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Problems

In Chapter 13 the restriction of an incompressible fluid is relaxed, and the
effects of compressibility on electromechanical interactions are studied,
although the restriction to inviscid fluid models is still retained.

PROBLEMS

12.1. The mechanism shown in Fig. 12P.1 is to be used as an electrically driven rocket. An
insulating fluid of constant density p is compressed by a piston. The fluid is then ejected
through a slit (nozzle) with a velocity V,; because dD << LD, V, is approximately a constant,
and the system is approximately in a steady-state condition (8/8at = 0):

(a) What is the pressure p at the inside surface of the piston? (Assume that p = 0
outside the rocket.)

(b) Under the assumption that d < L, what is V,?
(c) What is the total thrust of the rocket in terms of the applied voltage Vo and other

constants of the system?

Fig. 12P.1

12.2. A magnetic rocket is shown in Fig. 12P.2. A current source (distributed over the
width W) drives a circuit composed in part of a movable piston. This piston drives an
incompressible fluid through an orifice of height dand width W.Because D > d, the flow is
essentially steady.

(a) Find the exit velocity V as a function of I.
(b) What is the thrust developed by the rocket? (You may assume that it is under

static test.)
(c) Given that I = 103 A, d = 0.1 m, W = 1 m, and the fluid is water, what are the

numerical values for V and the thrust? Would you prefer to use water or air in
your rocket?

Movable perfectly conducting piston
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Fig. 12P.2
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Fig. 12P.3

12.3. A magnetic rocket is shown in Fig. 12P.3. A current source Io (distributed over the
depth W) drives a circuit composed in part of a movable piston. This piston drives an
incompressible, inviscid, nonconducting fluid through two orifices, each of height d and
depth W. Because D > d, the flow is essentially steady.

(a) Find the exit velocity Vas a function of I,.
(b) What is the thrust developed by the rocket? (You may assume that it is under

static test.)

12.4. An incompressible, inviscid fluid of density p flows between two parallel walls as
shown in Fig. 12P.4. The bottom wall has a small step of height d in it at x1 = 0. At x1 =
-L, the velocity of the fluid is v = V/iI and the pressure is Po. Also, at x, = +L the
velocity of the fluid is uniform with respect to x2 and is in the xl-direction, since d << L.
Assuming that the flow is steady (a/at = 0) and irrotational, find the x1-component of the
force per unit depth on the bottom wall. The system is uniform in the x3-direction and has
the zx dimensions shown in Fig. 12P.4.

)--- 1 I "-IIt
/,x2 d

x3 x= L

Fig. 12P.4

12.5. Far away from the rigid cylinder shown in Fig. 12P.5 the velocity of a fluid with
density p is aconstant V = Voi 1 and its pressure isp,. Assume that the fluid is incompressible
and that the flow is steady and irrotational:
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(a) Find the velocity of the fluid everywhere.
(b) Sketch the velocity field.
(c) Find the pressure everywhere.
(d) Use the stress tensor to find the total pressure force (give magnitude and direction)

exerted by the fluid on the rigid cylinder. Assume that 8/8la = 0.

--- V = Vo 1

PO

a

Fig. 12P.5

12.6. An inviscid incompressible fluid flows around a rigid sphere of radius a, as shown in
Fig. 12P.6. At x• = ± oo the fluid velocity becomes v = Voi.

(a) Compute the velocity distribution v(x., x2 , x3).

(b) Find the pressurep(xl, x2, xa). [Assume that the pressure is zero at (x 1,X, 3)
(-a,0, 0).]

(c) Use the results of (b) to compute the force exerted on the sphere in the zl-direction
by the fluid.

Vo V0 --... )

xC1 -*--

Fig. 12P.6

12.7. The velocity distribution of an inviscid fluid is given as v = -VO, where
(Vo/a)3xx 2 and V. and a are constants.

(a) Show by means of a sketch the direction and magnitude of the velocity in the
x,-x2 plane.

(b) Compute the fluid acceleration. Sketch the direction and magnitude of the
acceleration in the xl-x2 plane.

(c) In what physical situation would you expect the flow to have this distribution?

12.8. In the configuration of Fig. 12P.8 an incompressible, inviscid fluid of mass density p
flows without rotation (V x v = 0), between two rigid surfaces shown, with velocity

a a

where vo and a are positive constants. Neglect gravity.

