uniform conductivity, σ, as well as uniform permittivity, 
�. Following steps like those leading to 14.2.12 and 14.2.13, show that (4) 
and (5) describe the waves, regardless of cross­sectional geometry. Note the 
relationship between G and C summarized by (7.6.4). 

14.8.2	 Although associated with the planar configuration of Fig. 14.8.1 in this 
section, the transmission line equations, (4) and (5), represent exact field 
solutions that are, in general, functions of the transverse coordinates as 
well as z. Thus, the transmission line represents a large family of exact 
solutions to Maxwell’s equations. This follows from Prob. 14.8.1, where 
it is shown that the transmission line equations apply even if the regions 
between conductors are coaxial, as shown in Fig. 14.2.2b, with a material of 
uniform permittivity, permeability, and conductivity between z = −l and 
z = 0. At z = 0, the transmission line conductors are “open circuit.” At 
z = −l, the applied voltage is Re V̂  

g exp(jωt). Determine the electric and 
magnetic fields in the region between transmission line conductors. Include 
the dependence of the fields on the transverse coordinates. Note that the 
axial dependence of these fields is exactly as described in Examples 14.8.1 
and 14.8.2. 

14.8.3	 The terminations and material between the conductors of a transmission 
line are as described in Prob. 14.8.2. However, rather than being coaxial, 
the perfectly conducting transmission line conductors are in the parallel 
wire configuration of Fig. 14.2.2a. In terms of Φ(x, y, z, t) and Az(x, y, z, t), 
determine the electric and magnetic fields over the length of the line, in­
cluding their dependencies on the transverse coordinates. What are L,C, 
and G and hence β and Zo? 

14.8.4∗ The transmission line model for the strip line of Fig. 14.8.4a is derived in 
Prob. 14.1.1. Because the permittivity is not uniform over the cross­section 
of the line, the waves represented by the model are not exactly TEM. The 
approximation is valid as long as the wavelength is long enough so that (25) 
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is satisfied. In the approximation, Ex is taken as being uniform with x in 
each of the dielectrics, Ea and Eb, respectively. To estimate the longitudinal 
field Ez and compare it to Ea , 

(a) Use the integral form of the law of induction applied to an incremental 
surface between z + Δz and z and between the perfect conductors to 
derive Faraday’s transmission line equation written in terms of Ea . 

�
a + 

�a 
b
� ∂Ea 

= −µo(a + b)
∂Hy	 (a)

�b ∂z	 ∂t 

(b) Then carry out this same procedure using a surface that again has 
edges at z + Δz and z on the upper perfect conductor, but which 
has its lower edge at the interface between dielectrics. With the axial 
electric field at the interface defined as Ez, show that 

∂Hy ∂Ea 
� 

�
�
a

b 
− 1

� 
∂Hy

Ez = −aµo 
∂t 

− a	 
∂z 

= −abµo �
a + �a b

� 
∂t 

(b) 
�b 

(c) Now show that in order for this field to be small compared to Ea , 
(25) must hold. 

14.9 Quasi­One­Dimensional Models (G = 0) 

14.9.1	 The transmission line of Fig. 14.2.2a is comprised of wires having a finite 
conductivity σ, with the dielectric between of negligible conductivity. With 
the distribution of V and I described by (7) and (10), what are C, L, and R, 
and over what frequency range is this model valid? (Note Examples 4.6.3 
and 8.6.1.) Give a condition on the dimensions R a and l that must be →
satisfied to have the model be self­consistent over frequencies ranging from 
where the resistance dominates to where the inductive reactance dominates. 

14.9.2	 In the coaxial transmission line of Fig. 14.2.2b, the outer conductor has a 
thickness Δ. Each conductor has the conductivity σ. What are C, L, and 
R, and over what frequency range are (7) and (10) valid? Give a condition 
on the transverse dimensions that insures the model being valid into the 
frequency range where the inductive reactance dominates the resistance. 

14.9.3	 Find V (z, t) on the charge diffusion line of Fig. 14.9.4 in the case where 
the applied voltage has been zero for t < 0 and suddenly becomes Vp = 
constant for 0 < t and the line is shorted at z = 0. (Note Example 10.6.1.) 

14.9.4	 Find V (z, t) under the conditions of Prob. 14.9.3 but with the line “open 
circuited” at z = 0. 
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