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Appendix B

REVIEW OF
ELECTROMAGNETIC THEORY

B.1 BASIC LAWS AND DEFINITIONS

The laws of electricity and magnetism are empirical. Fortunately they can
be traced to a few fundamental experiments and definitions, which are re-
viewed in the following sections. The rationalized MKS system of units is
used.

B.1.1 Coulomb's Law, Electric Fields and Forces

Coulomb found that when a charge q (coulombs) is brought into the vicinity
ofa distribution of chargedensity p,(r') (coulombs per cubic meter), as shown
in Fig. B.1.1, a force of repulsion f (newtons) is given by

f = qE, (B. 1.1)

where the electricfield intensity E (volts per meter) is evaluated at the position

= qE

Fig. B.1.1 The force f on the point charge q in the vicinity of charges with density Pe(r')
is represented by the electric field intensity E times q, where E is found from (B.1.2).
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r of the charge q and determined from the distribution of charge density by

E(r) = e(r') - r) dV'. (B.1.2)
4E(r) e = r - r'lj

In the rationalized MKS system of units the permittivity eo of free space is

qo = 8.854 x 10- 12 
_ -- X 10- 9 F/m. (B.1.3)

367r

Note that the integration of (B.1.2) is carried out over all the charge dis-
tribution (excluding q), hence represents a superposition (at the location r
of q) of the electric field intensities due to elements of charge density at the
positions r'.

A I- U h Ud s an exampp , suppose tlatiLe cargeL
distribution p,(r') is simply a point charge
Q (coulombs) at the origin (Fig. B.1.2);
that is,

p,= Q 6(r'), (B.1.4)

where 6(r') is the deltafunction defined by

qQI,.1__W4Xeo-]-r

0(r')= 0, r' # 0, Fig. B.1.2 Coulomb's law for point
charges Q (at the origin) and q (at

S6(r') dV' = 1. (B.1.5) the position r).

For the charge distribution of (B.1.4) integration of (B.1.2) gives

E(r) = Qr (B.1.6)
4rreo Ir"

Hence the force on the point charge q, due to the point charge Q, is from
(B. 1.1)

f = qQr (B.1.7)
4 ore0 Irl "

This expression takes the familiar form of Coulomb's law for the force of
repulsion between point charges of like sign.

We know that electric charge occurs in integral multiples of the electronic
charge (1.60 x 10- 19 C). The charge density p., introduced with (B.1.2), is
defined as

Pe(r) = lim - I q,, (B.1.8)
av-o 61 i
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where 6V is a small volume enclosing the point r and Z, q, is the algebraic
sum of charges within 6V. The charge density is an example of a continuum
model. To be valid the limit 6V -- 0 must represent a volume large enough to
contain a large number of charges q1,yet small enough to appear infinitesimal
when compared with the significant dimensions of the system being analyzed.
This condition is met in most electromechanical systems.

For example, in copper at a temperature of 200C the number density of
free electrons available for carrying current is approximately 1023 electrons/
cm3. If we consider a typical device dimension to be on the order of 1 cm,
a reasonable size for 6V would be a cube with 1-mm sides. The number of
electrons. in 6 Vwould be 10", which certainly justifies the continuum model.

The force, as expressed by (B.I.1), gives the total force on a single test
charge in vacuum and, as such, is not appropriate for use in a continuum
model of electromechanical systems. It is necessary to use an electricforce
density F (newtons per cubic meter) that can be found by averaging (B.1.1)
over a small volume.

F = lim = lim I qjEj (B.1.9)
av-o 6V 6v-o 6V

Here q, represents all of the charges in 6V, E, is the electric field intensity
acting on the ith charge, and f, is the force on the ith charge. As in the charge
density defined by (B.1.8), the limit of (B.1.9) leads to a continuum model if
the volume 6V can be defined so that it is small compared with macroscopic
dimensions of significance, yet large enough to contain many electronic
charges. Further, there must be a sufficient amount of charge external to the
volume 6V that the electric field experienced by each of the test charges is
essentially determined by the sources of field outside the volume. Fortunately
these requirements are met in almost all physical situations that lead to useful
electromechanical interactions. Because all charges in the volume 6 V ex-
perience essentially the same electric field E, we use the definition of free
charge density given by (B.1.8) to write (B.1.9) as

F = p,E. (B.1.10)

Although the static electric field intensity E can be computed from (B.1.2),
it is often more convenient to state the relation between charge density and
field intensity in the form of Gauss's law:

soEE.n da = Pe dV. (B.1.11)

In this integral law n is the outward-directed unit vector normal to the surface
S, which encloses the volume V. It is not our purpose in this brief review to
show that (B.1.11) is implied by (B.1.2). It is helpful, however, to note that
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Fig. B.1.3 A hypothetical sphere of radius r encloses a charge Q at the origin. The integral
of eoE, over the surface of the sphere is equal to the charge Q enclosed.

in the case of a point charge Q at the origin it predicts the same electric
field intensity (B.1.6) as found by using (B.1.2). For this purpose the surface
S is taken as the sphere of radius r centered at the origin, as shown in Fig.
B.1.3. By symmetry the only component of E is radial (E7 ), and this is con-
stant at a given radius r. Hence (B.1.11) becomes

47rrEEo= Q. (B.1.12)

Here the integration of the charge density over the volume V enclosed by S
is the total charge enclosed Q but can be formally taken by using (B. 1.4) with
the definition provided by (B.1.5). It follows from (B.1.12) that

E, = 4rEr, (B.1.13)

a result that is in agreement with (B.1.6).
Because the volume and surface of integration in (B.1.11) are arbitrary,

the integral equation implies a differential law. This is found by making use
of the divergence theorem*

A . nda = V. AdV (B.1.14)
to write (B.1.11) as

fv(VU .oE - P) dV = 0. (B.1.15)

* For a discussion of the divergence theorem see F. B. Hildebrand, Advanced Calculusfor
Engineers, Prentice-Hall, New York, 1949, p. 312.
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Since the volume of integration is arbitrary, it follows that

V. - E = P. (B.1.16)

From this discussion it should be apparent that this diferential form of
Gauss's law is implied by Coulomb's law, with the electric field intensity
defined as a force per unit charge.

B.1.2 Conservation of Charge

Experimental evidence supports the postulate that electric charge is con-
served. When a negative charge appears (e.g., when an electron is removed
from a previously neutral atom), an equal positive charge also appears (e.g.,
the positive ion remaining when the electron is removed from the atom).

We can make a mathematical statement of this postulate in the following
way. Consider a volume V enclosed by a surface S. If charge is conserved, the
net rate of flow of electric charge out through the surface S must equal the
rate at which the total charge in the volume V decreases. The current density
J (coulombs per square meter-second) is defined as having the direction of
flow of positive charge and a magnitude proportional to the net rate of flow
of charge per unit area. Then the statement of conservation of charge is

dJtnda =- p dV. (B.1.17)
s dt v

Once again it follows from the arbitrary nature of S (which is fixed in space)
and the divergence theorem (B.1.14) that

V . J + P = 0. (B.1.18)
at

It is this equation that is used as a differential statement of conservation of
charge.

To express conservation of charge it has been necessary to introduce a
new continuum variable, the current density J. Further insight into the relation
between this quantity and the charge density p, is obtained by considering a
situation in which two types of charge contribute to the current, charges
q, with velocity v, and charges q_ with velocity v . The current density J,
that results from the flow of positive charge is

J+ = lim I q+iv+i (B.1.19)
r-o 6V i

If we define a charge-average velocity v+ for the positive charges as

I q+iv+i

V+ -= q+ (B.1.20)
i

~_~~LII__LYIII___I~ -^------11I- ~
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and the density p, of positive charges from (B.1.8) as

P+ = lim 1 1 q+,, (B.1.21)
r--o06V

we can write the current density of (B.1.19) as

J+ = pv+. (B.1.22)

Similar definitions for the charge-average velocity v_ and charge density p_ of

negative charges yields the component of current density

J_ = p_v_. (B.1.23)

The total current density J is the vector sum of the two components

J = J+ + J_. (B.1.24)

Now consider the situation of a material that contains charge densities p,
and p_ which have charge-average velocities v+ and v_ with respect to the
material. Assume further that the material is moving with a velocity v with
respect to an observer who is to measure the current. The net average
velocities of positive and negative charges as seen by the observer are v+ + v
and v + v, respectively. The current density measured by the observer is
then from (B.1.24) J = (pv+ + p_v_) + pv, (B.1.25)

where the net charge density p, is given by

Pe = P+ + P-. (B.1.26)

The first term of (B.1.25) is a net flow of charge with respect to the material
and is normally called a conduction current. (It is often described by Ohm's
law.) The last term represents the transport of net charge and is conven-
tionally called a convection current. It is crucial that net flow of charge be
distinguished from flow of net charge. The net charge may be zero but a
current can still be accounted for by the conduction term. This is the case in
metallic conductors.