(a) Find the fluid acceleration at all points in the flow.
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Fig. 12P.8

(b) The pressure is constrained at the origin (x =-22 = 0) to bep,.Find the pressure
at all other points in the fluid.

12.9. Consider the situation of Prob. 12.8, but now with gravity acting in the -X-
direction.

(a) Find the velocity between the rigid walls.
(b) Show that the boundary conditions are satisfied at the walls.

12.10. Figure 12P.10 shows an irrotational flow in a corner formed by a rigid wall.
(a) Let v = - VO. What are the boundary conditions on 0 ? Sketch the contour of

constant 0 in the x-y plane.
(b) What function 6(x, y)satisfies both V - v = 0 and V x v = 0 and the boundary

conditions of part (a)?
(c) Assuming that the pressure p = Po at (z, y) = 0 and that p = Po to the left and

below the wall, what is the force exerted by the fluid on the section of the wall
between x = c and x = d?

(d) Compute the fluid acceleration. Make a sketch to show the magnitude and
direction of the acceleration in the x-y plane.

x

d

V

Rigid wall

Fig. 12P.10
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x=0 x=1
Fig. 12P.11

12.11. An inviscid incompressible fluid enters the channel shown in Fig. 12P.l 1, with the
velocity Vo and pressurepo. One wall of the channel includes a section of length I composedof a taut membrane with the deflection &.

(a) Assume that spatial variations in the membrane deflection occur slowly so that
the velocity ve is independent of z. Relate v,(x) to Vo, 4, and h.

(b) Determine the pressure on the upper surface of the membrane using the factthatp = Po at the inlet where v = Vo.
(c) Find an expression of the form T = CE for the force per unit area Tz on the

membrane as a function of 5 and a constant C. To do this assume that perturba-

tions in & are small and use the fact that the pressure below the membrane is Po.(d) Now assume that the dynamics occur slowly enough that the result of part (c)
will remalocity vis in true evden if v = v(, el and = , t). The membrane has a

tension S and mass per unit area ao. For what values of Vo will the staticequilibrium of the membrane at u = 0 be stable?
(e) Explain physically why the instability of part (d) occurs.

12.12. A perfectly conducting membrane with tension S and mass per unit area aT, is fixed

at x = 0 and x = L. An inviscid, incompressible fluid with mass density Po flows underneaththe membrane (Fig. 12P.12). An electric field exists in the region above the membrane. The
upper region is filled with a light gas that is at atmospheric pressurelow the everywhere.

(a) Find the value thaof the pressure in the fluid for -dthat y 0 in terms of given
parameters if main , t) 0 is a state of equilibrium.

(b) Under what conditions can a small signal sinusoidal oscillation exist about the
equilibrium position (x, t) = 0 be stable??

Note. The gravitational field affects both the equilibrium and small signal solutions.
(c) Make a dimensioned wi-k plot for a real wavenumber.
(d) Justify the validity of imposing boundary conditions at y =- 0 and x = L such

that these conditions affect the membrane for 0 <x < L.

Depth D
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Fig. 12P.12
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Fig. 12P.13

12.13. A duct is formed by stretching membranes between plane parallel rigid plates, as
shown in Fig. 12P.13. An inviscid fluid flows through this duct, entering at the left with
velocity V.. The pressure outside the duct is Po, so that the membrane can be in static
equilibrium with $, = ý2 = 0.

(a) What is the largest velocity Vo that can be used and have the membranes remain
in a state of stable equilibrium?

(b) What would the appearance of the membranes be if Vo were just large enough to
make the equilibrium 41 = 4ý= 0 unstable?

12.14. An inviscid, incompressible fluid rests on a rigid bottom, as shown in Fig. 12P.14.
In the absence of any disturbances it is static and has a depth a. If disturbed, the surface of
the fluid has the position 4(x, t). As is obvious to anyone who has observed ocean waves,
disturbances of the interface propagate as waves. It is our object here to derive an equation
for the propagation of these gravity waves, which have "wavelengths" that are longcompared
with the depth a of the fluid. To do this we make the following assumptions:

(a) The effects of inertia in the y-direction are negligible. Hence the force equation
in the y-direction is

ap

Because y = ý(x, t) is a free surface, the pressure there is constant (say zero).
What is p in terms of y and 4?

(b) Because the fluid is very shallow, we can assume that v, = v,(x, t); that is, the
horizontal fluid velocity is independent of y. On the basis of this assumption, use
the conservation of mass equation for the incompressible fluid (V - v = 0) to
find v,(x, t,t) in terms of v,.

(c) Use the result of (a) to write the horizontal component of the force equation as
one equation in v.(x, t) and 4(x, t).

(d) Use the result of (b) to write an additional equation in 4 and v, (assume Z << a
so that only linear terms need be retained).

(e) Combine equations from parts (c) and (d) to obtain the wave equation for
gravity waves. What is the phase velocity of these waves?

Fig. 12P.14
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H(b)
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At z z, r = r,

normal = 11
-IH= 13

For some typical
r = ra, z = z, and
any O< 0 < 21

Typical point on surface

(c)

Fig. 12P.15

12.15*. A perfectly conducting, cylindrical pot contains a perfectly conducting fluid. A
center coaxial post is placed inside the cylinder. A current source is attached between the
center post and the outer wall of the pot to cause a current to flow on the perfectly conducting
surfaces, as shown in Fig. 12P.15a. When the current source is turned off, the fluid comes
to rest with its surface at z = a. When the current source is turned on, the magnetic field
pressure (normal surface traction) causes the surface to deform (e.g. as shown).

* Colgate, Furth, and Halliday, Rev. Mod. Phys., 32, No. 4, 744 (1960).

r = Ro

b << R,

Z, Hm

r,
H, =- I.2irr,

n1
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(a) At any typical point on the surface (0-direction symmetry exists; see Fig. 12P.15b),
the normal traction on the surface can be found by using the Maxwell Stress
Tensor and a coordinate system arranged for the sample point, as shown in Fig.
12P. 15c. Since the MST result is good for any surface point (r, z), the normal
traction is known everywhere as a function of r, the radial position of the surface
point. Find the normal traction due to the magnetic field as a function of r.

(b) The hydrostatic pressure of the dense fluid varies appreciably with z, due to
gravity, whereas the pressure of the light gas (air) may be assumed to be Po
(atmospheric) everywhere. Using the fact that the forces acting normal to the
fluid-air interface must balance, find an equation for the surface. Neglect surface
tension and call the top point on the surface z = zo, r = Ro. Hint. Remember
that at z = z,, r = Ro, the magnetic traction + Po exists on the air side of the
interface and is counterbalanced by the hydrostatic pressure on the fluid side of
the interface. No magnetic field exists in the fluid; hydrostatic pressure exerts a
normal force on the interface.

(c) In part (b) the value of zo remains unknown. Because the total mass of the fluid
(or volume for an incompressible fluid) must be conserved, set up an expression
that will determine z.. Integration need not be carried out.

12.16. The MHD machine for which dimensions and parameters are defined in Fig. 12P.16
can be assumed to operate with incompressible, uniform flow velocity v in the z-direction.
The fluid has constant, scalar conductivity. There is a uniform applied flux density B in the

Y

Fig. 12P.16
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x-direction and the magnetic field due to current through the fluid may be neglected. The
electrical terminals are connected to a battery of constant voltage Vo and a constant
resistance R in series. For steady-state operation calculate and sketch the electric power out
of the generator Pe= VIand the mechanical power into the generator P, = (p(O) - p(1)]wdv
as functions of the fluid velocity v. Specify the range of velocity over which the system
operates as a generator, pump, and brake.

12.17. From a conformal-mapping analysis of end effects in an MHD generator,* for a
generator having

channel width w, channel depth d,
electrode length 1, uniform velocity ve,
fluid conductivity a, flux density Bo over length of electrodes,

the electrical output power is

1 1
Pout = (Voc - V) V - - a V1,

Ri R,
where

w
Ri = -ld

Voc = VoBow,

a = ý In 2

V = terminal voltage.

(a) Show that the mechanical power input is given by

S= ,dJBody dz (Voc - V)Voc

by direct integration. Note. All that is needed foi this integration is the facts
that E = -- V and the difference in potential between the electrodes is V.

(b) Defining efficiency as ri = PouJPm, find the efficiency at maximum power output
and the maximum efficiency and plot them as functions of1/a for 0 < 1/a < 10.