B.1.3 Ampire's Law, Magnetic Fields and Forces

The magneticflux density B is defined to express the force on a current
element i dl placed in the vicinity of other currents. This element is shown in
Fig. B.1.4 at the position r. Then, according to Amp6re's experiments, the
force is given byf = i dl x B, (B.1.27)
where

BP=o J x (r - r')4 7 I - r(B.1.28)
4w rv (r -r' 3
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Fig. B.1.4 A distribution of current density J(r') produces a force on the current element
idl which is represented in terms of the magnetic flux density B by (B.1.27) and (B.1.28).

Hence the flux density at the position r of the current element i dl is the super-
position of fields produced by currents at the positions r'. In this expression
the permeability of free space go is

Pl0 = 47r x 10- ' H/m. (B.1.29)

As an example, suppose that the distribution of current density J is com-
posed of a current I (amperes) in the z direction and along the z-axis, as shown
in Fig. B.1.5. The magnetic flux density at the position r can be computed

Fig. B.1.5 A current I (amperes) along the z-axis produces a magnetic field at the position
r of the current element idl.

_·
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from (B.1.28), which for this case reduces to*

B = (r - zi) dz (B.1.30)
47r r - z'i(

Here the coordinate of the source current I is z', as shown in Fig. B.1.5,
whereas the coordinate r that designates the position at which B is evaluated
can be written in terms of the cylindrical coordinates (r, 0, z). Hence (B.1.30)
becomes

B = oIio +S sin P-/(z - z')2 + r'  ,B -- - - ' r dz', (B.1.31)
47 J. [(z - z')

2 
+ r±]2

where, from Fig. B.1.5, sin y = r/• (z - z') 2 + r2 . Integration on z' gives
the magnetic flux density

B =- ,Ii. (B.1.32)
2nr

It is often more convenient to relate the magnetic flux density to the current
density J by the integral of Ampere's law for static fields, which takes the form

cB . dl = uo J . n da. (B.1.33)

Here C is a closed contour of line integration and S is a surface enclosed by
C. We wish to present a review of electromagnetic theory and therefore we
shall not embark on a proof that (B.1.33) is implied by (B.1.28). Our purpose
is served by recognizing that (B.1.33) can also be used to predict the flux
density in the situation in Fig. B.1.5. By symmetry we recognize that B is
azimuthally directed and independent of 0 and z. Then, if we select the
contour C in a plane z equals constant and at a radius r, as shown in Fig.
B.1.5, (B.1.33) becomes

27TrB o = p~o. (B.1.34)

Solution of this expression for B, gives the same result as predicted by (B.1.28).
[See (B.1.32).]

The contour C and surface S in (B.1.33) are arbitrary and therefore the
equation can be cast in a differential form. This is done by using Stokes'
theoremt,

SA.dl- = fn.(V x A)da, (B.1.35)

* Unit vectors in the coordinate directions are designated by i. Thus iz is a unit vector in
the z-direction.
f See F. B. Hildebrand, Advanced Calculus for Engineers, Prentice-Hall, New York, 1949,
p. 318.

~_
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to write (B.1.33) as

(Vx B - o0 J)'nda = 0, (B.1.36)

from which the differential form of Amphre's law follows as

V x B = pJ. (B.1.37)

So far the assumption has been made that the current J is constant in time.
Maxwell's contribution consisted in recognizing that if the sources p, and
J (hence the fields E and B) are time varying the displacement current o8E/fat
must be included on the right-hand side of (B.1.37). Thus for dynamic fields
Amphre's law takes the form

V x B = o0J + uo- (B.1.38)
at

This alteration of (B.1.37) is necessary if conservation of charge expressed
by (B.1.18) is to be satisfied. Because the divergence of any vector having the
form V x A is zero, the divergence of (B.1.38) becomes

V J + oE) = 0. (B.1.39)

Then, if we recall that p. is related to E by Gauss's law (B.1.16), the con-
servation of charge equation (B.1.18) follows. The displacement current in
(B. 1.38) accounts for the rate of change of p. in (B. 1.18).

We shall make considerable use of Ampere's law, as expressed by (B.1.38),
with Maxwell's displacement current included. From our discussion it is
clear that the static form of this law results from the force law of interaction
between currents. The magnetic flux density is defined in terms of the force
produced on a current element. Here we are interested primarily in a con-
tinuum description of the force, hence require (B.1.27) expressed as a force
density. With the same continuum restrictions implied in writing (B.I.10),
we write the magnetic force density (newtons per cubic meter) as

F = J x B. (B.1.40)

In view of our remarks it should be clear that this force density is not some-
thing that we have derived but rather arises from the definition of the flux
density B. Further remarks on this subject are found in Section 8.1.

B.1.4 Faraday's Law of Induction and the Potential Difference

Two extensions of static field theory are required to describe dynamic fields.
One of these, the introduction of the displacement current in Amp6re's
law, was discussed in the preceding section. Much of the significance of this

_~____ I_
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generalization stems from the apparent fact that an electric field can lead to
the generation of a magnetic field. As a second extension of static field theory,
Faraday discovered that, conversely, time-varying magnetic fields can lead
to the generation of electric fields.

Faraday'slaw of induction can be written in the integral form

fE dl = -d B n da, (B.1.41)

where again C is a contour that encloses the surface S. The contour and
surface are arbitrary; hence it follows from Stokes' theorem (B.1.35) that
Faraday's law has the differential form

aB
V x E = (B.1.42)at

Note that in the static case this expression reduces to V x E = 0, which is,
in addition to Gauss's law, a condition on the static electric field. That this
further equation is consistent with the electric field, as given by (B.1.2), is
not shown in this review. Clearly the one differential equation represented by
Gauss's law could not alone determine the three components of E.

In regions in which the magnetic field is either static or negligible the electric
field intensity can be derived as the gradient of a scalar potential 0:

E = -- VO. (B.1.43)

This is true because the curl of the gradient is zero and (B.1.42) is satisfied.
The difference in potential between two points, say a and b, is a measure of
the line integral of E, for

E* dl---- V. dl = O.a- b. (B.1.44)

The potential difference Oa - #b is referred to as the voltage of point a with
respect to b. If there is no magnetic field B in the region of interest, the
integral of (B.1.44) is independent of path. In the presence of a time-varying
magnetic field the integral of E around a closed path is not in general zero,
and if a potential is defined in some region by (B. 1.43) the path of integration
will in part determine the measured potential difference.

The physical situation shown in Fig. B.1.6 serves as an illustration of the
implications of Faraday's law. A magnetic circuit is excited by a current
source I(t) as shown. Because the magnetic material is highly permeable, the
induced flux density B(t) is confined to the cross section A which links a
circuit formed by resistances Ra and R, in series. A cross-sectional view of the
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I(t)

Highly permeable
, magnetic

material

C.C.C

+/(d) I Area A \
Va Ra e B(t) 1Rb Vb

(b)

Fig. B.1.6 (a) A magnetic circuit excited by I(t) so that flux AB(t) links the resistive loop
(b)a cross-sectional view of the loop showing connection of the voltmeters.

circuit is shown in Fig. B.1.6b, in which high impedance voltmeters va and
Vb are shown connected to the same nodes. Under the assumption that no
current is drawn by the voltmeters, and given the flux density B(t), we wish
to compute the voltages that would be indicated by v, and b,.

Three contours ofintegration C are defined in Fig. B. 1.6b and are used with
Faraday's integral law (B.1.41). The integral of E around the contour C, is
equal to the drop in potential across both of the resistances, which carry the
same current i. Hence, since this path encloses a total flux AB(t), we have

i(Ra + Rb) - [AB(t)]. (B.1.45)
dt

The paths of integration Ca and Cb do not enclose a magnetic flux; hence for
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these paths (B.1.41) gives

v,=--iRa - R- d [AB(t)] for C.,
R, + R, dt

(B.1.46)

Vb = iRb =- R b d [AB(t)] for Cb, (B.1.47)
Ra + Rb dt

where the current i is evaluated by using (B. 1.45). The most obvious attribute
of this result is that although the voltmeters are connected to the same nodes
they do not indicate the same values. In the presence of the magnetic induction
the contour of the voltmeter leads plays a role in determining the voltage
indicated.

The situation shown in Fig. B. 1.6 can be thought of as a transformer with a
single turn secondary. With this in mind, it is clear that Faraday's law plays
an essential role in electrical technology.

The divergence of an arbitrary vector V x A is zero. Hence the divergence
of (B. 1.42) shows that the divergence of B is constant. This fact also follows
from (B.1.28), from which it can be shown that this constant is zero. Hence
an additional differential equation for B is

V B = 0. (B.1.48)

Integration of this expression over an arbitrary volume V and use of the
divergence theorem (B. 1.14) gives

B - n da = 0. (B.1.49)

This integral law makes more apparent the fact that there can be no net
magnetic flux emanating from a given region of space.

B.2 MAXWELL'S EQUATIONS

The generality and far-reaching applications of the laws of electricity and
magnetism are not immediately obvious; for example, the law of induction
given by (B. 1.42) was recognized by Faraday as true when applied to a con-
ducting circuit. The fact that (B.1.42) has significance even in regions of
space unoccupied by matter is a generalization that is crucial to the theory of
electricity and magnetism. We can summarize the differential laws introduced
in Section B.1 as

V .Eo• = pe,

V - J + p__- 0,at
aEoEVx B = PoJ + Io
at

aBVxE=--
at'

V. B =0.

(B.2.1)

(B.2.2)

(B.2.3)

(B.2.4)

(B.2.5)
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Taken together, these laws are called Maxwell's equationsin honor of the
man who was instrumental in recognizing that they have a more general
significance than any one of the experiments from which they originate. For
example, we can think of a time-varying magnetic flux that induces an electric
field according to (B.2.4) even in the absence of a material circuit. Similarly,
(B.2.3) is taken to mean that even in regions of space in which there is no
circuit, hence J = 0, a time-varying electric field leads to an induced magnetic
flux density B.

The coupling between time-varying electric and magnetic fields, as pre-
dicted by (B.2.1 to B.2.5), accounts for the existence of electromagnetic
waves, whether they be radio or light waves or even gamma rays. As we might
guess from the electromechanical origins of electromagnetic theory, the
propagation of electromagnetic waves is of secondary importance in the
study of most electromechanical phenomena. This does not mean that
electromechanical interactions are confined to frequencies that are low
compared with radio frequencies. Indeed, electromechanical interactions of
practical significance extend into the gigahertz range of frequencies.

To take a mature approach to the study of electromechanics it is necessary
that we discriminate at the outset between essential and nonessential aspects
of interactions between fields and media. This makes it possible to embark
immediately on a study of nontrivial interactions. An essential purpose of
this section is the motivation of approximations used in this book.

Although electromagnetic waves usually represent an unimportant con-
sideration in electromechanics and are not discussed here in depth, they are
important to an understanding of the quasi-static approximations that are
introduced in Section B.2.2. Hence we begin with a brief simplified discussion
of electromagnetic waves.

B.2.1 Electromagnetic Waves

Consider fields predicted by (B.2.3) and (B.2.4) in a region of free space in
which J = 0. In particular, we confine our interest to situations in which the
fields depend only on (x, t) (the fields are one-dimensional) and write the
y-component of (B.2.3) and the z-component of (B.2.4)

aB aE,
ax Poco at , (B.2.6)

aE___ = _ B. (B.2.7)
ax at

This pair of equations, which make evident the coupling between the dynamic
electric and magnetic fields, is sufficient to determine the field components
B. and E,. In fact, if we take the time derivative of (B.2.6) and use the resulting
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expression to eliminate B, from the derivative with respect to x of (B.2.7),
we obtain

a2E, 1 a2E, - (B.2.8)
ax 2 C2 at 2 '

where

1
c 3 x 108 (m/sec).

This equation for E, is called the wave equation because it has solutions in the
form of

E,(x, t) = E,(x - ct) + E_(x + ct). (B.2.9)

That this is true may be verified by substituting (B.2.9) into (B.2.8). Hence
solutions for E, can be analyzed into components E1 and E_ that represent
waves traveling, respectively, in the +x- and -x-directions with the velocity
of light c, given by (B.2.8). The prediction of electromagnetic wave propaga-
tion is a salient feature of Maxwell's equations. It results, as is evident from
the derivation, because time-varying magnetic fields can induce electric
fields [Faraday's law, (B.2.7)] while at the same time dynamic electric fields
induce magnetic fields [Ampire's law with the displacement current included
(B.2.6)]. It is also evident from the derivation that if we break this two-way
coupling by leaving out the displacement current or omitting the magnetic
induction term electromagnetic waves are not predicted.

Electromechanical interactions are usually not appreciably affected by the
propagational character of electromagnetic fields because the velocity of
propagation c is very large. Suppose that we are concerned with a system
whose largest dimension is I. The time l/c required for the propagation of a
wave between extremes of the system is usually short compared with charac-
teristic dynamical times of interest; for example, in a device in which I = 0.3 m
the time l/c equals 10- 1 sec. If we were concerned with electromechanical
motions with a time constant of a microsecond (which is extremely short
for a device characterized by 30 cm), it would be reasonable to ignore the
wave propagation. In the absence of other dynamic effects this could be done
by assuming that the fields were established everywhere within the device
instantaneously.

Even though it is clear that the propagation of electromagnetic waves has
nothing to do with the dynamics of interest, it is not obvious how to go about
simplifying Maxwell's equations to remove this feature of the dynamics. A
pair of particular examples will help to clarify approximations made in the
next section. These examples, which are considered simultaneously so that
they can be placed in contrast, are shown in Fig. B.2.1.
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Fig. B.2.1 Perfectly conducting plane-parallel electrodes driven at x = -- : (a) i(t) =
io cos wt; (b) v(t) = v, cos wt.

A pair of perfectly conducting parallel plates has the spacing s which is
much smaller than the x-z dimensions I and d. The plates are excited at
x = -1 by

a current source a voltage source

i(t) = io cos wt (amperes). (B.2.10a) v(t) = vo cos wot (volts). (B.2. 10b)

At x = 0, the plates are terminated in

a perfectly conducting short circuit an open circuit.
plate.

If we assume that the spacing s is small enough to warrant ignoring the
effects of fringing and that the driving sources at x = -1 are distributed
along the z-axis, the one-dimensional fields B, and E, predicted by (B.2.6)
and (B.2.7) represent the fields between the plates. Hence we can think of
the current and voltage sources as exciting electromagnetic waves that propa-
gate along the x-axis between the plates. The driving sources impose con-
ditions on the fields at x = -1. They are obtained by

integrating (B.1.33) around the
contour C (Fig. B.2.2a) which en-
closes the upper plate adjacent to the
current source. (The surface S en-
closed by C is very thin so that neg-
ligible displacement current links the
loop).

B,(-1, t) = -ouK = -

integrating the electric field between
(a) and (b) in Fig. B.2.2b to relate
the potential difference of the volt-
age source to the electric field
intensity E,(-l, t).

oi(t) 0 /E, dy = -sE,(- 1, t) = v(t).