12.18. For the MHD machine with solid electrodes, for which parameters, dimensions, and
variables are defined in Fig. 12P.18a, assume that the fluid is incompressible, inviscid, and
has a constant, scalar conductivity a. Neglect the magnetic field due to current in the fluid.
The source that supplies the pressure Ap = pi - Po has the linear characteristic Ap =
Apo(1 - vlvo), where Apo and vo are positive constants. The machine with this mechanical
source can be represented electrically by the equivalent circuit of Fig. 12P.18b. Find the
open-circuit voltage Voe and the internal resistance R' in terms of the given data.

* G. W. Sutton and A. Sherman, Engineering Magnetohydrodynamics, McGraw-Hill,
New York, 1965, Section 14.6.1.
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Fig. 12P.18

12.19. An MHD conduction generator has the configuration and dimensions defined in
Fig. 12P.19. The fluid is inviscid, has conductivity a, and is flowing with a uniform, constant
velocity v in the x-direction. The field intensity Ho, in the y-direction, is produced by the
system shown, which consists of a magnetic yoke with two windings; one (No) carries a
constant current I o and the other (NL) carries the load current IL . The resistance of
winding NL, fringing effects at the ends and sides of the channel, and the magnetic field
due to current in the fluid may be neglected (the magnetic Reynolds number based on
length I is small). For steady-state operating conditions find the number of turns NL

necessary to make the terminal voltage VL independent of load current IL .

System has length I perpendicular to the paper

Fig. 12P.19

i
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or

Fig. 12P.20

12.20. A dc transformer is to be made by using a closed channel of incompressible, inviscid
fluid ofconductivity a, permeability po and density p, and two MHD conduction machines,
as illustrated in Fig. 12P.20. Both machines have the same applied uniform flux density B,
but their dimensions are different, as indicated. Make the usual assumptions of uniform
velocity in the machines, neglect the magnetic fields induced by current in the fluid, and
neglect end and edge effects and fringing. For steady-state conditions find a relation between
V2 and 12 in terms of input voltage VI, conductivity a, and the dimensions. Draw the
Thevenin equivalent circuit this relation implies.

12.21. A conducting liquid flows with a constant velocity v in the closed channel shown in
Fig. 12P.21. The motion is produced by an MHD pump which provides a pressure rise

Fig. 12P.21
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pi - P2 > 0 wherepL andp2 are the outlet and inlet pressures. The fluid, as it flows through
the remainder of the channel, undergoes the pressure drop P, - P2 = kv, where k is a
known constant. Determine the velocity v in terms of the imposed magnetic field Ho and
the other constants of the system.

12.22. The rectangular channel with the dimensions shown in Fig. 12P.22 is to be used in an
MHD pump for a highly conducting liquid of conductivity a. The channel has two sides
which are perfectly conducting electrodes, and an electrical circuit is connected to them. An

R

Fig. 12P.22

external magnet produces a constant magnetic field Ho in the x2-direction. The device is to
pump against a gravitational field (which is in the (-x-)-direction):

(a) What range of values for the voltage source Vo will make the liquid flow upward
in the +x1-direction ? Assume that the pressure at x, = 0 is the same as the
pressure at x1 = L.

(b) Under the conditions of part (a) show clearly that the voltage source is supplying
power to the liquid.

12.23. Two large reservoirs of water are connected by a large duct, as shown in Fig.
12P.23a. Over a length I of this duct the walls are highly conducting electrodes short-
circuited together by an external circuit, as shown in Fig. 12P.23b. A uniform, constant
magnetic field Bois imposed perpendicular to the direction of flow. Because the water has a
conductivity a, there is a current through the water between the electrodes. Assume that the
reservoirs are so large that h1 and h 2 remain constant and that the fluid is incompressible
and inviscid. What is the velocity v of the fluid between the electrodes ?

Fig. 12P.23 (a)



Fig. 12P.23 (b)
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12.24. The system shown in Fig. 12P.24 consists of a storage tank of horizontal cross-
sectional area A, open to the atmosphere at the top, and an MHD generator through which
fluid stored in the tank can flow to atmospheric pressure. The generator is loaded by
resistance R as shown. The tank is initially filled to a height h. with mercury. At t = 0 the
valve is opened to allow mercury to discharge through the generator. When the height has
decreased to ho/2 the valve is closed again. Do the following calculations, using the numerical
data given below. Make any approximations that are justified by the numerical data.
Assume all flow to be incompressible (V . v = 0) and irrotational (V x v = 0).

(a) Calculate the height h of mercury in the tank as a function of time.
(b) Calculate the current in the load resistance R as a function of time.