(B.2.11a) (B.2.1 1b)

_~_111·___ 
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Surface current
K= ild A/m

S y v(t) C

x=-1 =
(a) x = -

(b)

Fig. B.2.2 Boundary conditions for the systems in Fig. B.2.1

Similar conditions used at x = 0 give the boundary conditions

E,(O, t) = 0 (B.2.12a) I B,(0, t) = 0 (B.2.12b)

It is not our purpose in this chapter to become involved with the formalism
of solving the wave equation [or (B.2.6) and (B.2.7)] subject to the boundary
conditions given by (B.2.11) and (B.2.12). There is ample opportunity to
solve boundary value problems for electromechanical systems in the text,
and the particular problem at hand forms a topic within the context of trans-
mission lines and waveguides. For our present purposes, it suffices to guess
solutions to these equations that will satisfy the appropriate boundary con-
ditions. Then direct substitution into the differential equations will show that
we have made the right choice.

E sin ot sin (cox/c)Ey = -- o
deoc cos (ol/c)

(B.2.13a)

B = --Poiocos cot cos(ow/c)C

d cos (o/llc)

(B.2.14a)

vo cos ot cos (oxZ/c)
s cos (ool/c)

(B.2.13b)

B =-- vo sin wt sin (o.z/c)

cs cos (c,l/c)

(B.2.14b)

Note that at x = -1 the boundary conditions B.2.11 are satisfied, whereas at
x = 0 the conditions of (B.2.12) are met. One way to show that Maxwell's
equations are satisfied also (aside from direct substitution) is to use tri-
gometric identities* to rewrite these standing wave solutions as the super-
position of two traveling waves in the form of (B.2.9). Our solutions are
sinusoidal, steady-state solutions, so that with the understanding that the
amplitude of the field at any point along the x-axis is varying sinusoidally with
time we can obtain an impression of the dynamics by plotting the instantaneous
amplitudes, as shown in Fig. B.2.3. In general, the fields have the sinusoidal
distribution along the x-axis of a standing wave. From (B.2.13 to B.2.14) it

* For example in (B.2.13a) sin wt sin (cox/c) E- {{cos [w(t - x/c)] - cos [w(t + x/c)]}.
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X=--

Fig. B.2.3 Amplitude of the electric field intensity and magnetic flux density along the
x-axis of the parallel-plate structures shown in Fig. B.2.1 For these plots ol/c = 31r/4.

is clear that as a function of time the electric field reaches its maximum am-
plitude when B, = 0 and vice versa. Hence the amplitudes of E, and B,
shown in Fig. B.2.3 are for different instants of time. The fields near x = 0
do not in general have the same phase as those excited at x = -1. If, however,
we can make the approximation that times of interest (which in this case are
l/o) are much longer than the propagation time I/c,

1l/c wl
=- <1.

1/w C
(B.2.15)

The sine functions can then be approximated by their arguments (which are
small compared with unity) and the cosine functions are essentially equal to
unity. Hence, when (B.2.15) is satisfied, the field distributions (B.2.13) and
(B.2.14) become

i, sin cot IN
deoc

Bz,-• _oio cos wt
d

(B.2.16a) E, -- - cos ct, (B.2.16b)

(B.2.17a) B - V sin ct 1•)s (B.2.17b)

The distribution of field amplitudes in this limit is shown in Fig. B.2.4. The
most significant feature of the limiting solutions is that

the magnetic field between the
short-circuited plates has the same
distribution as if the excitation
current were static.

the electric field between the open-
circuited plates has the same dis-
tribution as if the excitation voltage
were constant.

I 1__1_

1
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x= -L x= -1

Fig. B.2.4 The distribution of field amplitudes between the parallel plates of Fig. B.2.1 in
the limit in which (wl/c) << 1.

Note that the fields as they are excited at x = -I retain the same phase every-
where between the plates. This simply reflects the fact that according to the
approximate equations there is no time lag between an excitation at x = --
and the field response elsewhere along the x-axis. It is in this limit that the
ideas of circuit theory are applicable, for if we now compute

the voltage v(t) at x = -- I

v(t) = -sE,(--, t) (B.2.18a)

we obtain the terminal equation for
an inductance

d
v = L- (i, cos rt),

dt
(B.2.19a)

where the inductance L is

L= slot.
d

the current i(t) at x = -I
d

110

(B.2.18b)

we obtain the terminal equation for
a capacitance

d
i(t) = C - (vo cos wt), (B.2.19b)

dt
where the capacitance C is

C = dl
S

A comparison of the examples will be useful for motivating many of the
somewhat subtle ideas introduced in the main body of the book. One of the
most important points that we can make here is that even though we have
solved the same pair of Maxwell's equations (B.2.6) and (B.2.7) for both
examples, subject to the same approximation that collc << 1 (B.2.15), we
have been led to very different physical results. The difference between these
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two examples arises from the boundary condition at x = 0. In the case of

a short circuit a static excitation
leads to a uniform magnetic field
but no electric field. The electric
field is generated by Faraday's law
because the magnetic field is in fact
only quasi-static and varies slowly
with time.

an open circuit a static excitation
results in a uniform electric field
but no magnetic field. The magnetic
field is induced by the displacement
current in Ampere's law because
the electric field is, in fact, only
quasi-static and varies slowly with
time.

B.2.2 Quasi-Static Electromagnetic Field Equations

As long as we are not interested in phenomena related to the propagation
of electromagnetic waves, it is helpful to recognize that most electromechanical
situations are in one of two classes, exemplified by the two cases shown in
Fig. B.2.1. In the situation in which the plates are short-circuited together
(Fig. B.2.1a) the limit wl/c <K 1 means that the displacement current is of
negligible importance. A characteristic of this system is that with a static
excitation a large current results; hence there is a large static magnetic field.
For this reason it exemplifies a magnetic field system. By contrast, in the case
in which the plates are open-circuited, as shown in Fig. B.2.1b, a static
excitation gives rise to a static electric field but no magnetic field. This
example exemplifies an electric field system, in which the magnetic induction
of Faraday's law is of negligible importance. To emphasize these points
consider how we can use these approximations at the outset to obtain the
approximate solutions of (B.2.19). Suppose that the excitations in Fig. B.2.1
were static. The fields between the plates are then independent of x and given

E, = 0,

Bz = Po
d

V
(B.2.20a) E, = - -

(B.2.21a) B, = 0.

(B.2.20b)

(B.2.21b)

Now suppose that the fields vary slowly with time [the systems are quasi-
static in the sense of a condition like (B.2.15)]. Then i and v in these equations
are time-varying, hence

B. is a function of time.
From Faraday's law of induction as
expressed by (B.2.7)

E= d, di (B.2.22a)
ax d dt

E, is a function of time.
From Amp&re's law, as expressed
by (B.2.6)

S _ o dv (B.2.22b)
ax s dt

-CI~-~·-----l~.
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Now the right-hand side of each of these equations is independent of z;
hence they can be integrated on x. At the same time, we recognize that

E,(O, t) = 0, (B.2.23a) B,(0, t) = 0, (B.2.23b)

so that integration gives

E~ = L ox di (B.2.24a) Bý = j°osx do (B.2.24b)
d dt s dt

Recall how the terminal voltage and current are related to these field quantities
(B.2.18) and these equations become

di dv
v(t) = L d i (B.2.25a) i(t) = C - , (B.2.25b)

dt ' dt'

where again the inductance L and capacitance C are defined as following
(B.2.19). Hence making these approximations at the outset has led to the
same approximate results as those found in the preceding section by computing
the exact solution and taking the limits appropriate to wl/c << 1.

The simple example in Fig. B.2.1 makes it plausible that Maxwell's
equations can be written in two quasi-static limits appropriate to the analysis
of two major classes of electromechanical interaction:

Magnetic Field Systems

V x B = •soJ, (B.2.26a)

aB
Vx E = - (B.2.27a)

at'
V - B = 0, (B.2.28a)

V - J = 0, (B.2.29a)

Electric Field Systems

aE
V x B = /uoJ + •o0 oE L-, (B.2.26b)

V x E = 0, (B.2.27b)

V - EE = Pe, (B.2.28b)

V.J + P.,= 0. (B.2.29b)
at

Here the displacement current has been omitted from Ampere's law in the
magnetic field system, whereas the magnetic induction has been dropped from
Faraday's law in the electric field system. Note that if the displacement
current is dropped from (B.2.26a) the charge density must be omitted from
the conservation of charge equation (B.2.29a) because the latter expression
is the divergence of (B.2.26a).