Numerical Data

Mercury Generator
Density: 1.35 x 104 kg/m3 Ho = 1.6 x 105 A/m

D = 0.1 m
Conductivity: 106 mhos/m W = 0.2 m

Lo=lm
Tank Dimensions L, = 2 m

A = 100m 2 R = 2 x 10-5 Q
ha = 10 m Acceleration of Gravity

g = 9.8 m/sec2

12.25. A simple, bulk-coupled MHD system is used to pump mercury from one storage
tank to another, as shown in Fig. 12P.25a. Figure 12P.25b shows the details of the MHD
system. The MHD system is driven with a voltage source Vo in series with a resistance R.

Each storage tank has area A and is open to atmospheric pressure at the top. Consider
all flow to be incompressible and irrotational (V -v = 0 and V x v = 0). Use the following
numerical data for your solutions.

Mercury MHD System
Density: 1.35 x 104 kg/m3 Ho = 5 x 105 A/m
Conductivity: 106 mhos/m D = 0.01 m

W = 0.02 m
Tank Area: A = 0.1 m2 L z = 0.1 m
Acceleration of Gravity: g = 9.8 m/sec2 L 2 = 1.9 m

R = 10-5~

(a) What voltage Vo is required to maintain the levels in the tanks h, = 0.4 m and
h2 = 0.5 m. How much current and power does the voltage source supply in
this case?

(b) With the equilibrium conditions of (a) established, the voltage Vo is doubled at
t = 0. Find h2(t) and the source current i(t) for t > 0. Sketch and label curves
of these time functions. To solve this problem exactly it is necessary to know the
three-dimensional flow pattern in the tanks. For this problem, however, it is
sufficient to make the following approximations. In writing dynamical equations
neglect the acceleration of the fluid in the tanks compared with the acceleration
of the fluid in the pipe. Be sure to estimate the error caused by making this
assumption after the solution has been completed. Also neglect the magnetic
field due to current in the mercury.
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Area A Area A

Ll +L

MHD system

Fig. 12P.25

12.26. Figure 12P.26 shows schematically an ac, series-excited, liquid metal conduction
pump. The liquid metal has mass density p and electrical conductivity a. The excitation
winding has N turns (N >> 1) and the magnetic path is closed externally by infinitely per-
meable, nonconducting magnetic material. The dimensions are given in the figure. The
electrical terminals are driven by an alternating current source: i(t) = Isin wt, where land
wa are positive constants. The pump works against a velocity dependent pressure rise
p(l) - p(O) = Apo(v/vo), where Apo and vo are positive constants. For steady-state operation
complete the following:

(a) Find the velocity v as a function of time.
(b) Evaluate the ratio of the amplitudes of the ac and dc components of velocity.

~--·-~1(·11~1111~-··111_·
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I i(t)

Fig. 12P.26

12.27. A pair of magnetohydrodynamic conduction generators is shown in Fig. 12P.27.
In each generator a conducting fluid flows through a channel of width wand height a with
approximately uniform constant velocity V. A magnetic field is applied to each generator
by means of a magnetic circuit that produces (approximately) a uniform magnetic field in
the vertical direction. The magnetic circuits can be considered as having infinite perme-
ability with all the drop in mmf across the channels. Currents are passed through the
channels by means of highly conducting electrodes of height a and length b, as shown in
Fig. 12P.27. The current i1 (amperes) through the left generator is used to produce a magnetic
field in the left generator and in the right generator, as shown, and to deliver power to the
load RL. The current 12through the right generator follows a similar path, except that the
turns Nand Nm have different directions. We wish to establish the dynamics that would be
expected for two generators interconnected in this way, with the objective of producing ac
rather than dc power delivered to the loads R,.

(a) Find the pair of ordinary differential equations in il(t) and i2(t) that defines the
system dynamics under the given conditions.

(b) Determine the condition, in terms of the given system parameters, that the
generators be stable.

(c) Under what condition will the system operate in the sinusoidal steady state?
Given that RL = 0, a = 50 mhos/m, V = 4000 m/sec, and N = 1 turn, what
is the length b required to meet this condition?

(d) Compute the frequency at which the system will operate in the sinusoidal steady
state under the above conditions, given that Nm = 1 turn.