We have not included Guass's law for the charge density in the magnetic
field system or the divergence equation for B in the electric field system
because in the respective situations these expressions are of no interest. In
fact, only the divergence of (B.2.26b) is of interest in determining the dynamics
of most electric field systems and that is (B.2.29b).



Appendix B

It must be emphasized that the examples of Fig. B.2.1 serve only to motivate
the approximations introduced by (B.2.26 to B.2.29). The two systems of
equations have a wide range of application. The recognition that a given
physical situation can be described as a magnetic field system, as opposed to
an electric field system, requires judgment based on experience. A major
intent of this book is to establish that kind of experience.

In the cases of Fig. B.2.1 we could establish the accuracy of the approxi-
mate equations by calculating effects induced by the omitted terms; for
example, in the magnetic field system of Fig. B.2.1a we ignored the dis-
placement current to obtain the quasi-static solution of (B.2.21a) and
(B.2.24a). We could now compute the correction Bc6 to the quasi-static
magnetic field induced by the displacement current by using (B.2.6), with E
given by (B.2.24a). This produces

aBC 1 o2%ox daiB__. u,2Ex d2i (B.2.30)
ax d dt2"

Because the right-hand side of this expression is a known function of z,
it can be integrated. The constant of integration is evaluated by recognizing
that the quasi-static solution satisfies the driving condition at x = -1;
hence the correction field B.C must be zero there and

B,= 2 - 12) d2 i (B.2.31)
2d dt2

Now, to determine the error incurred in ignoring this field we take the ratio
of its largest value (at x = 0) to the quasi-static field of (B.2.21a):

IBc•I = 1j2 Id2i/dt 2i (B.2.32)
IB.I 2c2  jil

If this ratio is small compared with 1, the quasi-static solution is adequate.
It is evident that in this case the ratio depends on the time rate of change of
the excitation. In Section B.2.1, in which i = i, cos cot, (B.2.32) becomes

IBSI 1 2
=- - <- 1, (B.2.33)

which is essentially the same condition given by (B.2.15).
Once the fields have been determined by using either the magnetic field or

the electric field representation it is possible to calculate the effects of the
omitted terms. This procedure results in a condition characterized by (B.2.33).
For this example, if the device were 30 cm long and driven at 1 MHz (this

___· ~
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is an extremely high frequency for anything 30 cm long to respond to electro-
mechanically) (B.2.33) becomes

(B.2.34)
1 1\c x21- =27r2x 10-68( 1
2 2 3 x 108

and the quasi-static approximation is extremely good.
It is significant that the magnetic and electric field systems can be thought

of in terms of their respective modes of electromagnetic energy storage. In
the quasi-static systems the energy that can be attributed to the electro-
magnetic fields is stored either in the magnetic or electric field. This can be
seen by using (B.2.26 to B.2.27) to derive Poynting's theorem for the con-
servation of electromagnetic energy. If the equations in (B.2.27) are multi-
plied by B/do and subtracted from the equations in (B.2.26) multiplied by
E/lo, it follows that

E B
-VxB ---. VxE=E.J
go go

B aB
+-.-. (B.2.35a)

Po at

E B-. VxB--.VxE=E.J
go Mo

+ EoE . . (B.2.35b)
at

Then, because of a vector identity,* these equations take the form

+ - -!.B (B.2.36a) + coE. E). (B.2.36b)
at 2 go at 2

Now, if we integrate these equations over a volume V enclosed by a surface
S, the divergence theorem (B.1.14) gives

ExB-. nda = E.JdV+ a wdV,
s Po v at v

1B-Bw -
2 Wo
2 gzo

1
(B.2.38a) w = - oE E.

2

(B.2.37)

(B.2.38b)

The term on the left in (B.2.37) (including the minus sign) can be interpreted
as the flux of energy into the volume V through the surface S. This energy
is either dissipated within the volume V, as expressed by the first term on
the right, or stored in the volume V, as expressed by the second term. Hence

* V. (A x C) = C V x A - A -V x C.

where
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(w) can be interpreted as an electromagnetic energy density. The electro-
magnetic energy of the magnetic field system is stored in the magnetic field
alone. Similarly, an electric field system is one in which the electromagnetic
energy is stored in the electric field.

The familiar elements of electrical circuit theory illustrate the division of
interactions into those defined as magnetic field systems and those defined
as electric field systems. From the discussion in this and the preceding section
it is evident that the short-circuited plates in Fig. B.2.1 constitute an inductor,
whereas the open-circuited plates can be represented as a capacitor. This
fact is the basis for the development of electromechanical interactions
undertaken in Chapter 2. From this specific example it is evident that the
magnetic field system includes interactions in which we can define lumped-
parameter variables like the inductance, but it is not so evident that this model
also describes the magnetohydrodynamic interactions of a fluid and some
plasmas with a magnetic field and the magnetoelastic interactions of solids
in a magnetic field, even including electromechanical aspects of microwave
magnetics.

Similarly, the electric field system includes not only the electromechanics
of systems that can be modeled in terms of circuit concepts like the capaci-
tance but ferroelectric interactions between solids and electric fields, the
electrohydrodynamics of a variety of liquids and slightly ionized gases in an
electric field, and even the most important oscillations of an electron beam.
Of course, if we are interested in the propagation of an electromagnetic
wave through an ionospheric plasma or through the slightly ionized wake
of a space vehicle, the full set of Maxwell's equations must be used.

There are situations in which the propagational aspects of the electro-
magnetic fields are not of interest, yet neither of the quasi-static systems is
appropriate. This is illustrated by short-circuiting the parallel plates of Fig.
B.2.1 at x = 0 by a resistive sheet. A static current or voltage applied to the
plates at x = -1 then leads to both electric and magnetic fields between
the plates. If the resistance of the sheet is small, the electric field between the
plates is also small, and use of the exact field equations would show that
we are still justified in ignoring the displacement current. In this case the
inductance of Fig. B.2.1a is in series with a resistance. In the opposite ex-
treme, if the resistance of the resistive sheet were very high, we would still be
justified in ignoring the magnetic induction of Faraday's law. The situation
shown in Fig. B.2. Ib would then be modeled by a capacitance shunted by a
resistance. The obvious questions are, when do we make a transition from the
first case to the second and why is not this intermediate case of more interest
in electromechanics?

The purpose of practical electromechanical systems is either the conversion
of an electromagnetic excitation into a force that can perform work on a

____·____··_ II
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mechanical system or the reciprocal generation of electromagnetic energy
from a force of mechanical origin. From (B.1.10) and (B.1.40) there are two
fundamental types of electromagnetic force. Suppose that we are interested
in producing a force of electrical origin on the upper of the two plates in
Fig. B.2.1. We have the option of imposing a large current to interact with
its induced magnetic field or of using a large potential to create an electric
field that would interact with induced charges on the upper plate. Clearly,
we are not going to impose a large potential on the plates if they are termin-
ated in a small resistance or attempt to drive a large current through the
plates with an essentially open circuit at x = 0. The electrical dissipation in
both cases would be prohibitively large. More likely, if we intended to use the
force J x B, we would make the resistance as small as possible to minimize
the dissipation of electric power and approach the case of Fig. B.2.1a. The
essentially open circuit shown in Fig. B.2.1b would make it possible to use a
large potential to create a significant force of the type peE without undue
power dissipation. In the intermediate case the terminating resistance could
be adjusted to make the electric and magnetic forces about equal. As a
practical matter, however, the resulting device would probably melt before
it served any useful electromechanical function. The power dissipated in
the termination resistance would be a significant fraction of any electric
power converted to mechanical form.*

The energy densities of (B.2.38) provide one means of determining when
the problem shown in Fig. B.2.1 (but with a resistive sheet terminating the
plates at x = 0) is intermediate between a magnetic and an electric field
system. In the intermediate case the energy densities are equal

1 lB.B
SEE E = B B (B.2.39)
2 2 Po

Now, if the resistive sheet has a total resistance of R, then from (B.2.18a)
applied at x = 0

Es = -iR. (B.2.40)
The current can be evaluated in terms of the magnetic field at x = 0 by using
(B.2.18b): Eys = B, dR (B.2.41)

Po

Substitution of the electric field, as found from this expression into (B.2.39),
gives

_ (RdJ = 1 B,o0B (R)= - - (B.2.42)
2 sIo 2 Po

* It is interesting that for this particular intermediate case the electric force tends to pull
the plates together, whereas the magnetic force tends to push them apart. Hence,
because the two forces are equal in magnitude, they just cancel.
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Hence, if the energy densities are equal, we obtain the following relation
among the physical parameters of the system:

dR
(o .(B.2.43)

It would be a digression to pursue this point here, but (B.2.43) is the con-
dition that must be satisfied if an electromagnetic wave launched between the
plates at x = -- l is to be absorbed, without reflection, by the resistive sheet*;
that is, the intermediate case is one in which all the power fed into the system,
regardless of the frequency or time constant, is dissipated by the resistive
sheet.

B.3 MACROSCOPIC MODELS AND CONSTITUENT RELATIONS

When solids, liquids, and gases are placed in electromagnetic fields, they
influence the field distribution. This is another way of saying that the force
of interaction between charges or between currents is influenced by the
presence of media. The effect is not surprising because the materials are
comprised of charged particles.

Problems of physical significance can usually be decomposed into parts
with widely differing scales. At the molecular or submolecular level we may
be concerned with the dynamics of individual charges or of the atoms or
molecules to which they are attached. These systems tend to have extremely
small dimensions when compared with the size of a physical device. On
the macroscopic scale we are not interested in the detailed behavior of the
microscopic constituents of a material but rather only a knowledge of the
average behavior of variables, since only these averages are observable on a
macroscopic scale. The charge and current densities introduced in Section B. I
are examples of such variables, hence it is a macroscopic picture of fields and
media that we require here.

There are three major ways in which media influence macroscopic electro-
magnetic fields. Hence the following sections undertake a review of mag-
netization, polarization, and conduction in common materials.

B.3.1 Magnetization

The macroscopic motions of electrons, even though associated with
individual atoms or molecules, account for aggregates of charge and current

* The propagation of an electromagnetic wave on structures of this type is discussed in
texts concerned with transmission lines or TEM wave guide modes. For a discussion of
this matching problem see R. B. Adler, L. J. Chu, and R. M. Fano, Electromagnetic
Energy Transmission and Radiation, Wiley, New York, 1960, p. 111, or S. Ramo, J. R.
Whinnery, and T. Van Duzer, Fields and Waves in Communication Electronics, Wiley, New
York, p. 27.
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(when viewed at the macroscopic level) that induce electric and magnetic
fields. These field sources are not directly accessible; for example, the equiv-
alent currents within the material cannot be circulated through an external
circuit. The most obvious sources of magnetic field that are inaccessible in
this sense are those responsible for the field of a permanent magnet. The
earliest observations on magnetic fields involved the lodestone, a primitive
form of the permanent magnet. Early investigators such as Oersted found
that magnetic fields produced by a permanent magnet are equivalent to
those induced by a circulating current. In the formulation of electromagnetic
theory we must distinguish between fields due to sources within the material
and those from applied currents simply because it is only the latter sources
that can be controlled directly. Hence we divide the source currents into

free currents (with the density J,) and magnetization currents (with the
density Jm). Amphre's law then takes the form

V x ( = Jm + JP. (B.3.1)

By convention it is also helpful to attribute a fraction of the field induced by
these currents to the magnetization currents in the material. Hence (B.3.1) is
written as

V x - M = Jf, (B.3.2)

where the magnetization density M is defined by

V x M = J,. (B.3.3)

Up to this point in this chapter it has been necessary to introduce only two
field quantities to account for interactions between charges and between
currents. To account for the macroscopic properties of media we have now
introduced a new field quantity, the magnetization density M, and in the
next section similar considerations concerning electric polarization of media
lead to the introduction of the polarization density P. It is therefore apparent
that macroscopic field theory is formulated in terms of four field variables.
In our discussion these variables have been E, B, M, and P. An alternative
representation of the fields introduces the magneticfield intensity H, in our
development defined as

H = B _M. (B.3.4)

From our definition it is clear that we could just as well deal with B and H
as the macroscopic magnetic field vectors rather than with B and M. This is
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particularly appealing, for then (B.3.2) takes the simple form

V x H = J,. (B.3.5)

When the source quantities J, and M are specified independently, the
magnetic field intensity H (or magnetic flux density B) can be found from the
quasi-static magnetic field equations. A given constant magnetization density
corresponds to the case of the permanent magnet. In most cases, however,
the source quantities are functions of the field vectors, and these funtional
relations, called constituent relations, must be known before the problems
can be solved. The constituent relations represent the constraints placed on
the fields by the internal physics of the media being considered. Hence it is
these relations that make it possible to separate the microscopic problem
from the macroscopic one of interest here.

The simplest form of constituent relation for a magnetic material arises
when it can be considered electrically linear and isotropic. Then the per-
meability I is constant in the relation

B = pH. (B.3.6)

The material is isotropic because B is collinear with H and a particular
constant (a) times H, regardless of the direction of H. A material that
is homogeneous and isotropic will in addition have a permeability p that does
not vary with position in the material. Another way of expressing (B.3.6)
is to define a magnetic susceptibility X. (dimensionless) such that

M = XZ,H, (B.3.7)
where

P = Po(l + Xm). (B.3.8)
Magnetic materials are commonly found with B not a linear function of H
and the constitutive law takes the general form

B = B(H). (B.3.9)

We deal with some problems involving materials of this type, but with few
exceptions confine our examples to situations in which B is a single-valued
function of H. In certain magnetic materials in some applications the B-H
curve must include hysteresis and (B.3.9) is not single-valued.*

The differential equations for a magnetic field system in the presence of
moving magnetized media are summarized in Table 1.2.

B.3.2 Polarization

The force between a charge distribution and a test charge is observed to
change if a dielectric material is brought near the region occupied by the test

* G. R. Slemon, MagnetoelectricDevices, Wiley, New York, 1966, p. 115.
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charge. Like the test charge, the charged particles which compose the di-
electric material experience forces due to the applied field. Although these
charges remain identified with the molecules of the material, their positions
can be distorted incrementally by the electric force and thus lead to a polariza-
tion of the molecules.

The basic sources of the electric field are charges. Hence it is natural to
define a polarizationcharge density p, as a source of a fraction of the electric
field which can be attributed to the inaccessible sources within the media.
Thus Gauss's law (B.1.16) is written

V - EoE = Pf + P,, (B.3.10)

where the free charge density p, resides on conducting electrodes and other
parts of the system capable of supporting conduction currents. The free
charges do not remain attached to individual molecules but rather can be
conducted from one point to another in the system.

In view of the form taken by Gauss's law, it is convenient to identify a
field induced by the polarization charges by writing (B.3.10) as

V. (EOE + P) = pf, (B.3.11)

where the polarizationdensity P is related to the polarization charge density
by

pV = -V - P. (B.3.12)

As in Section B.3.1, it is convenient to define a new vector field that serves
as an alternative to P in formulating the electrodynamics of polarized media.
This is the electric displacement D, defined as

D = E0E + P (B.3.13)

In terms of this field, Gauss's law for electric fields (B.3.11) becomes

V. D = pf. (B.3.14)

The simple form of this expression makes it desirable to use D rather than P
in the formulation of problems.