12.28. The system shown in Fig. 12P.28 has been proposed for an ac, self-excited, MHD
power generator. It consists of a single channel with length 1, width D, and height W,
through which an incompressible, inviscid, highly conducting liquid with conductivity a
and permeability Po flows. The velocity of the liquid is constrainedexternally to be a constant
and always in the qx-direction; that is, v = Vi1 everywhere in the channel. (The scalar Vis
a known fixed constant.) The sides of the channel at x 2 = 0 and xz = W are insulating, but
the other two sides, namely those at x, = 0 and a' = D, are perfectly conducting electrodes.
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i2

Fig. 12P.27

An external circuit connected to the electrodes consists of three elements in series. The first
two elements are a load resistance RL and a capacitance C. The last element is a losslesscoil
of N turns which is wound on the top (z = W) surface of the channel to produce a uniform
x-directed magnetic field everywhere in the channel. (Reasonable assumptions may be
made about this field; namely, that it is equivalent to the field produced as if the N turns
were distributed uniformly through the depth W of the channel but on the outer perimeter
of the channel.)

(a) Find the value of the load resistance RL that will make the device act as an ac
generator (so that the current i is a pure sinusoid). Note that ac power will then
be continuously dissipated in the load resistance RL.

(b) What is the frequency of the resulting sinusoid of part (a)?
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Fig. 12P.28

12.29. The MHD generator of Fig. 12P.29 has a channel of length 1, width w, and depth d.
An external system not shown establishes the magnetic flux density Bo = i,Bo . Two equal
resistances of R 0 each are connected in series between the electrodes, with a switch S in
parallel with one resistance. The channel contains an inviscid, incompressible fluid of mass
density p flowing under the influence of a pressure difference Ap = pi - Po, which is positive
and maintained constant by external means. The fluid has an electrical conductivity o and
the magnetic field due to current flow in the fluid can be neglected.

R R

Fig. 12P.29

a -- Oo

1., ý'
i
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(a) For steady-state conditions with switch S open, find the velocity v and load
current i in terms of given data.

(b) With the system operating in the steady state as defined in part (a), the switch S
is closed at t = 0. Find the velocity v and load current ias functions ofthe given
data and time for t > 0.

12.30. This problem concerns the self-excitation of a de generator. The variables and
dimensions are given in Fig. 12P.30. The channel has a constant cross-sectional area, the
fluid is incompressible and inviscid, and the conductivity is constant and scalar. Assume

Fig. 12P.30

that the magnetic circuit is closed outside the channel with infinitely permeable iron.
The mechanical source providing power has the pressure-velocity characteristic Ap =
Pi - Po = Apo(l - v/v,), where Apo and vo are positive constants. The volume, geometry,
and space factor of the field winding are constants so that the field coil resistance varies as
the square of the number of turns R0 = N2 Rco. The numerical constants of the system are

Apo = 2 x 105 n/m2

S402m
a = 40 mhos/m

Vo = 103 m/sec
w = 0.4 m

Reo = 10- 6 Q

d = 0.2 m
RL = 2.5 x 10-2 0

(a) Find the number of turns necessary to produce a load power in RL of 1.5 x
106 W. If there is more than one solution, pick the most efficient.

(b) For the number of turns in part (a), find the start up transient in current and
plot it as a function of time. Assume an initial current of 10 A, provided by
external means.

(c) For the number of turns found in part (a) find the steady-state load power as a
function of RL. Plot the curve.

12.31. The system of Fig. 12P.31 represents an MHD transverse-current generator with
continuous electrodes. We make the usual assumptions about incompressible, inviscid,
uniform flow. The fluid has mass density p and conductivity a. The pressure drop along the
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x

RL

Fig. 12P.31

length of the channel is constrained by a mechanical source to be

Pi -PoP= Ap = Po 1 - -)

where Ape and vo are positive constants. The flux density Bo is uniform and constant and is
supplied by a system not shown. Neglect the magnetic field due to current in the fluid. The
switch S is open initially and the system is in the steady state:

(a) Find the terminal voltage V.
(b) At t = 0 switch S is closed. Find and sketch the ensuing transients in fluid

velocity and load current.

ele\\
elect

mean length 1
containing inviscid
fluid of
conductivity o
density p
permeability Mo

Fig. 12P.32

Bo1
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12.32. An energy storage element is to be made by using a closed channel of incompressible
inviscid fluid of conductivity a, permeability yo, and mass density p, with an MHD con-
duction machine for coupling (Fig. 12P.32). The channel has constant cross-sectional area
wd and mean length I and the radius of the bends is large compared with the channel width
w. The flux density B is supplied by a system not shown. Assume that the velocity is uniform
across the channel and neglect end and edge effects and the magnetic field induced by current
in the fluid. Find an equivalent electric circuit as seen from the electrical terminals and
evaluate the circuit parameters.