If a polarization charge model is to be used to account for the effects of
polarizable media on electric fields, we must recognize that the motion of
these charges can lead to a current. In fact, now that two classes of charge
density have been identified we must distinguish between two classes of current
density. The free current density J, accounts for the conservation of free
charge so that (B.1.18) can be written as

V - J, + p_ = 0. (B.3.15)at
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In view of (B.3.11), this expression becomes

V J,+ tV (eoE + P) = 0. (B.3.16)at
Now, if we write Ampire's law (B.2.26b) as

VX + J + oE, (B.3.17)

where J, is a current density due to the motion of polarization charges, the
divergence of (B.3.17) must give (B.3.16). Therefore

V .J,+ (-V- P) = 0. (B.3.18)
at

which from (B.3.12) is an expression for the conservation of polarization
charge. This expression does not fully determine the polarization current
density J,, because in general we could write

BP
J, = + Vx A, (B.3.19)at

where A is an arbitrary vector, and still satisfy (B.3.18). At this point we
could derive the quantity A (which would turn out to be P x v, where v is the
velocity of the polarized medium). It is important, however, to recognize that
this represents an unnecessary digression. In the electric field system the mag-
netic field appears in only one of the equations of motion-Ampire's law. It
does not appear in (B.2.27b) to (B.2.29b), nor will it appear in any constitutive
law used in this book. For this reason the magnetic field serves simply as a
quantity to be calculated once the electromechanical problem has been solved.
We might just as well lump the quantity A with the magnetic field in writing
Amptre's law. In fact, if we are consistent, the magnetic field intensity H
can be defined as given by

aD
V x H = J, + - (B.3.20)

at
with no loss of physical significance. In an electric field system the magnetic
field is an alternative representation of the current density J,. A review of the
quasi-static solutions for the system in Fig. B.2.1b illustrates this point.

In some materials (ferroelectrics) the polarization density P is constant.
In most common dielectrics, however, the polarization density is a function of
E. The simplest constituent relation for a dielectric is that of linear and
isotropic material,

P = o-XE, (B.3.21)
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where X, is the dielectric susceptibility (dimensionless) that may be a function
of space but not of E. For such a material we define the permittivity e as

S= o(1 + Xe). (B.3.22)

and then write the relation between D and E as [see (B.3.13)]

D = EE. (B.3.23)

This mathematical model of polarizable material is used extensively in this
book.

The differential equations for the electric field system, in the presence of
moving polarized media, are summarized in Table 1.2.

B.3.3 Electrical Conduction

In both magnetic and electric field systems the conduction process accounts
for the free current density J, in a fixed conductor. The most common model
for this process is appropriate in the case of an isotropic, linear, conducting
medium which, when stationary, has the constituent relation (often called
Ohm's law)

J, = aE. (B.3.24)

Although (B.3.24) is the most widely used mathematical model of the con-
duction process, there are important electromechanical systems for which it
is not adequate. This becomes apparent if we attempt to derive (B.3.24),
an exercise that will contribute to our physical understanding of Ohm's law.

In many materials the conduction process involves two types of charge
carrier (say, ions and electrons). As discussed in Section B.1.2, a macro-
scopic model for this case would recognize the existence of free charge den-
sities p+ and p_ with charge average velocities v, and v_, respectively. Then

J, = pv, + p_v_. (B.3.25)

The problem of relating the free current density to the electric field intensity
is thus a problem in electromechanics in which the velocities of the particles
carrying the free charge must be related to the electric fields that apply forces
to the charges.

The charge carriers have finite mass and thus accelerate when subjected to a
force. In this case there are forces on the positive and negative carriers,
respectively, given by (B.1.10) (here we assume that effects from a magnetic
field are ignorable):

F+ = p+E, (B.3.26)

(B.3.27)F_ = p_E.
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As the charge carriers move, their motion is retarded by collisions with other
particles. On a macroscopic basis the retarding force of collisions can be
thought of as a viscous damping force that is proportional to velocity. Hence
we can picture the conduction process in two extremes. With no collisions
between particles the electric force densities of (B.3.26 and B.3.27) continually
accelerate the charges, for the only retarding forces are due to acceleration
expressed by Newton's law. In the opposite extreme a charge carrier suffers
collisions with other particles so frequently that its average velocity quickly
reaches a limiting value, which in view of (B.3.26 and B.3.27) is proportional
to the applied electric field. It is in this second limiting case that Ohm's law
assumes physical significance. By convention mobilities y, and It_ which
relate these limiting velocities to the field E are defined

v = ýP+E, (B.3.28)

v = /_E. (B.3.29)

In terms of these quantities, (B.3.25) becomes

Jf = (p+,a+ + p __)E. (B.3.30)

It is important to recognize that it is only when the collisions between carriers
and other particles dominate the accelerating effect of the electric field that
the conduction current takes on a form in which it is dependent on the in-
stantaneous value of E. Fortunately, (B.3.30) is valid in a wide range of
physical situations. In fact, in a metallic conductor the number of charge
carriers is extremely high and very nearly independent of the applied electric
field. The current carriers in most metals are the electrons, which are detached
from atoms held in the lattice structure of the solid. Therefore the negatively
charged electrons move in a background field of positive charge and, to a good
approximation, p, = -p_. Then (B.3.30) becomes

J = aE, (B.3.31)

where the conductivity is defined as

p+(P+ - _). (B.3.32)

The usefulness of the conductivity as a parameter stems from the fact that
both the number of charges available for conduction and the net mobility
(essentially that of the electrons) are constant. This makes the conductivity
essentially independent of the electric field, as assumed in (B.3.24).*

* We assume here that the temperature remains constant. A worthwhile qualitative descrip-
tion of conduction processes in solids is given in J. M. Ham and G. R. Slemon, Scientific
Basis of Electrical Engineering, Wiley, New York, 1961, p. 453.

I I_ I~~ 
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In some types of material (notably slightly ionized gases) which behave
like insulators, the conduction process cannot be described simply by Ohm's
law. In such materials the densities of charge carriers and even the mobilities
may vary strongly with electric field intensity.

B.4 INTEGRAL LAWS

The extensive use of circuit theory bears testimony to the usefulness of the
laws of electricity and magnetism in integral form. Physical situations that
would be far too involved to describe profitably in terms of field theory have
a lucid and convenient representation in terms of circuits. Conventional
circuit elements are deduced from the integral forms of the field equations.
The description of lumped-parameter electromechanical systems, as under-
taken in Chapter 2, requires that we generalize the integral laws to
include time-varying surfaces and contours of integration. Hence it is natural
that we conclude this appendix with a discussion of the integral laws.

B.4.1 Magnetic Field Systems

Faraday's law of induction, as given by (B.1.42), has the differential form

0B
Vx E = (B.4.1)

at
This expression can be integrated over a surface S enclosed by the contour
C. Then, according to Stokes's theorem,

Edl = -- n da. (B.4.2)t is 8at
Now, if S and C are fixed in space, the time derivative on the right can be
taken either before or after the surface integral of B • n is evaluated. Note

that RB . n da is only a function of time. For this reason (B.1.41) could be

written with the total derivative outside the surface integral. It is implied in
the integral equation (B.1.41) that S is fixed in space.

Figure B.4.1 shows an example in which it is desirable to be able to use
(B.4.2), with S and C varying in position as a function of time. The contour
C is a rectangular loop that encloses a surface S which makes an angle 0(t)
with the horizontal. Although the induction law is not limited to this case, the
loop could comprise a one-turn coil, in which case it is desirable to be able
to use (B.4.2) with C fixed to the coil. The integral law of induction would be
much more useful if it could be written in the form

E' . dl = - A B -n da. (B.4.3)
c dt fs
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B(t)

-e- x

Fig. B.4.1 Contour C enclosing a surface S which varies as a function of time. The
rectangular loop links no magnetic flux when 0 = 0, r, . . . .

In this form the quantity on the right is the negative time rate of change of
the flux linked by the contour C, whereas E' is interpreted as the electric field
measured in the moving frame of the loop. An integral law of induction in
the form of (B.4.3) is essential to the lumped-parameter description of
magnetic field systems. At this point we have two choices. We can accept
(B.4.3) as an empirical r~sult of Faraday's original investigations or we can
show mathematically that (B.4.2) takes the form of (B.4.3) if

E'= E + vx B, (B.4.4)

where v is the velocity of dl at the point of integration. In any case this topic
is pursued in Chapter 6 to clarify the significance of electric and magnetic
fields measured in different frames of reference.