12.33. In the system of Fig. 12P.33 an MHD generator is to be used to charge a capacitor.
The MHD generator has a channel of constant cross-sectional area with the dimensions and
arrangements shown in Fig. 12P.33. The working fluid has electrical conductivity a and is
incompressible and inviscid; it is constrained by external means to flow through the channel
with a constant velocity vo that is uniform across the cross section. The constant uniform
flux density B, is established by an external magnet not shown. Neglect the magnetic field
due to current in the fluid and neglect fringing effects at the ends.

(a) Find the capacitor voltage V. as a function of time and evaluate the final energy
stored in capacitance C.

(b) Find the pressure difference supplied by the fluid source as a function of time
and evaluate the total energy supplied by the fluid source.

(c) Account for the difference between your answers for energy in parts (a) and (b).

Fig. 12P.33

12.34. This problem is similar to the example worked in Section 12.2.1b. A U-tube of
constant, rectangular cross section contains an inviscid, incompressible conducting fluid
of mass density p and conductivity a.The fluid has a total length 1between the two surfaces
which are open to atmospheric pressure as illustrated in Fig. 12P.34a. A conduction type
MHD machine of length /1 is inserted at the bottom of the U-tube. The details of the MHD
channel are illustrated in Fig. 12P.34b. Neglect end effects and the magnetic field due to
current flow in the fluid. The system parameters are

1 = 1 m, 11 = 0.1 m, w = 0.01 m, d = 0.01 m,
Be = 2 Wb/m 2, V = 0.001 V, g = 9.8 m/sec2.

The fluid is mercury with constants a = 106 mhos/m, p = 1.36 x 104 kg/mi. With the
system in equilibrium, with switch S open, x --= x = 0; switch S is closed at t = 0.
Calculate the ensuing transients in fluid position za and electrode current i. Sketch and label
curves of these transients.
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12.35. An incompressible inviscid conducting liquid fills the conduit shown in Fig. 12P.35.
A current density J. (known constant) flows through the fluid over a length L of the channel.
This section of the fluid is also subjected to a magnetic field produced by a magnetic circuit.
(The gap D is the only portion of the circuit where 1 0 oo.) This magnetic field is produced
by two Nturn coils wound as shown. The liquid has two free surfaces denoted by x and y.
When the fluid is stationary, x = L/2 and y = L/2. In the regions of the free surfaces,
electrodes carrying the currents I, and 12are arranged as shown. It is seen that the resistance



Problems

Fig. 12P.35

of the circuits is related to the heights of the interfaces. Find an equation for x(t) that de-
scribes the system. Specifically, when t = 0, z = L, and dx/dt = 0, what is x(t)?

Assumptions

(a) v is directed along the channel and is independent of cross-sectional position.
(b) Ignore L(dll/dt) and L(dl2/dt) (the rates of change with time are slow because

of the fluid inertia).
(c) Ignore the magnetic field produced by Jo.

12.36. Rework the Alfv6n-wave problem in cylindrical geometry in Section 12.2.3 with the
following change in the boundary condition at z = 0. The end of the tube at z = 0 is fixed,
rigid, and perfectly conducting. Your answer should consist of solutions for ve, B0 , J,, and

Jr which are similar to (12.2.121)-(12.2.124). The functional dependences on z will be
different in your answer because of the different boundary conditions.

12.37. A perfectly conducting inviscid fluid is bounded on the right by a perfectly conducting
rigid wall, as shown in Fig. 12P.37. On the left a perfectly conducting plate also makes
electrical contact with the liquid while being forced to execute an oscillatory motion in the
x-direction. The system is immersed in a magnetic field so that when there are no motions
B = Boi,, where B0 is a constant.
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(a) Find the equations of motion, which together predict the transverse fluid
velocity v,(z, t) and field intensity H,(z, t).

(b) Use appropriate boundary conditions to find H,(z, t) in the sinusoidal steady
state.

(c) Compute the current density implied by (b). If you were to do this experiment,
how would you construct the walls of the container that are parallel to the x-z
plane? Explain in words why the fluid can transmit shearing motions even
though it lacks viscosity.

____