The mathematical connection between (B.4.2) and (B.4.3) is made by
using the integral theorem

d t A n da = M + (V -A )v n da + (Axv). dl, (B.4.5)
dt JSJf , L[at j] JOc

where v is the velocity of S and C and in the case of (B.4.3), A -- B. Before
we embark on a proof of this theorem, an example will clarify its significance.

Example B.4.1. The coil shown in Fig. B.4.1 rotates with the angular deflection O(t) in
a uniform magnetic flux density B(t), directed as shown. We wish to compute the rate of

change of the flux linked by the coil in two ways: first by computing B -n da and takingchangetakin
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its derivative [the left-hand side of (B.4.5)], then by using the surface and contour integra-
tions indicated on the right-hand side of (B.4.5). This illustrates how the identity allows us
to carry out the surface integration before rather than after the time derivative is taken.
From Fig. B.4.1 we observe that

LB n da = -B 0(t)2adsin 0, (a)

so that the first calculation gives

JfB •nda = -- 2adsin0 d -- Bo2adcos0 (b)Wat-d" (b)

To evaluate the right-hand side of (B.4.5) observe that V •B = 0 and [from (a)]

-f. nda = -2adsin 0dB . (c)
S at dt

The quantity B x v is collinear with the axis of rotation in Fig. B.4.1; hence there is no
contribution to the line integral along the pivoted ends of the loop. Because both the
velocity v = i4a (dO/dt) and line elements dl are reversed in going from the upper to the
lower horizontal contours, the line integral reduces to twice the value from the upper
contour.

dO

BBx v.dl= -2Boadcos 0 (d)

From (c) and (d) it follows that the right-hand side of (B.4.5) also gives (b). Thus, at least
for this example, (B.4.5) provides alternative ways of evaluating the time rate of change
of the flux linked by the contour C.

The integral theorem of (B.4.5) can be derived by considering the de-
forming surface S shown at two instants of time in Fig. B.4.2. In the incre-
mental time interval At the surface S moves from S, to S 2, and therefore by

-v At x dl

Fig. B.4.2 When t = t, the surface S enclosed by the contour C is as indicated by S, and
C1. By the time t = t + At this surface has moved to S2, where it is enclosed by the contour
C2.
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definition

-d A.n da = lim -t A t n da - 1 A n da . (B.4.6)
dt s -o At s2 _Ats l It

Here we have been careful to show that when the integral on S, is evaluated
t = t + At, in contrast to the integration on S, which is carried out when
t = t.

The expression on the right in (B.4.6) can be evaluated at a given instant
in time by using the divergence theorem (B.1.14) to write

fv.'AdV f A 'nda -- A nda -At A x dl (B.4.7)

for the volume V traced out by the surface S in the time At. Here we have
used the fact that -v At x dl is equivalent to a surface element n da on the
surface traced out by the contour C in going from C, to C2 in Fig. B.4.2.
To use (B.4.7) we make three observations. First, as At -- 0,

fA +A .nda_ A -nda + A At.nda +-. (B.4.8)
2t+t s2 f at t

Second, it is a vector identity that

A. vx dl = Ax v. dl. (B.4.9)

Third, an incremental volume dV swept out by the surface da is essentially
the base times the perpendicular height or

dV = Atv * n da. (B.4.10)

From these observations (B.4.7) becomes

At (V - A)v n da - A n da At • - n da

- sA n da -At eA x v. dl. (B.4.11)

This expression can be solved for the quantity on the right in (B.4.6) to give

d A.n da = lim[ (V A)v + a- ] da + A x xdl.
dt f- ft

(B.4.12)

The limit of this expression produces the required relation (B.4.5).
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Use of (B.4.5) to express the right-hand side of (B.4.2) results in

f-. nda=- Bdtnda- V.B)v n da - B v)dl.
sg t dt (aV. n fcB

(B.4.13)

Because V . B = 0, (B.4.2) then reduces to (B.4.3), with E' given by (B.4.4).
The integral laws for the magnetic field system are summarized in Table 1.2

at the end of Chapter 1. In these equations surfaces and contours of
integration can, in general, be time-varying.

B.4.2 Electric Field System

Although the integral form of Faraday's law can be taken as an empirical
fact, we require (B.4.5) to write Ampere's law in integral form for an electric
field system. If we integrate (B.3.20) over a surface S enclosed by a contour C,
by Stokes's theorem it becomes

aDH - dl = fJ .n da . n da. (B.4.14)

As with the induction law for the magnetic field system, this expression can
be generalized to include the possibility of a deforming surface S by using
(B.4.13) with B -- D to rewrite the last term. If, in addition, we use (B.3.14)
to replace V - D with p,, (B.4.14) becomes

H' dl = J'- n da + f D. n da, (B.4.15)

where

H'= H - vx D, (B.4.16)

Jf = Jf - pv. (B.4.17)

The fields H' and Ji can be interpreted as the magnetic field intensity and free
current density measured in the moving frame of the deforming contour.
The significance of these field transformations is discussed in Chapter 6.
Certainly the relationship between Jf (the current density in a frame moving
with a velocity v) and the current density J, (measured in a fixed frame),
as given by (B.4.17), is physically reasonable. The free charge density appears
as a current in the negative v-direction when viewed from a frame moving at
the velocity v. If was reasoning of this kind that led to (B. 1.25).

As we have emphasized, it is the divergence of Amphre's differential law
that assumes the greatest importance in electric field systems, for it accounts
for conservation of charge. The integral form of the conservation of charge
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Fig. B.4.3 The sum of two surfaces S1 and S2 "spliced" together at the contour to enclose
the volume V.

equation, including the possibility of a deforming surface of integration, is
obtained by using (B.4.15). For this purpose integrations are considered over
two deforming surfaces, S, and S2, as shown in Fig. B.4.3. These surfaces
are chosen so that they are enclosed by the same contour C. Hence, taken
together, S, and S2 enclose a volume V.

Integration of (B.4.15) over each surface gives

H' . dl== J. n da + D *n da. (B.4.18)

H' . dl = JfJ'•n da +d D n da. (B.4.19)

Now, if n is defined so that it is directed out of the volume V on each surface,
the line integral enclosing S, will be the negative of that enclosing S2. Then
the sum of (B.4.18 and B.4.19) gives the desired integral form of the conser-
vation of charge equation':

J . n da + d1 dfV= 0. (B.4.20)

In writing this expression we have used Gauss's theorem and (B.3.14) to
show the explicit dependence of the current density through the deforming
surface on the enclosed charge density.

The integral laws for electric field systems are summarized in Table 1.2 at
the end of Chapter 1.

B.5 RECOMMENDED READING

The following texts treat the subject of electrodynamics and provide a
comprehensive development of the fundamental laws of electricity and mag-
netism.
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R. M. Fano, L. J. Chu, and R. B. Adler, ElectromagneticFields, Energy, and
Forces, Wiley, New York, 1960; J. D. Jackson, Classical Electrodynamics,
Wiley, New York, 1962: S. Ramo, J. R. Whinnery, and T. Van Duzer,
Fields and Waves in Communication Electronics, Wiley, New York, 1965;
W. K. H. Panofsky and M. Phillips, Classical Electricity and Magnetism,
Addison-Wesley, Reading, Mass., 1956; J. A. Stratton, Electromagnetic
Theory, McGraw-Hill, New York, 1941.

Many questions arise in the study of the effects of moving media on electric
and magnetic fields concerning the macroscopic representation of polarized
and magnetized media; for example, in this appendix we introduced the
fields E and B as the quantities defined by the force law. Then P and M (or
D and H) were introduced to account fof the effects of polarization and
magnetization. Hence the effect of the medium was accounted for by equiv-
alent polarization charges p, and magnetization currents J,. Other represen-
tations can be used in which a different pair of fundamental vectors is taken,
as defined by the force law (say, E and H), and in which the effects of media
are accounted for by an equivalent magnetic charge instead of an equivalent
current. If we are consistent in using the alternative formulations of the field
equations, they predict the same physical results, including the force on
magnetized and polarized media. For a complete discussion of these matters
see P. Penfield, and H. Haus, Electrodynamics of Moving Media, M.I.T.
Press, Cambridge, Mass., 1967.
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